Line data Source code
1 : /* SPDX-License-Identifier: BSD-3-Clause
2 : * Copyright (C) 2020 Intel Corporation.
3 : * Copyright (c) 2019-2022, Nutanix Inc. All rights reserved.
4 : * Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5 : */
6 :
7 : /*
8 : * NVMe over vfio-user transport
9 : */
10 :
11 : #include <sys/param.h>
12 :
13 : #include <vfio-user/libvfio-user.h>
14 : #include <vfio-user/pci_defs.h>
15 :
16 : #include "spdk/barrier.h"
17 : #include "spdk/stdinc.h"
18 : #include "spdk/assert.h"
19 : #include "spdk/thread.h"
20 : #include "spdk/nvmf_transport.h"
21 : #include "spdk/sock.h"
22 : #include "spdk/string.h"
23 : #include "spdk/util.h"
24 : #include "spdk/log.h"
25 :
26 : #include "transport.h"
27 :
28 : #include "nvmf_internal.h"
29 :
30 : #define SWAP(x, y) \
31 : do \
32 : { \
33 : typeof(x) _tmp = x; \
34 : x = y; \
35 : y = _tmp; \
36 : } while (0)
37 :
38 : #define NVMF_VFIO_USER_DEFAULT_MAX_QUEUE_DEPTH 256
39 : #define NVMF_VFIO_USER_DEFAULT_AQ_DEPTH 32
40 : #define NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE ((NVMF_REQ_MAX_BUFFERS - 1) << SHIFT_4KB)
41 : #define NVMF_VFIO_USER_DEFAULT_IO_UNIT_SIZE NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE
42 :
43 : #define NVME_DOORBELLS_OFFSET 0x1000
44 : #define NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT 2
45 : #define NVMF_VFIO_USER_SET_EVENTIDX_MAX_ATTEMPTS 3
46 : #define NVMF_VFIO_USER_EVENTIDX_POLL UINT32_MAX
47 :
48 : #define NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR 512
49 : #define NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR (NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR / 4)
50 :
51 : /* NVMe spec 1.4, section 5.21.1.7 */
52 : SPDK_STATIC_ASSERT(NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR >= 2 &&
53 : NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR <= SPDK_NVME_MAX_IO_QUEUES,
54 : "bad number of queues");
55 :
56 : /*
57 : * NVMe driver reads 4096 bytes, which is the extended PCI configuration space
58 : * available on PCI-X 2.0 and PCI Express buses
59 : */
60 : #define NVME_REG_CFG_SIZE 0x1000
61 :
62 : /*
63 : * Doorbells must be page aligned so that they can memory mapped.
64 : *
65 : * TODO does the NVMe spec also require this? Document it.
66 : */
67 : #define NVMF_VFIO_USER_DOORBELLS_SIZE \
68 : SPDK_ALIGN_CEIL( \
69 : (NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR * 2 * SPDK_NVME_DOORBELL_REGISTER_SIZE), \
70 : 0x1000)
71 : #define NVME_REG_BAR0_SIZE (NVME_DOORBELLS_OFFSET + NVMF_VFIO_USER_DOORBELLS_SIZE)
72 :
73 : /*
74 : * TODO check the PCI spec whether BAR4 and BAR5 really have to be at least one
75 : * page and a multiple of page size (maybe QEMU also needs this?). Document all
76 : * this.
77 : */
78 :
79 : #define NVMF_VFIO_USER_MSIX_NUM MAX(CHAR_BIT, NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR)
80 :
81 : #define NVMF_VFIO_USER_MSIX_TABLE_BIR (4)
82 : #define NVMF_VFIO_USER_BAR4_SIZE SPDK_ALIGN_CEIL((NVMF_VFIO_USER_MSIX_NUM * 16), 0x1000)
83 : SPDK_STATIC_ASSERT(NVMF_VFIO_USER_BAR4_SIZE > 0, "Incorrect size");
84 :
85 : /*
86 : * TODO according to the PCI spec we need one bit per vector, document the
87 : * relevant section.
88 : */
89 : #define NVMF_VFIO_USER_MSIX_PBA_BIR (5)
90 : #define NVMF_VFIO_USER_BAR5_SIZE SPDK_ALIGN_CEIL((NVMF_VFIO_USER_MSIX_NUM / CHAR_BIT), 0x1000)
91 : SPDK_STATIC_ASSERT(NVMF_VFIO_USER_BAR5_SIZE > 0, "Incorrect size");
92 : struct nvmf_vfio_user_req;
93 :
94 : typedef int (*nvmf_vfio_user_req_cb_fn)(struct nvmf_vfio_user_req *req, void *cb_arg);
95 :
96 : /* 1 more for PRP2 list itself */
97 : #define NVMF_VFIO_USER_MAX_IOVECS (NVMF_REQ_MAX_BUFFERS + 1)
98 :
99 : enum nvmf_vfio_user_req_state {
100 : VFIO_USER_REQUEST_STATE_FREE = 0,
101 : VFIO_USER_REQUEST_STATE_EXECUTING,
102 : };
103 :
104 : /*
105 : * Support for live migration in NVMf/vfio-user: live migration is implemented
106 : * by stopping the NVMf subsystem when the device is instructed to enter the
107 : * stop-and-copy state and then trivially, and most importantly safely,
108 : * collecting migration state and providing it to the vfio-user client. We
109 : * don't provide any migration state at the pre-copy state as that's too
110 : * complicated to do, we might support this in the future.
111 : */
112 :
113 :
114 : /* NVMe device state representation */
115 : struct nvme_migr_sq_state {
116 : uint16_t sqid;
117 : uint16_t cqid;
118 : uint32_t head;
119 : uint32_t size;
120 : uint32_t reserved;
121 : uint64_t dma_addr;
122 : };
123 : SPDK_STATIC_ASSERT(sizeof(struct nvme_migr_sq_state) == 0x18, "Incorrect size");
124 :
125 : struct nvme_migr_cq_state {
126 : uint16_t cqid;
127 : uint16_t phase;
128 : uint32_t tail;
129 : uint32_t size;
130 : uint32_t iv;
131 : uint32_t ien;
132 : uint32_t reserved;
133 : uint64_t dma_addr;
134 : };
135 : SPDK_STATIC_ASSERT(sizeof(struct nvme_migr_cq_state) == 0x20, "Incorrect size");
136 :
137 : #define VFIO_USER_MIGR_CALLBACK_VERS 1
138 : #define VFIO_USER_NVME_MIGR_MAGIC 0xAFEDBC23
139 :
140 : /* The device state is in VFIO MIGRATION BAR(9) region, keep the device state page aligned.
141 : *
142 : * NVMe device migration region is defined as below:
143 : * -------------------------------------------------------------------------
144 : * | vfio_user_nvme_migr_header | nvmf controller data | queue pairs | BARs |
145 : * -------------------------------------------------------------------------
146 : *
147 : * Keep vfio_user_nvme_migr_header as a fixed 0x1000 length, all new added fields
148 : * can use the reserved space at the end of the data structure.
149 : */
150 : struct vfio_user_nvme_migr_header {
151 : /* Magic value to validate migration data */
152 : uint32_t magic;
153 : /* Version to check the data is same from source to destination */
154 : uint32_t version;
155 :
156 : /* The library uses this field to know how many fields in this
157 : * structure are valid, starting at the beginning of this data
158 : * structure. New added fields in future use `unused` memory
159 : * spaces.
160 : */
161 : uint32_t opts_size;
162 : uint32_t reserved0;
163 :
164 : /* BARs information */
165 : uint64_t bar_offset[VFU_PCI_DEV_NUM_REGIONS];
166 : uint64_t bar_len[VFU_PCI_DEV_NUM_REGIONS];
167 :
168 : /* Queue pair start offset, starting at the beginning of this
169 : * data structure.
170 : */
171 : uint64_t qp_offset;
172 : uint64_t qp_len;
173 :
174 : /* Controller data structure */
175 : uint32_t num_io_queues;
176 : uint32_t reserved1;
177 :
178 : /* NVMf controller data offset and length if exist, starting at
179 : * the beginning of this data structure.
180 : */
181 : uint64_t nvmf_data_offset;
182 : uint64_t nvmf_data_len;
183 :
184 : /*
185 : * Whether or not shadow doorbells are used in the source. 0 is a valid DMA
186 : * address.
187 : */
188 : uint32_t sdbl;
189 :
190 : /* Shadow doorbell DMA addresses. */
191 : uint64_t shadow_doorbell_buffer;
192 : uint64_t eventidx_buffer;
193 :
194 : /* Reserved memory space for new added fields, the
195 : * field is always at the end of this data structure.
196 : */
197 : uint8_t unused[3856];
198 : };
199 : SPDK_STATIC_ASSERT(sizeof(struct vfio_user_nvme_migr_header) == 0x1000, "Incorrect size");
200 :
201 : struct vfio_user_nvme_migr_qp {
202 : struct nvme_migr_sq_state sq;
203 : struct nvme_migr_cq_state cq;
204 : };
205 :
206 : /* NVMe state definition used to load/restore from/to NVMe migration BAR region */
207 : struct vfio_user_nvme_migr_state {
208 : struct vfio_user_nvme_migr_header ctrlr_header;
209 : struct spdk_nvmf_ctrlr_migr_data nvmf_data;
210 : struct vfio_user_nvme_migr_qp qps[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
211 : uint8_t doorbells[NVMF_VFIO_USER_DOORBELLS_SIZE];
212 : uint8_t cfg[NVME_REG_CFG_SIZE];
213 : };
214 :
215 : struct nvmf_vfio_user_req {
216 : struct spdk_nvmf_request req;
217 : struct spdk_nvme_cpl rsp;
218 : struct spdk_nvme_cmd cmd;
219 :
220 : enum nvmf_vfio_user_req_state state;
221 : nvmf_vfio_user_req_cb_fn cb_fn;
222 : void *cb_arg;
223 :
224 : /* old CC before prop_set_cc fabric command */
225 : union spdk_nvme_cc_register cc;
226 :
227 : TAILQ_ENTRY(nvmf_vfio_user_req) link;
228 :
229 : struct iovec iov[NVMF_VFIO_USER_MAX_IOVECS];
230 : uint8_t iovcnt;
231 :
232 : /* NVMF_VFIO_USER_MAX_IOVECS worth of dma_sg_t. */
233 : uint8_t sg[];
234 : };
235 :
236 : #define MAP_R (0)
237 : #define MAP_RW (1 << 0)
238 : #define MAP_INITIALIZE (1 << 1)
239 : #define MAP_QUIET (1 << 2)
240 :
241 : /*
242 : * Mapping of an NVMe queue.
243 : *
244 : * This holds the information tracking a local process mapping of an NVMe queue
245 : * shared by the client.
246 : */
247 : struct nvme_q_mapping {
248 : /* iov of local process mapping. */
249 : struct iovec iov;
250 : /* Stored sg, needed for unmap. */
251 : dma_sg_t *sg;
252 : /* Client PRP of queue. */
253 : uint64_t prp1;
254 : /* Total length in bytes. */
255 : uint64_t len;
256 : };
257 :
258 : enum nvmf_vfio_user_sq_state {
259 : VFIO_USER_SQ_UNUSED = 0,
260 : VFIO_USER_SQ_CREATED,
261 : VFIO_USER_SQ_DELETED,
262 : VFIO_USER_SQ_ACTIVE,
263 : VFIO_USER_SQ_INACTIVE
264 : };
265 :
266 : enum nvmf_vfio_user_cq_state {
267 : VFIO_USER_CQ_UNUSED = 0,
268 : VFIO_USER_CQ_CREATED,
269 : VFIO_USER_CQ_DELETED,
270 : };
271 :
272 : enum nvmf_vfio_user_ctrlr_state {
273 : VFIO_USER_CTRLR_CREATING = 0,
274 : VFIO_USER_CTRLR_RUNNING,
275 : /* Quiesce requested by libvfio-user */
276 : VFIO_USER_CTRLR_PAUSING,
277 : /* NVMf subsystem is paused, it's safe to do PCI reset, memory register,
278 : * memory unergister, and vfio migration state transition in this state.
279 : */
280 : VFIO_USER_CTRLR_PAUSED,
281 : /*
282 : * Implies that the NVMf subsystem is paused. Device will be unquiesced (PCI
283 : * reset, memory register and unregister, controller in destination VM has
284 : * been restored). NVMf subsystem resume has been requested.
285 : */
286 : VFIO_USER_CTRLR_RESUMING,
287 : /*
288 : * Implies that the NVMf subsystem is paused. Both controller in source VM and
289 : * destinatiom VM is in this state when doing live migration.
290 : */
291 : VFIO_USER_CTRLR_MIGRATING
292 : };
293 :
294 : struct nvmf_vfio_user_sq {
295 : struct spdk_nvmf_qpair qpair;
296 : struct spdk_nvmf_transport_poll_group *group;
297 : struct nvmf_vfio_user_ctrlr *ctrlr;
298 :
299 : uint32_t qid;
300 : /* Number of entries in queue. */
301 : uint32_t size;
302 : struct nvme_q_mapping mapping;
303 : enum nvmf_vfio_user_sq_state sq_state;
304 :
305 : uint32_t head;
306 : volatile uint32_t *dbl_tailp;
307 :
308 : /* Whether a shadow doorbell eventidx needs setting. */
309 : bool need_rearm;
310 :
311 : /* multiple SQs can be mapped to the same CQ */
312 : uint16_t cqid;
313 :
314 : /* handle_queue_connect_rsp() can be used both for CREATE IO SQ response
315 : * and SQ re-connect response in the destination VM, for the prior case,
316 : * we will post a NVMe completion to VM, we will not set this flag when
317 : * re-connecting SQs in the destination VM.
318 : */
319 : bool post_create_io_sq_completion;
320 : /* Copy of Create IO SQ command, this field is used together with
321 : * `post_create_io_sq_completion` flag.
322 : */
323 : struct spdk_nvme_cmd create_io_sq_cmd;
324 :
325 : struct vfio_user_delete_sq_ctx *delete_ctx;
326 :
327 : /* Currently unallocated reqs. */
328 : TAILQ_HEAD(, nvmf_vfio_user_req) free_reqs;
329 : /* Poll group entry */
330 : TAILQ_ENTRY(nvmf_vfio_user_sq) link;
331 : /* Connected SQ entry */
332 : TAILQ_ENTRY(nvmf_vfio_user_sq) tailq;
333 : };
334 :
335 : struct nvmf_vfio_user_cq {
336 : struct spdk_nvmf_transport_poll_group *group;
337 : int cq_ref;
338 :
339 : uint32_t qid;
340 : /* Number of entries in queue. */
341 : uint32_t size;
342 : struct nvme_q_mapping mapping;
343 : enum nvmf_vfio_user_cq_state cq_state;
344 :
345 : uint32_t tail;
346 : volatile uint32_t *dbl_headp;
347 :
348 : bool phase;
349 :
350 : uint16_t iv;
351 : bool ien;
352 :
353 : /* Number of outstanding IOs that will complete in this queue. */
354 : size_t nr_outstanding;
355 :
356 : uint32_t last_head;
357 : uint32_t last_trigger_irq_tail;
358 : };
359 :
360 : struct nvmf_vfio_user_poll_group {
361 : struct spdk_nvmf_transport_poll_group group;
362 : TAILQ_ENTRY(nvmf_vfio_user_poll_group) link;
363 : TAILQ_HEAD(, nvmf_vfio_user_sq) sqs;
364 : struct spdk_interrupt *intr;
365 : int intr_fd;
366 : struct {
367 :
368 : /*
369 : * ctrlr_intr and ctrlr_kicks will be zero for all other poll
370 : * groups. However, they can be zero even for the poll group
371 : * the controller belongs are if no vfio-user message has been
372 : * received or the controller hasn't been kicked yet.
373 : */
374 :
375 : /*
376 : * Number of times vfio_user_ctrlr_intr() has run:
377 : * vfio-user file descriptor has been ready or explicitly
378 : * kicked (see below).
379 : */
380 : uint64_t ctrlr_intr;
381 :
382 : /*
383 : * Kicks to the controller by ctrlr_kick().
384 : * ctrlr_intr - ctrlr_kicks is the number of times the
385 : * vfio-user poll file descriptor has been ready.
386 : */
387 : uint64_t ctrlr_kicks;
388 :
389 : /*
390 : * Number of times this poll group was kicked.
391 : */
392 : uint64_t pg_kicks;
393 :
394 : /*
395 : * How many times we won the race arming an SQ.
396 : */
397 : uint64_t won;
398 :
399 : /*
400 : * How many times we lost the race arming an SQ
401 : */
402 : uint64_t lost;
403 :
404 : /*
405 : * How many requests we processed in total each time we lost
406 : * the rearm race.
407 : */
408 : uint64_t lost_count;
409 :
410 : /*
411 : * Number of attempts we attempted to rearm all the SQs in the
412 : * poll group.
413 : */
414 : uint64_t rearms;
415 :
416 : /*
417 : * Number of times we had to apply flow control to this SQ.
418 : */
419 : uint64_t cq_full;
420 :
421 : uint64_t pg_process_count;
422 : uint64_t intr;
423 : uint64_t polls;
424 : uint64_t polls_spurious;
425 : uint64_t poll_reqs;
426 : uint64_t poll_reqs_squared;
427 : uint64_t cqh_admin_writes;
428 : uint64_t cqh_io_writes;
429 : } stats;
430 :
431 : /* Whether this PG needs kicking to wake up again. */
432 : bool need_kick;
433 : };
434 :
435 : struct nvmf_vfio_user_shadow_doorbells {
436 : volatile uint32_t *shadow_doorbells;
437 : volatile uint32_t *eventidxs;
438 : dma_sg_t *sgs;
439 : struct iovec *iovs;
440 : };
441 :
442 : struct nvmf_vfio_user_ctrlr {
443 : struct nvmf_vfio_user_endpoint *endpoint;
444 : struct nvmf_vfio_user_transport *transport;
445 :
446 : /* Connected SQs list */
447 : TAILQ_HEAD(, nvmf_vfio_user_sq) connected_sqs;
448 : enum nvmf_vfio_user_ctrlr_state state;
449 :
450 : /*
451 : * Tells whether live migration data have been prepared. This is used
452 : * by the get_pending_bytes callback to tell whether or not the
453 : * previous iteration finished.
454 : */
455 : bool migr_data_prepared;
456 :
457 : /* Controller is in source VM when doing live migration */
458 : bool in_source_vm;
459 :
460 : struct spdk_thread *thread;
461 : struct spdk_poller *vfu_ctx_poller;
462 : struct spdk_interrupt *intr;
463 : int intr_fd;
464 :
465 : bool queued_quiesce;
466 :
467 : bool reset_shn;
468 : bool disconnect;
469 :
470 : uint16_t cntlid;
471 : struct spdk_nvmf_ctrlr *ctrlr;
472 :
473 : struct nvmf_vfio_user_sq *sqs[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
474 : struct nvmf_vfio_user_cq *cqs[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
475 :
476 : TAILQ_ENTRY(nvmf_vfio_user_ctrlr) link;
477 :
478 : volatile uint32_t *bar0_doorbells;
479 : struct nvmf_vfio_user_shadow_doorbells *sdbl;
480 : /*
481 : * Shadow doorbells PRPs to provide during the stop-and-copy state.
482 : */
483 : uint64_t shadow_doorbell_buffer;
484 : uint64_t eventidx_buffer;
485 :
486 : bool adaptive_irqs_enabled;
487 : };
488 :
489 : /* Endpoint in vfio-user is associated with a socket file, which
490 : * is the representative of a PCI endpoint.
491 : */
492 : struct nvmf_vfio_user_endpoint {
493 : struct nvmf_vfio_user_transport *transport;
494 : vfu_ctx_t *vfu_ctx;
495 : struct spdk_poller *accept_poller;
496 : struct spdk_thread *accept_thread;
497 : bool interrupt_mode;
498 : struct msixcap *msix;
499 : vfu_pci_config_space_t *pci_config_space;
500 : int devmem_fd;
501 : int accept_intr_fd;
502 : struct spdk_interrupt *accept_intr;
503 :
504 : volatile uint32_t *bar0_doorbells;
505 :
506 : int migr_fd;
507 : void *migr_data;
508 :
509 : struct spdk_nvme_transport_id trid;
510 : struct spdk_nvmf_subsystem *subsystem;
511 :
512 : /* Controller is associated with an active socket connection,
513 : * the lifecycle of the controller is same as the VM.
514 : * Currently we only support one active connection, as the NVMe
515 : * specification defines, we may support multiple controllers in
516 : * future, so that it can support e.g: RESERVATION.
517 : */
518 : struct nvmf_vfio_user_ctrlr *ctrlr;
519 : pthread_mutex_t lock;
520 :
521 : bool need_async_destroy;
522 : /* The subsystem is in PAUSED state and need to be resumed, TRUE
523 : * only when migration is done successfully and the controller is
524 : * in source VM.
525 : */
526 : bool need_resume;
527 : /* Start the accept poller again after destroying the controller */
528 : bool need_relisten;
529 :
530 : TAILQ_ENTRY(nvmf_vfio_user_endpoint) link;
531 : };
532 :
533 : struct nvmf_vfio_user_transport_opts {
534 : bool disable_mappable_bar0;
535 : bool disable_adaptive_irq;
536 : bool disable_shadow_doorbells;
537 : bool disable_compare;
538 : bool enable_intr_mode_sq_spreading;
539 : };
540 :
541 : struct nvmf_vfio_user_transport {
542 : struct spdk_nvmf_transport transport;
543 : struct nvmf_vfio_user_transport_opts transport_opts;
544 : bool intr_mode_supported;
545 : pthread_mutex_t lock;
546 : TAILQ_HEAD(, nvmf_vfio_user_endpoint) endpoints;
547 :
548 : pthread_mutex_t pg_lock;
549 : TAILQ_HEAD(, nvmf_vfio_user_poll_group) poll_groups;
550 : struct nvmf_vfio_user_poll_group *next_pg;
551 : };
552 :
553 : /*
554 : * function prototypes
555 : */
556 : static int nvmf_vfio_user_req_free(struct spdk_nvmf_request *req);
557 :
558 : static struct nvmf_vfio_user_req *get_nvmf_vfio_user_req(struct nvmf_vfio_user_sq *sq);
559 :
560 : /*
561 : * Local process virtual address of a queue.
562 : */
563 : static inline void *
564 0 : q_addr(struct nvme_q_mapping *mapping)
565 : {
566 0 : return mapping->iov.iov_base;
567 : }
568 :
569 : static inline int
570 0 : queue_index(uint16_t qid, bool is_cq)
571 : {
572 0 : return (qid * 2) + is_cq;
573 : }
574 :
575 : static inline volatile uint32_t *
576 0 : sq_headp(struct nvmf_vfio_user_sq *sq)
577 : {
578 0 : assert(sq != NULL);
579 0 : return &sq->head;
580 : }
581 :
582 : static inline volatile uint32_t *
583 0 : sq_dbl_tailp(struct nvmf_vfio_user_sq *sq)
584 : {
585 0 : assert(sq != NULL);
586 0 : return sq->dbl_tailp;
587 : }
588 :
589 : static inline volatile uint32_t *
590 0 : cq_dbl_headp(struct nvmf_vfio_user_cq *cq)
591 : {
592 0 : assert(cq != NULL);
593 0 : return cq->dbl_headp;
594 : }
595 :
596 : static inline volatile uint32_t *
597 0 : cq_tailp(struct nvmf_vfio_user_cq *cq)
598 : {
599 0 : assert(cq != NULL);
600 0 : return &cq->tail;
601 : }
602 :
603 : static inline void
604 0 : sq_head_advance(struct nvmf_vfio_user_sq *sq)
605 : {
606 0 : assert(sq != NULL);
607 :
608 0 : assert(*sq_headp(sq) < sq->size);
609 0 : (*sq_headp(sq))++;
610 :
611 0 : if (spdk_unlikely(*sq_headp(sq) == sq->size)) {
612 0 : *sq_headp(sq) = 0;
613 : }
614 0 : }
615 :
616 : static inline void
617 0 : cq_tail_advance(struct nvmf_vfio_user_cq *cq)
618 : {
619 0 : assert(cq != NULL);
620 :
621 0 : assert(*cq_tailp(cq) < cq->size);
622 0 : (*cq_tailp(cq))++;
623 :
624 0 : if (spdk_unlikely(*cq_tailp(cq) == cq->size)) {
625 0 : *cq_tailp(cq) = 0;
626 0 : cq->phase = !cq->phase;
627 : }
628 0 : }
629 :
630 : static bool
631 0 : io_q_exists(struct nvmf_vfio_user_ctrlr *vu_ctrlr, const uint16_t qid, const bool is_cq)
632 : {
633 0 : assert(vu_ctrlr != NULL);
634 :
635 0 : if (qid == 0 || qid >= NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR) {
636 0 : return false;
637 : }
638 :
639 0 : if (is_cq) {
640 0 : if (vu_ctrlr->cqs[qid] == NULL) {
641 0 : return false;
642 : }
643 :
644 0 : return (vu_ctrlr->cqs[qid]->cq_state != VFIO_USER_CQ_DELETED &&
645 0 : vu_ctrlr->cqs[qid]->cq_state != VFIO_USER_CQ_UNUSED);
646 : }
647 :
648 0 : if (vu_ctrlr->sqs[qid] == NULL) {
649 0 : return false;
650 : }
651 :
652 0 : return (vu_ctrlr->sqs[qid]->sq_state != VFIO_USER_SQ_DELETED &&
653 0 : vu_ctrlr->sqs[qid]->sq_state != VFIO_USER_SQ_UNUSED);
654 : }
655 :
656 : static char *
657 0 : endpoint_id(struct nvmf_vfio_user_endpoint *endpoint)
658 : {
659 0 : return endpoint->trid.traddr;
660 : }
661 :
662 : static char *
663 0 : ctrlr_id(struct nvmf_vfio_user_ctrlr *ctrlr)
664 : {
665 0 : if (!ctrlr || !ctrlr->endpoint) {
666 0 : return "Null Ctrlr";
667 : }
668 :
669 0 : return endpoint_id(ctrlr->endpoint);
670 : }
671 :
672 : /* Return the poll group for the admin queue of the controller. */
673 : static inline struct nvmf_vfio_user_poll_group *
674 0 : ctrlr_to_poll_group(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
675 : {
676 0 : return SPDK_CONTAINEROF(vu_ctrlr->sqs[0]->group,
677 : struct nvmf_vfio_user_poll_group,
678 : group);
679 : }
680 :
681 : static inline struct nvmf_vfio_user_poll_group *
682 0 : sq_to_poll_group(struct nvmf_vfio_user_sq *sq)
683 : {
684 0 : return SPDK_CONTAINEROF(sq->group, struct nvmf_vfio_user_poll_group,
685 : group);
686 : }
687 :
688 : static inline struct spdk_thread *
689 0 : poll_group_to_thread(struct nvmf_vfio_user_poll_group *vu_pg)
690 : {
691 0 : return vu_pg->group.group->thread;
692 : }
693 :
694 : static dma_sg_t *
695 0 : index_to_sg_t(void *arr, size_t i)
696 : {
697 0 : return (dma_sg_t *)((uintptr_t)arr + i * dma_sg_size());
698 : }
699 :
700 : static inline size_t
701 0 : vfio_user_migr_data_len(void)
702 : {
703 0 : return SPDK_ALIGN_CEIL(sizeof(struct vfio_user_nvme_migr_state), PAGE_SIZE);
704 : }
705 :
706 : static inline bool
707 0 : in_interrupt_mode(struct nvmf_vfio_user_transport *vu_transport)
708 : {
709 0 : return spdk_interrupt_mode_is_enabled() &&
710 0 : vu_transport->intr_mode_supported;
711 : }
712 :
713 : static int vfio_user_ctrlr_intr(void *ctx);
714 :
715 : static void
716 0 : vfio_user_ctrlr_intr_msg(void *ctx)
717 : {
718 0 : vfio_user_ctrlr_intr(ctx);
719 0 : }
720 :
721 : /*
722 : * Kick (force a wakeup) of all poll groups for this controller.
723 : * vfio_user_ctrlr_intr() itself arranges for kicking other poll groups if
724 : * needed.
725 : */
726 : static void
727 0 : ctrlr_kick(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
728 : {
729 : struct nvmf_vfio_user_poll_group *vu_ctrlr_group;
730 :
731 0 : SPDK_DEBUGLOG(vfio_user_db, "%s: kicked\n", ctrlr_id(vu_ctrlr));
732 :
733 0 : vu_ctrlr_group = ctrlr_to_poll_group(vu_ctrlr);
734 :
735 0 : vu_ctrlr_group->stats.ctrlr_kicks++;
736 :
737 0 : spdk_thread_send_msg(poll_group_to_thread(vu_ctrlr_group),
738 : vfio_user_ctrlr_intr_msg, vu_ctrlr);
739 0 : }
740 :
741 : /*
742 : * Force a wake-up for this particular poll group and its contained SQs.
743 : */
744 : static void
745 0 : poll_group_kick(struct nvmf_vfio_user_poll_group *vu_group)
746 : {
747 0 : vu_group->stats.pg_kicks++;
748 0 : assert(vu_group->need_kick);
749 0 : vu_group->need_kick = false;
750 0 : eventfd_write(vu_group->intr_fd, 1);
751 0 : }
752 :
753 : /*
754 : * Make the given DMA address and length available (locally mapped) via iov.
755 : */
756 : static void *
757 0 : map_one(vfu_ctx_t *ctx, uint64_t addr, uint64_t len, dma_sg_t *sg,
758 : struct iovec *iov, int32_t flags)
759 : {
760 0 : int prot = PROT_READ;
761 : int ret;
762 :
763 0 : if (flags & MAP_RW) {
764 0 : prot |= PROT_WRITE;
765 : }
766 :
767 0 : assert(ctx != NULL);
768 0 : assert(sg != NULL);
769 0 : assert(iov != NULL);
770 :
771 0 : ret = vfu_addr_to_sgl(ctx, (void *)(uintptr_t)addr, len, sg, 1, prot);
772 0 : if (ret < 0) {
773 0 : if (ret == -1) {
774 0 : if (!(flags & MAP_QUIET)) {
775 0 : SPDK_ERRLOG("failed to translate IOVA [%#lx, %#lx) (prot=%d) to local VA: %m\n",
776 : addr, addr + len, prot);
777 : }
778 : } else {
779 0 : SPDK_ERRLOG("failed to translate IOVA [%#lx, %#lx) (prot=%d) to local VA: %d segments needed\n",
780 : addr, addr + len, prot, -(ret + 1));
781 : }
782 0 : return NULL;
783 : }
784 :
785 0 : ret = vfu_sgl_get(ctx, sg, iov, 1, 0);
786 0 : if (ret != 0) {
787 0 : SPDK_ERRLOG("failed to get iovec for IOVA [%#lx, %#lx): %m\n",
788 : addr, addr + len);
789 0 : return NULL;
790 : }
791 :
792 0 : assert(iov->iov_base != NULL);
793 0 : return iov->iov_base;
794 : }
795 :
796 : static int
797 5 : nvme_cmd_map_prps(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs,
798 : uint32_t max_iovcnt, uint32_t len, size_t mps,
799 : void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, uint32_t flags))
800 : {
801 : uint64_t prp1, prp2;
802 : void *vva;
803 : uint32_t i;
804 : uint32_t residue_len, nents;
805 : uint64_t *prp_list;
806 : uint32_t iovcnt;
807 :
808 5 : assert(max_iovcnt > 0);
809 :
810 5 : prp1 = cmd->dptr.prp.prp1;
811 5 : prp2 = cmd->dptr.prp.prp2;
812 :
813 : /* PRP1 may started with unaligned page address */
814 5 : residue_len = mps - (prp1 % mps);
815 5 : residue_len = spdk_min(len, residue_len);
816 :
817 5 : vva = gpa_to_vva(prv, prp1, residue_len, MAP_RW);
818 5 : if (spdk_unlikely(vva == NULL)) {
819 0 : SPDK_ERRLOG("GPA to VVA failed\n");
820 0 : return -EINVAL;
821 : }
822 5 : len -= residue_len;
823 5 : if (len && max_iovcnt < 2) {
824 1 : SPDK_ERRLOG("Too many page entries, at least two iovs are required\n");
825 1 : return -ERANGE;
826 : }
827 4 : iovs[0].iov_base = vva;
828 4 : iovs[0].iov_len = residue_len;
829 :
830 4 : if (len) {
831 3 : if (spdk_unlikely(prp2 == 0)) {
832 0 : SPDK_ERRLOG("no PRP2, %d remaining\n", len);
833 0 : return -EINVAL;
834 : }
835 :
836 3 : if (len <= mps) {
837 : /* 2 PRP used */
838 1 : iovcnt = 2;
839 1 : vva = gpa_to_vva(prv, prp2, len, MAP_RW);
840 1 : if (spdk_unlikely(vva == NULL)) {
841 0 : SPDK_ERRLOG("no VVA for %#" PRIx64 ", len%#x\n",
842 : prp2, len);
843 0 : return -EINVAL;
844 : }
845 1 : iovs[1].iov_base = vva;
846 1 : iovs[1].iov_len = len;
847 : } else {
848 : /* PRP list used */
849 2 : nents = (len + mps - 1) / mps;
850 2 : if (spdk_unlikely(nents + 1 > max_iovcnt)) {
851 1 : SPDK_ERRLOG("Too many page entries\n");
852 1 : return -ERANGE;
853 : }
854 :
855 1 : vva = gpa_to_vva(prv, prp2, nents * sizeof(*prp_list), MAP_R);
856 1 : if (spdk_unlikely(vva == NULL)) {
857 0 : SPDK_ERRLOG("no VVA for %#" PRIx64 ", nents=%#x\n",
858 : prp2, nents);
859 0 : return -EINVAL;
860 : }
861 1 : prp_list = vva;
862 1 : i = 0;
863 33 : while (len != 0) {
864 32 : residue_len = spdk_min(len, mps);
865 32 : vva = gpa_to_vva(prv, prp_list[i], residue_len, MAP_RW);
866 32 : if (spdk_unlikely(vva == NULL)) {
867 0 : SPDK_ERRLOG("no VVA for %#" PRIx64 ", residue_len=%#x\n",
868 : prp_list[i], residue_len);
869 0 : return -EINVAL;
870 : }
871 32 : iovs[i + 1].iov_base = vva;
872 32 : iovs[i + 1].iov_len = residue_len;
873 32 : len -= residue_len;
874 32 : i++;
875 : }
876 1 : iovcnt = i + 1;
877 : }
878 : } else {
879 : /* 1 PRP used */
880 1 : iovcnt = 1;
881 : }
882 :
883 3 : assert(iovcnt <= max_iovcnt);
884 3 : return iovcnt;
885 : }
886 :
887 : static int
888 4 : nvme_cmd_map_sgls_data(void *prv, struct spdk_nvme_sgl_descriptor *sgls, uint32_t num_sgls,
889 : struct iovec *iovs, uint32_t max_iovcnt,
890 : void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, uint32_t flags))
891 : {
892 : uint32_t i;
893 : void *vva;
894 :
895 4 : if (spdk_unlikely(max_iovcnt < num_sgls)) {
896 1 : return -ERANGE;
897 : }
898 :
899 8 : for (i = 0; i < num_sgls; i++) {
900 5 : if (spdk_unlikely(sgls[i].unkeyed.type != SPDK_NVME_SGL_TYPE_DATA_BLOCK)) {
901 0 : SPDK_ERRLOG("Invalid SGL type %u\n", sgls[i].unkeyed.type);
902 0 : return -EINVAL;
903 : }
904 5 : vva = gpa_to_vva(prv, sgls[i].address, sgls[i].unkeyed.length, MAP_RW);
905 5 : if (spdk_unlikely(vva == NULL)) {
906 0 : SPDK_ERRLOG("GPA to VVA failed\n");
907 0 : return -EINVAL;
908 : }
909 5 : iovs[i].iov_base = vva;
910 5 : iovs[i].iov_len = sgls[i].unkeyed.length;
911 : }
912 :
913 3 : return num_sgls;
914 : }
915 :
916 : static int
917 4 : nvme_cmd_map_sgls(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, uint32_t max_iovcnt,
918 : uint32_t len, size_t mps,
919 : void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, uint32_t flags))
920 : {
921 : struct spdk_nvme_sgl_descriptor *sgl, *last_sgl;
922 : uint32_t num_sgls, seg_len;
923 : void *vva;
924 : int ret;
925 4 : uint32_t total_iovcnt = 0;
926 :
927 : /* SGL cases */
928 4 : sgl = &cmd->dptr.sgl1;
929 :
930 : /* only one SGL segment */
931 4 : if (sgl->unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
932 1 : assert(max_iovcnt > 0);
933 1 : vva = gpa_to_vva(prv, sgl->address, sgl->unkeyed.length, MAP_RW);
934 1 : if (spdk_unlikely(vva == NULL)) {
935 0 : SPDK_ERRLOG("GPA to VVA failed\n");
936 0 : return -EINVAL;
937 : }
938 1 : iovs[0].iov_base = vva;
939 1 : iovs[0].iov_len = sgl->unkeyed.length;
940 1 : assert(sgl->unkeyed.length == len);
941 :
942 1 : return 1;
943 : }
944 :
945 : for (;;) {
946 4 : if (spdk_unlikely((sgl->unkeyed.type != SPDK_NVME_SGL_TYPE_SEGMENT) &&
947 : (sgl->unkeyed.type != SPDK_NVME_SGL_TYPE_LAST_SEGMENT))) {
948 0 : SPDK_ERRLOG("Invalid SGL type %u\n", sgl->unkeyed.type);
949 0 : return -EINVAL;
950 : }
951 :
952 4 : seg_len = sgl->unkeyed.length;
953 4 : if (spdk_unlikely(seg_len % sizeof(struct spdk_nvme_sgl_descriptor))) {
954 0 : SPDK_ERRLOG("Invalid SGL segment len %u\n", seg_len);
955 0 : return -EINVAL;
956 : }
957 :
958 4 : num_sgls = seg_len / sizeof(struct spdk_nvme_sgl_descriptor);
959 4 : vva = gpa_to_vva(prv, sgl->address, sgl->unkeyed.length, MAP_R);
960 4 : if (spdk_unlikely(vva == NULL)) {
961 0 : SPDK_ERRLOG("GPA to VVA failed\n");
962 0 : return -EINVAL;
963 : }
964 :
965 : /* sgl point to the first segment */
966 4 : sgl = (struct spdk_nvme_sgl_descriptor *)vva;
967 4 : last_sgl = &sgl[num_sgls - 1];
968 :
969 : /* we are done */
970 4 : if (last_sgl->unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
971 : /* map whole sgl list */
972 3 : ret = nvme_cmd_map_sgls_data(prv, sgl, num_sgls, &iovs[total_iovcnt],
973 : max_iovcnt - total_iovcnt, gpa_to_vva);
974 3 : if (spdk_unlikely(ret < 0)) {
975 1 : return ret;
976 : }
977 2 : total_iovcnt += ret;
978 :
979 2 : return total_iovcnt;
980 : }
981 :
982 1 : if (num_sgls > 1) {
983 : /* map whole sgl exclude last_sgl */
984 1 : ret = nvme_cmd_map_sgls_data(prv, sgl, num_sgls - 1, &iovs[total_iovcnt],
985 : max_iovcnt - total_iovcnt, gpa_to_vva);
986 1 : if (spdk_unlikely(ret < 0)) {
987 0 : return ret;
988 : }
989 1 : total_iovcnt += ret;
990 : }
991 :
992 : /* move to next level's segments */
993 1 : sgl = last_sgl;
994 : }
995 :
996 : return 0;
997 : }
998 :
999 : static int
1000 0 : nvme_map_cmd(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, uint32_t max_iovcnt,
1001 : uint32_t len, size_t mps,
1002 : void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, uint32_t flags))
1003 : {
1004 0 : if (cmd->psdt == SPDK_NVME_PSDT_PRP) {
1005 0 : return nvme_cmd_map_prps(prv, cmd, iovs, max_iovcnt, len, mps, gpa_to_vva);
1006 : }
1007 :
1008 0 : return nvme_cmd_map_sgls(prv, cmd, iovs, max_iovcnt, len, mps, gpa_to_vva);
1009 : }
1010 :
1011 : /*
1012 : * For each queue, update the location of its doorbell to the correct location:
1013 : * either our own BAR0, or the guest's configured shadow doorbell area.
1014 : *
1015 : * The Admin queue (qid: 0) does not ever use shadow doorbells.
1016 : */
1017 : static void
1018 0 : vfio_user_ctrlr_switch_doorbells(struct nvmf_vfio_user_ctrlr *ctrlr, bool shadow)
1019 : {
1020 0 : volatile uint32_t *doorbells = shadow ? ctrlr->sdbl->shadow_doorbells :
1021 : ctrlr->bar0_doorbells;
1022 :
1023 0 : assert(doorbells != NULL);
1024 :
1025 0 : for (size_t i = 1; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; i++) {
1026 0 : struct nvmf_vfio_user_sq *sq = ctrlr->sqs[i];
1027 0 : struct nvmf_vfio_user_cq *cq = ctrlr->cqs[i];
1028 :
1029 0 : if (sq != NULL) {
1030 0 : sq->dbl_tailp = doorbells + queue_index(sq->qid, false);
1031 :
1032 0 : ctrlr->sqs[i]->need_rearm = shadow;
1033 : }
1034 :
1035 0 : if (cq != NULL) {
1036 0 : cq->dbl_headp = doorbells + queue_index(cq->qid, true);
1037 : }
1038 : }
1039 0 : }
1040 :
1041 : static void
1042 0 : unmap_sdbl(vfu_ctx_t *vfu_ctx, struct nvmf_vfio_user_shadow_doorbells *sdbl)
1043 : {
1044 0 : assert(vfu_ctx != NULL);
1045 0 : assert(sdbl != NULL);
1046 :
1047 : /*
1048 : * An allocation error would result in only one of the two being
1049 : * non-NULL. If that is the case, no memory should have been mapped.
1050 : */
1051 0 : if (sdbl->iovs == NULL || sdbl->sgs == NULL) {
1052 0 : return;
1053 : }
1054 :
1055 0 : for (size_t i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT; ++i) {
1056 : struct iovec *iov;
1057 : dma_sg_t *sg;
1058 :
1059 0 : if (!sdbl->iovs[i].iov_len) {
1060 0 : continue;
1061 : }
1062 :
1063 0 : sg = index_to_sg_t(sdbl->sgs, i);
1064 0 : iov = sdbl->iovs + i;
1065 :
1066 0 : vfu_sgl_put(vfu_ctx, sg, iov, 1);
1067 : }
1068 : }
1069 :
1070 : static void
1071 0 : free_sdbl(vfu_ctx_t *vfu_ctx, struct nvmf_vfio_user_shadow_doorbells *sdbl)
1072 : {
1073 0 : if (sdbl == NULL) {
1074 0 : return;
1075 : }
1076 :
1077 0 : unmap_sdbl(vfu_ctx, sdbl);
1078 :
1079 : /*
1080 : * sdbl->shadow_doorbells and sdbl->eventidxs were mapped,
1081 : * not allocated, so don't free() them.
1082 : */
1083 0 : free(sdbl->sgs);
1084 0 : free(sdbl->iovs);
1085 0 : free(sdbl);
1086 : }
1087 :
1088 : static struct nvmf_vfio_user_shadow_doorbells *
1089 0 : map_sdbl(vfu_ctx_t *vfu_ctx, uint64_t prp1, uint64_t prp2, size_t len)
1090 : {
1091 0 : struct nvmf_vfio_user_shadow_doorbells *sdbl = NULL;
1092 0 : dma_sg_t *sg2 = NULL;
1093 : void *p;
1094 :
1095 0 : assert(vfu_ctx != NULL);
1096 :
1097 0 : sdbl = calloc(1, sizeof(*sdbl));
1098 0 : if (sdbl == NULL) {
1099 0 : goto err;
1100 : }
1101 :
1102 0 : sdbl->sgs = calloc(NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT, dma_sg_size());
1103 0 : sdbl->iovs = calloc(NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT, sizeof(*sdbl->iovs));
1104 0 : if (sdbl->sgs == NULL || sdbl->iovs == NULL) {
1105 0 : goto err;
1106 : }
1107 :
1108 : /* Map shadow doorbell buffer (PRP1). */
1109 0 : p = map_one(vfu_ctx, prp1, len, sdbl->sgs, sdbl->iovs, MAP_RW);
1110 :
1111 0 : if (p == NULL) {
1112 0 : goto err;
1113 : }
1114 :
1115 : /*
1116 : * Map eventidx buffer (PRP2).
1117 : * Should only be written to by the controller.
1118 : */
1119 :
1120 0 : sg2 = index_to_sg_t(sdbl->sgs, 1);
1121 :
1122 0 : p = map_one(vfu_ctx, prp2, len, sg2, sdbl->iovs + 1, MAP_RW);
1123 :
1124 0 : if (p == NULL) {
1125 0 : goto err;
1126 : }
1127 :
1128 0 : sdbl->shadow_doorbells = (uint32_t *)sdbl->iovs[0].iov_base;
1129 0 : sdbl->eventidxs = (uint32_t *)sdbl->iovs[1].iov_base;
1130 :
1131 0 : return sdbl;
1132 :
1133 0 : err:
1134 0 : free_sdbl(vfu_ctx, sdbl);
1135 0 : return NULL;
1136 : }
1137 :
1138 : /*
1139 : * Copy doorbells from one buffer to the other, during switches between BAR0
1140 : * doorbells and shadow doorbells.
1141 : */
1142 : static void
1143 0 : copy_doorbells(struct nvmf_vfio_user_ctrlr *ctrlr,
1144 : const volatile uint32_t *from, volatile uint32_t *to)
1145 : {
1146 0 : assert(ctrlr != NULL);
1147 0 : assert(from != NULL);
1148 0 : assert(to != NULL);
1149 :
1150 0 : SPDK_DEBUGLOG(vfio_user_db,
1151 : "%s: migrating shadow doorbells from %p to %p\n",
1152 : ctrlr_id(ctrlr), from, to);
1153 :
1154 : /* Can't use memcpy because it doesn't respect volatile semantics. */
1155 0 : for (size_t i = 0; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; ++i) {
1156 0 : if (ctrlr->sqs[i] != NULL) {
1157 0 : to[queue_index(i, false)] = from[queue_index(i, false)];
1158 : }
1159 :
1160 0 : if (ctrlr->cqs[i] != NULL) {
1161 0 : to[queue_index(i, true)] = from[queue_index(i, true)];
1162 : }
1163 : }
1164 0 : }
1165 :
1166 : static void
1167 0 : fail_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
1168 : {
1169 : const struct spdk_nvmf_registers *regs;
1170 :
1171 0 : assert(vu_ctrlr != NULL);
1172 0 : assert(vu_ctrlr->ctrlr != NULL);
1173 :
1174 0 : regs = spdk_nvmf_ctrlr_get_regs(vu_ctrlr->ctrlr);
1175 0 : if (regs->csts.bits.cfs == 0) {
1176 0 : SPDK_ERRLOG(":%s failing controller\n", ctrlr_id(vu_ctrlr));
1177 : }
1178 :
1179 0 : nvmf_ctrlr_set_fatal_status(vu_ctrlr->ctrlr);
1180 0 : }
1181 :
1182 : static inline bool
1183 0 : ctrlr_interrupt_enabled(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
1184 : {
1185 0 : assert(vu_ctrlr != NULL);
1186 0 : assert(vu_ctrlr->endpoint != NULL);
1187 :
1188 0 : vfu_pci_config_space_t *pci = vu_ctrlr->endpoint->pci_config_space;
1189 :
1190 0 : return (!pci->hdr.cmd.id || vu_ctrlr->endpoint->msix->mxc.mxe);
1191 : }
1192 :
1193 : static void
1194 1 : nvmf_vfio_user_destroy_endpoint(struct nvmf_vfio_user_endpoint *endpoint)
1195 : {
1196 1 : SPDK_DEBUGLOG(nvmf_vfio, "destroy endpoint %s\n", endpoint_id(endpoint));
1197 :
1198 1 : spdk_interrupt_unregister(&endpoint->accept_intr);
1199 1 : spdk_poller_unregister(&endpoint->accept_poller);
1200 :
1201 1 : if (endpoint->bar0_doorbells) {
1202 0 : munmap((void *)endpoint->bar0_doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
1203 : }
1204 :
1205 1 : if (endpoint->devmem_fd > 0) {
1206 0 : close(endpoint->devmem_fd);
1207 : }
1208 :
1209 1 : if (endpoint->migr_data) {
1210 0 : munmap(endpoint->migr_data, vfio_user_migr_data_len());
1211 : }
1212 :
1213 1 : if (endpoint->migr_fd > 0) {
1214 0 : close(endpoint->migr_fd);
1215 : }
1216 :
1217 1 : if (endpoint->vfu_ctx) {
1218 0 : vfu_destroy_ctx(endpoint->vfu_ctx);
1219 : }
1220 :
1221 1 : pthread_mutex_destroy(&endpoint->lock);
1222 1 : free(endpoint);
1223 1 : }
1224 :
1225 : /* called when process exits */
1226 : static int
1227 1 : nvmf_vfio_user_destroy(struct spdk_nvmf_transport *transport,
1228 : spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
1229 : {
1230 : struct nvmf_vfio_user_transport *vu_transport;
1231 : struct nvmf_vfio_user_endpoint *endpoint, *tmp;
1232 :
1233 1 : SPDK_DEBUGLOG(nvmf_vfio, "destroy transport\n");
1234 :
1235 1 : vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
1236 : transport);
1237 :
1238 1 : pthread_mutex_destroy(&vu_transport->lock);
1239 1 : pthread_mutex_destroy(&vu_transport->pg_lock);
1240 :
1241 2 : TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
1242 1 : TAILQ_REMOVE(&vu_transport->endpoints, endpoint, link);
1243 1 : nvmf_vfio_user_destroy_endpoint(endpoint);
1244 : }
1245 :
1246 1 : free(vu_transport);
1247 :
1248 1 : if (cb_fn) {
1249 1 : cb_fn(cb_arg);
1250 : }
1251 :
1252 1 : return 0;
1253 : }
1254 :
1255 : static const struct spdk_json_object_decoder vfio_user_transport_opts_decoder[] = {
1256 : {
1257 : "disable_mappable_bar0",
1258 : offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_mappable_bar0),
1259 : spdk_json_decode_bool, true
1260 : },
1261 : {
1262 : "disable_adaptive_irq",
1263 : offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_adaptive_irq),
1264 : spdk_json_decode_bool, true
1265 : },
1266 : {
1267 : "disable_shadow_doorbells",
1268 : offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_shadow_doorbells),
1269 : spdk_json_decode_bool, true
1270 : },
1271 : {
1272 : "disable_compare",
1273 : offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_compare),
1274 : spdk_json_decode_bool, true
1275 : },
1276 : {
1277 : "enable_intr_mode_sq_spreading",
1278 : offsetof(struct nvmf_vfio_user_transport, transport_opts.enable_intr_mode_sq_spreading),
1279 : spdk_json_decode_bool, true
1280 : },
1281 : };
1282 :
1283 : static struct spdk_nvmf_transport *
1284 1 : nvmf_vfio_user_create(struct spdk_nvmf_transport_opts *opts)
1285 : {
1286 : struct nvmf_vfio_user_transport *vu_transport;
1287 : int err;
1288 :
1289 1 : if (opts->max_qpairs_per_ctrlr > NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR) {
1290 0 : SPDK_ERRLOG("Invalid max_qpairs_per_ctrlr=%d, supported max_qpairs_per_ctrlr=%d\n",
1291 : opts->max_qpairs_per_ctrlr, NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR);
1292 0 : return NULL;
1293 : }
1294 :
1295 1 : vu_transport = calloc(1, sizeof(*vu_transport));
1296 1 : if (vu_transport == NULL) {
1297 0 : SPDK_ERRLOG("Transport alloc fail: %m\n");
1298 0 : return NULL;
1299 : }
1300 :
1301 1 : err = pthread_mutex_init(&vu_transport->lock, NULL);
1302 1 : if (err != 0) {
1303 0 : SPDK_ERRLOG("Pthread initialisation failed (%d)\n", err);
1304 0 : goto err;
1305 : }
1306 1 : TAILQ_INIT(&vu_transport->endpoints);
1307 :
1308 1 : err = pthread_mutex_init(&vu_transport->pg_lock, NULL);
1309 1 : if (err != 0) {
1310 0 : pthread_mutex_destroy(&vu_transport->lock);
1311 0 : SPDK_ERRLOG("Pthread initialisation failed (%d)\n", err);
1312 0 : goto err;
1313 : }
1314 1 : TAILQ_INIT(&vu_transport->poll_groups);
1315 :
1316 1 : if (opts->transport_specific != NULL &&
1317 0 : spdk_json_decode_object_relaxed(opts->transport_specific, vfio_user_transport_opts_decoder,
1318 : SPDK_COUNTOF(vfio_user_transport_opts_decoder),
1319 : vu_transport)) {
1320 0 : SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
1321 0 : goto cleanup;
1322 : }
1323 :
1324 : /*
1325 : * To support interrupt mode, the transport must be configured with
1326 : * mappable BAR0 disabled: we need a vfio-user message to wake us up
1327 : * when a client writes new doorbell values to BAR0, via the
1328 : * libvfio-user socket fd.
1329 : */
1330 1 : vu_transport->intr_mode_supported =
1331 1 : vu_transport->transport_opts.disable_mappable_bar0;
1332 :
1333 : /*
1334 : * If BAR0 is mappable, it doesn't make sense to support shadow
1335 : * doorbells, so explicitly turn it off.
1336 : */
1337 1 : if (!vu_transport->transport_opts.disable_mappable_bar0) {
1338 1 : vu_transport->transport_opts.disable_shadow_doorbells = true;
1339 : }
1340 :
1341 1 : if (spdk_interrupt_mode_is_enabled()) {
1342 0 : if (!vu_transport->intr_mode_supported) {
1343 0 : SPDK_ERRLOG("interrupt mode not supported\n");
1344 0 : goto cleanup;
1345 : }
1346 :
1347 : /*
1348 : * If we are in interrupt mode, we cannot support adaptive IRQs,
1349 : * as there is no guarantee the SQ poller will run subsequently
1350 : * to send pending IRQs.
1351 : */
1352 0 : vu_transport->transport_opts.disable_adaptive_irq = true;
1353 : }
1354 :
1355 1 : SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_mappable_bar0=%d\n",
1356 : vu_transport->transport_opts.disable_mappable_bar0);
1357 1 : SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_adaptive_irq=%d\n",
1358 : vu_transport->transport_opts.disable_adaptive_irq);
1359 1 : SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_shadow_doorbells=%d\n",
1360 : vu_transport->transport_opts.disable_shadow_doorbells);
1361 :
1362 1 : return &vu_transport->transport;
1363 :
1364 0 : cleanup:
1365 0 : pthread_mutex_destroy(&vu_transport->lock);
1366 0 : pthread_mutex_destroy(&vu_transport->pg_lock);
1367 0 : err:
1368 0 : free(vu_transport);
1369 0 : return NULL;
1370 : }
1371 :
1372 : static uint32_t
1373 0 : max_queue_size(struct nvmf_vfio_user_ctrlr const *vu_ctrlr)
1374 : {
1375 0 : assert(vu_ctrlr != NULL);
1376 0 : assert(vu_ctrlr->ctrlr != NULL);
1377 :
1378 0 : return vu_ctrlr->ctrlr->vcprop.cap.bits.mqes + 1;
1379 : }
1380 :
1381 : static uint32_t
1382 0 : doorbell_stride(const struct nvmf_vfio_user_ctrlr *vu_ctrlr)
1383 : {
1384 0 : assert(vu_ctrlr != NULL);
1385 0 : assert(vu_ctrlr->ctrlr != NULL);
1386 :
1387 0 : return vu_ctrlr->ctrlr->vcprop.cap.bits.dstrd;
1388 : }
1389 :
1390 : static uintptr_t
1391 0 : memory_page_size(const struct nvmf_vfio_user_ctrlr *vu_ctrlr)
1392 : {
1393 0 : uint32_t memory_page_shift = vu_ctrlr->ctrlr->vcprop.cc.bits.mps + 12;
1394 0 : return 1ul << memory_page_shift;
1395 : }
1396 :
1397 : static uintptr_t
1398 0 : memory_page_mask(const struct nvmf_vfio_user_ctrlr *ctrlr)
1399 : {
1400 0 : return ~(memory_page_size(ctrlr) - 1);
1401 : }
1402 :
1403 : static int
1404 0 : map_q(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvme_q_mapping *mapping,
1405 : uint32_t flags)
1406 : {
1407 : void *ret;
1408 :
1409 0 : assert(mapping->len != 0);
1410 0 : assert(q_addr(mapping) == NULL);
1411 :
1412 0 : ret = map_one(vu_ctrlr->endpoint->vfu_ctx, mapping->prp1, mapping->len,
1413 : mapping->sg, &mapping->iov, flags);
1414 0 : if (ret == NULL) {
1415 0 : return -EFAULT;
1416 : }
1417 :
1418 0 : if (flags & MAP_INITIALIZE) {
1419 0 : memset(q_addr(mapping), 0, mapping->len);
1420 : }
1421 :
1422 0 : return 0;
1423 : }
1424 :
1425 : static inline void
1426 0 : unmap_q(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvme_q_mapping *mapping)
1427 : {
1428 0 : if (q_addr(mapping) != NULL) {
1429 0 : vfu_sgl_put(vu_ctrlr->endpoint->vfu_ctx, mapping->sg,
1430 : &mapping->iov, 1);
1431 0 : mapping->iov.iov_base = NULL;
1432 : }
1433 0 : }
1434 :
1435 : static int
1436 0 : asq_setup(struct nvmf_vfio_user_ctrlr *ctrlr)
1437 : {
1438 : struct nvmf_vfio_user_sq *sq;
1439 : const struct spdk_nvmf_registers *regs;
1440 : int ret;
1441 :
1442 0 : assert(ctrlr != NULL);
1443 :
1444 0 : sq = ctrlr->sqs[0];
1445 :
1446 0 : assert(sq != NULL);
1447 0 : assert(q_addr(&sq->mapping) == NULL);
1448 : /* XXX ctrlr->asq == 0 is a valid memory address */
1449 :
1450 0 : regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
1451 0 : sq->qid = 0;
1452 0 : sq->size = regs->aqa.bits.asqs + 1;
1453 0 : sq->mapping.prp1 = regs->asq;
1454 0 : sq->mapping.len = sq->size * sizeof(struct spdk_nvme_cmd);
1455 0 : *sq_headp(sq) = 0;
1456 0 : sq->cqid = 0;
1457 :
1458 0 : ret = map_q(ctrlr, &sq->mapping, MAP_INITIALIZE);
1459 0 : if (ret) {
1460 0 : return ret;
1461 : }
1462 :
1463 : /* The Admin queue (qid: 0) does not ever use shadow doorbells. */
1464 0 : sq->dbl_tailp = ctrlr->bar0_doorbells + queue_index(0, false);
1465 :
1466 0 : *sq_dbl_tailp(sq) = 0;
1467 :
1468 0 : return 0;
1469 : }
1470 :
1471 : /*
1472 : * Updates eventidx to set an SQ into interrupt or polling mode.
1473 : *
1474 : * Returns false if the current SQ tail does not match the SQ head, as
1475 : * this means that the host has submitted more items to the queue while we were
1476 : * not looking - or during the event index update. In that case, we must retry,
1477 : * or otherwise make sure we are going to wake up again.
1478 : */
1479 : static bool
1480 0 : set_sq_eventidx(struct nvmf_vfio_user_sq *sq)
1481 : {
1482 : struct nvmf_vfio_user_ctrlr *ctrlr;
1483 : volatile uint32_t *sq_tail_eidx;
1484 : uint32_t old_tail, new_tail;
1485 :
1486 0 : assert(sq != NULL);
1487 0 : assert(sq->ctrlr != NULL);
1488 0 : assert(sq->ctrlr->sdbl != NULL);
1489 0 : assert(sq->need_rearm);
1490 0 : assert(sq->qid != 0);
1491 :
1492 0 : ctrlr = sq->ctrlr;
1493 :
1494 0 : SPDK_DEBUGLOG(vfio_user_db, "%s: updating eventidx of sqid:%u\n",
1495 : ctrlr_id(ctrlr), sq->qid);
1496 :
1497 0 : sq_tail_eidx = ctrlr->sdbl->eventidxs + queue_index(sq->qid, false);
1498 :
1499 0 : assert(ctrlr->endpoint != NULL);
1500 :
1501 0 : if (!ctrlr->endpoint->interrupt_mode) {
1502 : /* No synchronisation necessary. */
1503 0 : *sq_tail_eidx = NVMF_VFIO_USER_EVENTIDX_POLL;
1504 0 : return true;
1505 : }
1506 :
1507 0 : old_tail = *sq_dbl_tailp(sq);
1508 0 : *sq_tail_eidx = old_tail;
1509 :
1510 : /*
1511 : * Ensure that the event index is updated before re-reading the tail
1512 : * doorbell. If it's not, then the host might race us and update the
1513 : * tail after the second read but before the event index is written, so
1514 : * it won't write to BAR0 and we'll miss the update.
1515 : *
1516 : * The driver should provide similar ordering with an mb().
1517 : */
1518 0 : spdk_mb();
1519 :
1520 : /*
1521 : * Check if the host has updated the tail doorbell after we've read it
1522 : * for the first time, but before the event index was written. If that's
1523 : * the case, then we've lost the race and we need to update the event
1524 : * index again (after polling the queue, since the host won't write to
1525 : * BAR0).
1526 : */
1527 0 : new_tail = *sq_dbl_tailp(sq);
1528 :
1529 : /*
1530 : * We might poll the queue straight after this function returns if the
1531 : * tail has been updated, so we need to ensure that any changes to the
1532 : * queue will be visible to us if the doorbell has been updated.
1533 : *
1534 : * The driver should provide similar ordering with a wmb() to ensure
1535 : * that the queue is written before it updates the tail doorbell.
1536 : */
1537 0 : spdk_rmb();
1538 :
1539 0 : SPDK_DEBUGLOG(vfio_user_db, "%s: sqid:%u, old_tail=%u, new_tail=%u, "
1540 : "sq_head=%u\n", ctrlr_id(ctrlr), sq->qid, old_tail,
1541 : new_tail, *sq_headp(sq));
1542 :
1543 0 : if (new_tail == *sq_headp(sq)) {
1544 0 : sq->need_rearm = false;
1545 0 : return true;
1546 : }
1547 :
1548 : /*
1549 : * We've lost the race: the tail was updated since we last polled,
1550 : * including if it happened within this routine.
1551 : *
1552 : * The caller should retry after polling (think of this as a cmpxchg
1553 : * loop); if we go to sleep while the SQ is not empty, then we won't
1554 : * process the remaining events.
1555 : */
1556 0 : return false;
1557 : }
1558 :
1559 : static int nvmf_vfio_user_sq_poll(struct nvmf_vfio_user_sq *sq);
1560 :
1561 : /*
1562 : * Arrange for an SQ to interrupt us if written. Returns non-zero if we
1563 : * processed some SQ entries.
1564 : */
1565 : static int
1566 0 : vfio_user_sq_rearm(struct nvmf_vfio_user_ctrlr *ctrlr,
1567 : struct nvmf_vfio_user_sq *sq,
1568 : struct nvmf_vfio_user_poll_group *vu_group)
1569 : {
1570 0 : int count = 0;
1571 : size_t i;
1572 :
1573 0 : assert(sq->need_rearm);
1574 :
1575 0 : for (i = 0; i < NVMF_VFIO_USER_SET_EVENTIDX_MAX_ATTEMPTS; i++) {
1576 : int ret;
1577 :
1578 0 : if (set_sq_eventidx(sq)) {
1579 : /* We won the race and set eventidx; done. */
1580 0 : vu_group->stats.won++;
1581 0 : return count;
1582 : }
1583 :
1584 0 : ret = nvmf_vfio_user_sq_poll(sq);
1585 :
1586 0 : count += (ret < 0) ? 1 : ret;
1587 : }
1588 :
1589 : /*
1590 : * We couldn't arrange an eventidx guaranteed to cause a BAR0 write, as
1591 : * we raced with the producer too many times; force ourselves to wake up
1592 : * instead. We'll process all queues at that point.
1593 : */
1594 0 : vu_group->need_kick = true;
1595 :
1596 0 : SPDK_DEBUGLOG(vfio_user_db,
1597 : "%s: set_sq_eventidx() lost the race %zu times\n",
1598 : ctrlr_id(ctrlr), i);
1599 :
1600 0 : vu_group->stats.lost++;
1601 0 : vu_group->stats.lost_count += count;
1602 :
1603 0 : return count;
1604 : }
1605 :
1606 : /*
1607 : * We're in interrupt mode, and potentially about to go to sleep. We need to
1608 : * make sure any further I/O submissions are guaranteed to wake us up: for
1609 : * shadow doorbells that means we may need to go through set_sq_eventidx() for
1610 : * every SQ that needs re-arming.
1611 : *
1612 : * Returns non-zero if we processed something.
1613 : */
1614 : static int
1615 0 : vfio_user_poll_group_rearm(struct nvmf_vfio_user_poll_group *vu_group)
1616 : {
1617 : struct nvmf_vfio_user_sq *sq;
1618 0 : int count = 0;
1619 :
1620 0 : vu_group->stats.rearms++;
1621 :
1622 0 : TAILQ_FOREACH(sq, &vu_group->sqs, link) {
1623 0 : if (spdk_unlikely(sq->sq_state != VFIO_USER_SQ_ACTIVE || !sq->size)) {
1624 0 : continue;
1625 : }
1626 :
1627 0 : if (sq->need_rearm) {
1628 0 : count += vfio_user_sq_rearm(sq->ctrlr, sq, vu_group);
1629 : }
1630 : }
1631 :
1632 0 : if (vu_group->need_kick) {
1633 0 : poll_group_kick(vu_group);
1634 : }
1635 :
1636 0 : return count;
1637 : }
1638 :
1639 : static int
1640 0 : acq_setup(struct nvmf_vfio_user_ctrlr *ctrlr)
1641 : {
1642 : struct nvmf_vfio_user_cq *cq;
1643 : const struct spdk_nvmf_registers *regs;
1644 : int ret;
1645 :
1646 0 : assert(ctrlr != NULL);
1647 :
1648 0 : cq = ctrlr->cqs[0];
1649 :
1650 0 : assert(cq != NULL);
1651 :
1652 0 : assert(q_addr(&cq->mapping) == NULL);
1653 :
1654 0 : regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
1655 0 : assert(regs != NULL);
1656 0 : cq->qid = 0;
1657 0 : cq->size = regs->aqa.bits.acqs + 1;
1658 0 : cq->mapping.prp1 = regs->acq;
1659 0 : cq->mapping.len = cq->size * sizeof(struct spdk_nvme_cpl);
1660 0 : *cq_tailp(cq) = 0;
1661 0 : cq->ien = true;
1662 0 : cq->phase = true;
1663 0 : cq->nr_outstanding = 0;
1664 :
1665 0 : ret = map_q(ctrlr, &cq->mapping, MAP_RW | MAP_INITIALIZE);
1666 0 : if (ret) {
1667 0 : return ret;
1668 : }
1669 :
1670 : /* The Admin queue (qid: 0) does not ever use shadow doorbells. */
1671 0 : cq->dbl_headp = ctrlr->bar0_doorbells + queue_index(0, true);
1672 :
1673 0 : *cq_dbl_headp(cq) = 0;
1674 :
1675 0 : return 0;
1676 : }
1677 :
1678 : static void *
1679 0 : _map_one(void *prv, uint64_t addr, uint64_t len, uint32_t flags)
1680 : {
1681 0 : struct spdk_nvmf_request *req = (struct spdk_nvmf_request *)prv;
1682 : struct spdk_nvmf_qpair *qpair;
1683 : struct nvmf_vfio_user_req *vu_req;
1684 : struct nvmf_vfio_user_sq *sq;
1685 : void *ret;
1686 :
1687 0 : assert(req != NULL);
1688 0 : qpair = req->qpair;
1689 0 : vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
1690 0 : sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
1691 :
1692 0 : assert(vu_req->iovcnt < NVMF_VFIO_USER_MAX_IOVECS);
1693 0 : ret = map_one(sq->ctrlr->endpoint->vfu_ctx, addr, len,
1694 0 : index_to_sg_t(vu_req->sg, vu_req->iovcnt),
1695 0 : &vu_req->iov[vu_req->iovcnt], flags);
1696 0 : if (spdk_likely(ret != NULL)) {
1697 0 : vu_req->iovcnt++;
1698 : }
1699 0 : return ret;
1700 : }
1701 :
1702 : static int
1703 0 : vfio_user_map_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req,
1704 : struct iovec *iov, uint32_t length)
1705 : {
1706 : /* Map PRP list to from Guest physical memory to
1707 : * virtual memory address.
1708 : */
1709 0 : return nvme_map_cmd(req, &req->cmd->nvme_cmd, iov, NVMF_REQ_MAX_BUFFERS,
1710 : length, 4096, _map_one);
1711 : }
1712 :
1713 : static int handle_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd,
1714 : struct nvmf_vfio_user_sq *sq);
1715 :
1716 : static uint32_t
1717 0 : cq_free_slots(struct nvmf_vfio_user_cq *cq)
1718 : {
1719 : uint32_t free_slots;
1720 :
1721 0 : assert(cq != NULL);
1722 :
1723 0 : if (cq->tail == cq->last_head) {
1724 0 : free_slots = cq->size;
1725 0 : } else if (cq->tail > cq->last_head) {
1726 0 : free_slots = cq->size - (cq->tail - cq->last_head);
1727 : } else {
1728 0 : free_slots = cq->last_head - cq->tail;
1729 : }
1730 0 : assert(free_slots > 0);
1731 :
1732 0 : return free_slots - 1;
1733 : }
1734 :
1735 : /*
1736 : * Since reading the head doorbell is relatively expensive, we use the cached
1737 : * value, so we only have to read it for real if it appears that we are full.
1738 : */
1739 : static inline bool
1740 0 : cq_is_full(struct nvmf_vfio_user_cq *cq)
1741 : {
1742 : uint32_t free_cq_slots;
1743 :
1744 0 : assert(cq != NULL);
1745 :
1746 0 : free_cq_slots = cq_free_slots(cq);
1747 :
1748 0 : if (spdk_unlikely(free_cq_slots == 0)) {
1749 0 : cq->last_head = *cq_dbl_headp(cq);
1750 0 : free_cq_slots = cq_free_slots(cq);
1751 : }
1752 :
1753 0 : return free_cq_slots == 0;
1754 : }
1755 :
1756 : /*
1757 : * Posts a CQE in the completion queue.
1758 : *
1759 : * @ctrlr: the vfio-user controller
1760 : * @cq: the completion queue
1761 : * @cdw0: cdw0 as reported by NVMf
1762 : * @sqid: submission queue ID
1763 : * @cid: command identifier in NVMe command
1764 : * @sc: the NVMe CQE status code
1765 : * @sct: the NVMe CQE status code type
1766 : */
1767 : static int
1768 0 : post_completion(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_cq *cq,
1769 : uint32_t cdw0, uint16_t sqid, uint16_t cid, uint16_t sc, uint16_t sct)
1770 : {
1771 0 : struct spdk_nvme_status cpl_status = { 0 };
1772 : struct spdk_nvme_cpl *cpl;
1773 : int err;
1774 :
1775 0 : assert(ctrlr != NULL);
1776 :
1777 0 : if (spdk_unlikely(cq == NULL || q_addr(&cq->mapping) == NULL)) {
1778 0 : return 0;
1779 : }
1780 :
1781 0 : if (cq->qid == 0) {
1782 0 : assert(spdk_get_thread() == cq->group->group->thread);
1783 : }
1784 :
1785 : /*
1786 : * As per NVMe Base spec 3.3.1.2.1, we are supposed to implement CQ flow
1787 : * control: that is, we should handle running out of free CQ slots.
1788 : *
1789 : * Instead, we implement this by applying flow control on the submission
1790 : * side: see handle_sq_tdbl_write().
1791 : */
1792 0 : if (cq_is_full(cq)) {
1793 0 : SPDK_ERRLOG("%s: cqid:%d full (tail=%d, head=%d)\n",
1794 : ctrlr_id(ctrlr), cq->qid, *cq_tailp(cq),
1795 : *cq_dbl_headp(cq));
1796 0 : return -1;
1797 : }
1798 :
1799 0 : cpl = ((struct spdk_nvme_cpl *)q_addr(&cq->mapping)) + *cq_tailp(cq);
1800 :
1801 0 : assert(ctrlr->sqs[sqid] != NULL);
1802 0 : SPDK_DEBUGLOG(nvmf_vfio,
1803 : "%s: request complete sqid:%d cid=%d status=%#x "
1804 : "sqhead=%d cq tail=%d\n", ctrlr_id(ctrlr), sqid, cid, sc,
1805 : *sq_headp(ctrlr->sqs[sqid]), *cq_tailp(cq));
1806 :
1807 0 : cpl->sqhd = *sq_headp(ctrlr->sqs[sqid]);
1808 0 : cpl->sqid = sqid;
1809 0 : cpl->cid = cid;
1810 0 : cpl->cdw0 = cdw0;
1811 :
1812 : /*
1813 : * This is a bitfield: instead of setting the individual bits we need
1814 : * directly in cpl->status, which would cause a read-modify-write cycle,
1815 : * we'll avoid reading from the CPL altogether by filling in a local
1816 : * cpl_status variable, then writing the whole thing.
1817 : */
1818 0 : cpl_status.sct = sct;
1819 0 : cpl_status.sc = sc;
1820 0 : cpl_status.p = cq->phase;
1821 0 : cpl->status = cpl_status;
1822 :
1823 0 : cq->nr_outstanding--;
1824 :
1825 : /* Ensure the Completion Queue Entry is visible. */
1826 0 : spdk_wmb();
1827 0 : cq_tail_advance(cq);
1828 :
1829 0 : if ((cq->qid == 0 || !ctrlr->adaptive_irqs_enabled) &&
1830 0 : cq->ien && ctrlr_interrupt_enabled(ctrlr)) {
1831 0 : err = vfu_irq_trigger(ctrlr->endpoint->vfu_ctx, cq->iv);
1832 0 : if (err != 0) {
1833 0 : SPDK_ERRLOG("%s: failed to trigger interrupt: %m\n",
1834 : ctrlr_id(ctrlr));
1835 0 : return err;
1836 : }
1837 : }
1838 :
1839 0 : return 0;
1840 : }
1841 :
1842 : static void
1843 0 : free_sq_reqs(struct nvmf_vfio_user_sq *sq)
1844 : {
1845 0 : while (!TAILQ_EMPTY(&sq->free_reqs)) {
1846 0 : struct nvmf_vfio_user_req *vu_req = TAILQ_FIRST(&sq->free_reqs);
1847 0 : TAILQ_REMOVE(&sq->free_reqs, vu_req, link);
1848 0 : free(vu_req);
1849 : }
1850 0 : }
1851 :
1852 : static void
1853 0 : delete_cq_done(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_cq *cq)
1854 : {
1855 0 : assert(cq->cq_ref == 0);
1856 0 : unmap_q(ctrlr, &cq->mapping);
1857 0 : cq->size = 0;
1858 0 : cq->cq_state = VFIO_USER_CQ_DELETED;
1859 0 : cq->group = NULL;
1860 0 : cq->nr_outstanding = 0;
1861 0 : }
1862 :
1863 : /* Deletes a SQ, if this SQ is the last user of the associated CQ
1864 : * and the controller is being shut down/reset or vfio-user client disconnects,
1865 : * then the CQ is also deleted.
1866 : */
1867 : static void
1868 0 : delete_sq_done(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvmf_vfio_user_sq *sq)
1869 : {
1870 : struct nvmf_vfio_user_cq *cq;
1871 : uint16_t cqid;
1872 :
1873 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: delete sqid:%d=%p done\n", ctrlr_id(vu_ctrlr),
1874 : sq->qid, sq);
1875 :
1876 : /* Free SQ resources */
1877 0 : unmap_q(vu_ctrlr, &sq->mapping);
1878 :
1879 0 : free_sq_reqs(sq);
1880 :
1881 0 : sq->size = 0;
1882 :
1883 0 : sq->sq_state = VFIO_USER_SQ_DELETED;
1884 :
1885 : /* Controller RESET and SHUTDOWN are special cases,
1886 : * VM may not send DELETE IO SQ/CQ commands, NVMf library
1887 : * will disconnect IO queue pairs.
1888 : */
1889 0 : if (vu_ctrlr->reset_shn || vu_ctrlr->disconnect) {
1890 0 : cqid = sq->cqid;
1891 0 : cq = vu_ctrlr->cqs[cqid];
1892 :
1893 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: try to delete cqid:%u=%p\n", ctrlr_id(vu_ctrlr),
1894 : cq->qid, cq);
1895 :
1896 0 : assert(cq->cq_ref > 0);
1897 0 : if (--cq->cq_ref == 0) {
1898 0 : delete_cq_done(vu_ctrlr, cq);
1899 : }
1900 : }
1901 0 : }
1902 :
1903 : static void
1904 0 : free_qp(struct nvmf_vfio_user_ctrlr *ctrlr, uint16_t qid)
1905 : {
1906 : struct nvmf_vfio_user_sq *sq;
1907 : struct nvmf_vfio_user_cq *cq;
1908 :
1909 0 : if (ctrlr == NULL) {
1910 0 : return;
1911 : }
1912 :
1913 0 : sq = ctrlr->sqs[qid];
1914 0 : if (sq) {
1915 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: Free sqid:%u\n", ctrlr_id(ctrlr), qid);
1916 0 : unmap_q(ctrlr, &sq->mapping);
1917 :
1918 0 : free_sq_reqs(sq);
1919 :
1920 0 : free(sq->mapping.sg);
1921 0 : free(sq);
1922 0 : ctrlr->sqs[qid] = NULL;
1923 : }
1924 :
1925 0 : cq = ctrlr->cqs[qid];
1926 0 : if (cq) {
1927 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: Free cqid:%u\n", ctrlr_id(ctrlr), qid);
1928 0 : unmap_q(ctrlr, &cq->mapping);
1929 0 : free(cq->mapping.sg);
1930 0 : free(cq);
1931 0 : ctrlr->cqs[qid] = NULL;
1932 : }
1933 : }
1934 :
1935 : static int
1936 0 : init_sq(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_transport *transport,
1937 : const uint16_t id)
1938 : {
1939 : struct nvmf_vfio_user_sq *sq;
1940 :
1941 0 : assert(ctrlr != NULL);
1942 0 : assert(transport != NULL);
1943 0 : assert(ctrlr->sqs[id] == NULL);
1944 :
1945 0 : sq = calloc(1, sizeof(*sq));
1946 0 : if (sq == NULL) {
1947 0 : return -ENOMEM;
1948 : }
1949 0 : sq->mapping.sg = calloc(1, dma_sg_size());
1950 0 : if (sq->mapping.sg == NULL) {
1951 0 : free(sq);
1952 0 : return -ENOMEM;
1953 : }
1954 :
1955 0 : sq->qid = id;
1956 0 : sq->qpair.qid = id;
1957 0 : sq->qpair.transport = transport;
1958 0 : sq->ctrlr = ctrlr;
1959 0 : ctrlr->sqs[id] = sq;
1960 :
1961 0 : TAILQ_INIT(&sq->free_reqs);
1962 :
1963 0 : return 0;
1964 : }
1965 :
1966 : static int
1967 0 : init_cq(struct nvmf_vfio_user_ctrlr *vu_ctrlr, const uint16_t id)
1968 : {
1969 : struct nvmf_vfio_user_cq *cq;
1970 :
1971 0 : assert(vu_ctrlr != NULL);
1972 0 : assert(vu_ctrlr->cqs[id] == NULL);
1973 :
1974 0 : cq = calloc(1, sizeof(*cq));
1975 0 : if (cq == NULL) {
1976 0 : return -ENOMEM;
1977 : }
1978 0 : cq->mapping.sg = calloc(1, dma_sg_size());
1979 0 : if (cq->mapping.sg == NULL) {
1980 0 : free(cq);
1981 0 : return -ENOMEM;
1982 : }
1983 :
1984 0 : cq->qid = id;
1985 0 : vu_ctrlr->cqs[id] = cq;
1986 :
1987 0 : return 0;
1988 : }
1989 :
1990 : static int
1991 0 : alloc_sq_reqs(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvmf_vfio_user_sq *sq)
1992 : {
1993 : struct nvmf_vfio_user_req *vu_req, *tmp;
1994 : size_t req_size;
1995 : uint32_t i;
1996 :
1997 0 : req_size = sizeof(struct nvmf_vfio_user_req) +
1998 0 : (dma_sg_size() * NVMF_VFIO_USER_MAX_IOVECS);
1999 :
2000 0 : for (i = 0; i < sq->size; i++) {
2001 : struct spdk_nvmf_request *req;
2002 :
2003 0 : vu_req = calloc(1, req_size);
2004 0 : if (vu_req == NULL) {
2005 0 : goto err;
2006 : }
2007 :
2008 0 : req = &vu_req->req;
2009 0 : req->qpair = &sq->qpair;
2010 0 : req->rsp = (union nvmf_c2h_msg *)&vu_req->rsp;
2011 0 : req->cmd = (union nvmf_h2c_msg *)&vu_req->cmd;
2012 0 : req->stripped_data = NULL;
2013 :
2014 0 : TAILQ_INSERT_TAIL(&sq->free_reqs, vu_req, link);
2015 : }
2016 :
2017 0 : return 0;
2018 :
2019 0 : err:
2020 0 : TAILQ_FOREACH_SAFE(vu_req, &sq->free_reqs, link, tmp) {
2021 0 : free(vu_req);
2022 : }
2023 0 : return -ENOMEM;
2024 : }
2025 :
2026 : static volatile uint32_t *
2027 0 : ctrlr_doorbell_ptr(struct nvmf_vfio_user_ctrlr *ctrlr)
2028 : {
2029 0 : return ctrlr->sdbl != NULL ?
2030 0 : ctrlr->sdbl->shadow_doorbells :
2031 : ctrlr->bar0_doorbells;
2032 : }
2033 :
2034 : static uint16_t
2035 0 : handle_create_io_sq(struct nvmf_vfio_user_ctrlr *ctrlr,
2036 : struct spdk_nvme_cmd *cmd, uint16_t *sct)
2037 : {
2038 0 : struct nvmf_vfio_user_transport *vu_transport = ctrlr->transport;
2039 : struct nvmf_vfio_user_sq *sq;
2040 : uint32_t qsize;
2041 : uint16_t cqid;
2042 : uint16_t qid;
2043 : int err;
2044 :
2045 0 : qid = cmd->cdw10_bits.create_io_q.qid;
2046 0 : cqid = cmd->cdw11_bits.create_io_sq.cqid;
2047 0 : qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
2048 :
2049 0 : if (ctrlr->sqs[qid] == NULL) {
2050 0 : err = init_sq(ctrlr, ctrlr->sqs[0]->qpair.transport, qid);
2051 0 : if (err != 0) {
2052 0 : *sct = SPDK_NVME_SCT_GENERIC;
2053 0 : return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2054 : }
2055 : }
2056 :
2057 0 : if (cqid == 0 || cqid >= vu_transport->transport.opts.max_qpairs_per_ctrlr) {
2058 0 : SPDK_ERRLOG("%s: invalid cqid:%u\n", ctrlr_id(ctrlr), cqid);
2059 0 : *sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2060 0 : return SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
2061 : }
2062 :
2063 : /* CQ must be created before SQ. */
2064 0 : if (!io_q_exists(ctrlr, cqid, true)) {
2065 0 : SPDK_ERRLOG("%s: cqid:%u does not exist\n", ctrlr_id(ctrlr), cqid);
2066 0 : *sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2067 0 : return SPDK_NVME_SC_COMPLETION_QUEUE_INVALID;
2068 : }
2069 :
2070 0 : if (cmd->cdw11_bits.create_io_sq.pc != 0x1) {
2071 0 : SPDK_ERRLOG("%s: non-PC SQ not supported\n", ctrlr_id(ctrlr));
2072 0 : *sct = SPDK_NVME_SCT_GENERIC;
2073 0 : return SPDK_NVME_SC_INVALID_FIELD;
2074 : }
2075 :
2076 0 : sq = ctrlr->sqs[qid];
2077 0 : sq->size = qsize;
2078 :
2079 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: sqid:%d cqid:%d\n", ctrlr_id(ctrlr),
2080 : qid, cqid);
2081 :
2082 0 : sq->mapping.prp1 = cmd->dptr.prp.prp1;
2083 0 : sq->mapping.len = sq->size * sizeof(struct spdk_nvme_cmd);
2084 :
2085 0 : err = map_q(ctrlr, &sq->mapping, MAP_INITIALIZE);
2086 0 : if (err) {
2087 0 : SPDK_ERRLOG("%s: failed to map I/O queue: %m\n", ctrlr_id(ctrlr));
2088 0 : *sct = SPDK_NVME_SCT_GENERIC;
2089 0 : return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2090 : }
2091 :
2092 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: mapped sqid:%d IOVA=%#lx vaddr=%p\n",
2093 : ctrlr_id(ctrlr), qid, cmd->dptr.prp.prp1,
2094 : q_addr(&sq->mapping));
2095 :
2096 0 : err = alloc_sq_reqs(ctrlr, sq);
2097 0 : if (err < 0) {
2098 0 : SPDK_ERRLOG("%s: failed to allocate SQ requests: %m\n", ctrlr_id(ctrlr));
2099 0 : *sct = SPDK_NVME_SCT_GENERIC;
2100 0 : return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2101 : }
2102 :
2103 0 : sq->cqid = cqid;
2104 0 : ctrlr->cqs[sq->cqid]->cq_ref++;
2105 0 : sq->sq_state = VFIO_USER_SQ_CREATED;
2106 0 : *sq_headp(sq) = 0;
2107 :
2108 0 : sq->dbl_tailp = ctrlr_doorbell_ptr(ctrlr) + queue_index(qid, false);
2109 :
2110 : /*
2111 : * We should always reset the doorbells.
2112 : *
2113 : * The Specification prohibits the controller from writing to the shadow
2114 : * doorbell buffer, however older versions of the Linux NVMe driver
2115 : * don't reset the shadow doorbell buffer after a Queue-Level or
2116 : * Controller-Level reset, which means that we're left with garbage
2117 : * doorbell values.
2118 : */
2119 0 : *sq_dbl_tailp(sq) = 0;
2120 :
2121 0 : if (ctrlr->sdbl != NULL) {
2122 0 : sq->need_rearm = true;
2123 :
2124 0 : if (!set_sq_eventidx(sq)) {
2125 0 : SPDK_ERRLOG("%s: host updated SQ tail doorbell before "
2126 : "sqid:%hu was initialized\n",
2127 : ctrlr_id(ctrlr), qid);
2128 0 : fail_ctrlr(ctrlr);
2129 0 : *sct = SPDK_NVME_SCT_GENERIC;
2130 0 : return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2131 : }
2132 : }
2133 :
2134 : /*
2135 : * Create our new I/O qpair. This asynchronously invokes, on a suitable
2136 : * poll group, the nvmf_vfio_user_poll_group_add() callback, which will
2137 : * call spdk_nvmf_request_exec() with a generated fabrics
2138 : * connect command. This command is then eventually completed via
2139 : * handle_queue_connect_rsp().
2140 : */
2141 0 : sq->create_io_sq_cmd = *cmd;
2142 0 : sq->post_create_io_sq_completion = true;
2143 :
2144 0 : spdk_nvmf_tgt_new_qpair(ctrlr->transport->transport.tgt,
2145 : &sq->qpair);
2146 :
2147 0 : *sct = SPDK_NVME_SCT_GENERIC;
2148 0 : return SPDK_NVME_SC_SUCCESS;
2149 : }
2150 :
2151 : static uint16_t
2152 0 : handle_create_io_cq(struct nvmf_vfio_user_ctrlr *ctrlr,
2153 : struct spdk_nvme_cmd *cmd, uint16_t *sct)
2154 : {
2155 : struct nvmf_vfio_user_cq *cq;
2156 : uint32_t qsize;
2157 : uint16_t qid;
2158 : int err;
2159 :
2160 0 : qid = cmd->cdw10_bits.create_io_q.qid;
2161 0 : qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
2162 :
2163 0 : if (ctrlr->cqs[qid] == NULL) {
2164 0 : err = init_cq(ctrlr, qid);
2165 0 : if (err != 0) {
2166 0 : *sct = SPDK_NVME_SCT_GENERIC;
2167 0 : return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2168 : }
2169 : }
2170 :
2171 0 : if (cmd->cdw11_bits.create_io_cq.pc != 0x1) {
2172 0 : SPDK_ERRLOG("%s: non-PC CQ not supported\n", ctrlr_id(ctrlr));
2173 0 : *sct = SPDK_NVME_SCT_GENERIC;
2174 0 : return SPDK_NVME_SC_INVALID_FIELD;
2175 : }
2176 :
2177 0 : if (cmd->cdw11_bits.create_io_cq.iv > NVMF_VFIO_USER_MSIX_NUM - 1) {
2178 0 : SPDK_ERRLOG("%s: IV is too big\n", ctrlr_id(ctrlr));
2179 0 : *sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2180 0 : return SPDK_NVME_SC_INVALID_INTERRUPT_VECTOR;
2181 : }
2182 :
2183 0 : cq = ctrlr->cqs[qid];
2184 0 : cq->size = qsize;
2185 :
2186 0 : cq->mapping.prp1 = cmd->dptr.prp.prp1;
2187 0 : cq->mapping.len = cq->size * sizeof(struct spdk_nvme_cpl);
2188 :
2189 0 : cq->dbl_headp = ctrlr_doorbell_ptr(ctrlr) + queue_index(qid, true);
2190 :
2191 0 : err = map_q(ctrlr, &cq->mapping, MAP_RW | MAP_INITIALIZE);
2192 0 : if (err) {
2193 0 : SPDK_ERRLOG("%s: failed to map I/O queue: %m\n", ctrlr_id(ctrlr));
2194 0 : *sct = SPDK_NVME_SCT_GENERIC;
2195 0 : return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2196 : }
2197 :
2198 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: mapped cqid:%u IOVA=%#lx vaddr=%p\n",
2199 : ctrlr_id(ctrlr), qid, cmd->dptr.prp.prp1,
2200 : q_addr(&cq->mapping));
2201 :
2202 0 : cq->ien = cmd->cdw11_bits.create_io_cq.ien;
2203 0 : cq->iv = cmd->cdw11_bits.create_io_cq.iv;
2204 0 : cq->phase = true;
2205 0 : cq->cq_state = VFIO_USER_CQ_CREATED;
2206 :
2207 0 : *cq_tailp(cq) = 0;
2208 :
2209 : /*
2210 : * We should always reset the doorbells.
2211 : *
2212 : * The Specification prohibits the controller from writing to the shadow
2213 : * doorbell buffer, however older versions of the Linux NVMe driver
2214 : * don't reset the shadow doorbell buffer after a Queue-Level or
2215 : * Controller-Level reset, which means that we're left with garbage
2216 : * doorbell values.
2217 : */
2218 0 : *cq_dbl_headp(cq) = 0;
2219 :
2220 0 : *sct = SPDK_NVME_SCT_GENERIC;
2221 0 : return SPDK_NVME_SC_SUCCESS;
2222 : }
2223 :
2224 : /*
2225 : * Creates a completion or submission I/O queue. Returns 0 on success, -errno
2226 : * on error.
2227 : */
2228 : static int
2229 0 : handle_create_io_q(struct nvmf_vfio_user_ctrlr *ctrlr,
2230 : struct spdk_nvme_cmd *cmd, const bool is_cq)
2231 : {
2232 0 : struct nvmf_vfio_user_transport *vu_transport = ctrlr->transport;
2233 0 : uint16_t sct = SPDK_NVME_SCT_GENERIC;
2234 0 : uint16_t sc = SPDK_NVME_SC_SUCCESS;
2235 : uint32_t qsize;
2236 : uint16_t qid;
2237 :
2238 0 : assert(ctrlr != NULL);
2239 0 : assert(cmd != NULL);
2240 :
2241 0 : qid = cmd->cdw10_bits.create_io_q.qid;
2242 0 : if (qid == 0 || qid >= vu_transport->transport.opts.max_qpairs_per_ctrlr) {
2243 0 : SPDK_ERRLOG("%s: invalid qid=%d, max=%d\n", ctrlr_id(ctrlr),
2244 : qid, vu_transport->transport.opts.max_qpairs_per_ctrlr);
2245 0 : sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2246 0 : sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
2247 0 : goto out;
2248 : }
2249 :
2250 0 : if (io_q_exists(ctrlr, qid, is_cq)) {
2251 0 : SPDK_ERRLOG("%s: %cqid:%d already exists\n", ctrlr_id(ctrlr),
2252 : is_cq ? 'c' : 's', qid);
2253 0 : sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2254 0 : sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
2255 0 : goto out;
2256 : }
2257 :
2258 0 : qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
2259 0 : if (qsize == 1 || qsize > max_queue_size(ctrlr)) {
2260 0 : SPDK_ERRLOG("%s: invalid I/O queue size %u\n", ctrlr_id(ctrlr), qsize);
2261 0 : sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2262 0 : sc = SPDK_NVME_SC_INVALID_QUEUE_SIZE;
2263 0 : goto out;
2264 : }
2265 :
2266 0 : if (is_cq) {
2267 0 : sc = handle_create_io_cq(ctrlr, cmd, &sct);
2268 : } else {
2269 0 : sc = handle_create_io_sq(ctrlr, cmd, &sct);
2270 :
2271 0 : if (sct == SPDK_NVME_SCT_GENERIC &&
2272 : sc == SPDK_NVME_SC_SUCCESS) {
2273 : /* Completion posted asynchronously. */
2274 0 : return 0;
2275 : }
2276 : }
2277 :
2278 0 : out:
2279 0 : return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
2280 : }
2281 :
2282 : /* For ADMIN I/O DELETE SUBMISSION QUEUE the NVMf library will disconnect and free
2283 : * queue pair, so save the command id and controller in a context.
2284 : */
2285 : struct vfio_user_delete_sq_ctx {
2286 : struct nvmf_vfio_user_ctrlr *vu_ctrlr;
2287 : uint16_t cid;
2288 : };
2289 :
2290 : static void
2291 0 : vfio_user_qpair_delete_cb(void *cb_arg)
2292 : {
2293 0 : struct vfio_user_delete_sq_ctx *ctx = cb_arg;
2294 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx->vu_ctrlr;
2295 0 : struct nvmf_vfio_user_cq *admin_cq = vu_ctrlr->cqs[0];
2296 :
2297 0 : assert(admin_cq != NULL);
2298 0 : assert(admin_cq->group != NULL);
2299 0 : assert(admin_cq->group->group->thread != NULL);
2300 0 : if (admin_cq->group->group->thread != spdk_get_thread()) {
2301 0 : spdk_thread_send_msg(admin_cq->group->group->thread,
2302 : vfio_user_qpair_delete_cb,
2303 : cb_arg);
2304 : } else {
2305 0 : post_completion(vu_ctrlr, admin_cq, 0, 0,
2306 0 : ctx->cid,
2307 : SPDK_NVME_SC_SUCCESS, SPDK_NVME_SCT_GENERIC);
2308 0 : free(ctx);
2309 : }
2310 0 : }
2311 :
2312 : /*
2313 : * Deletes a completion or submission I/O queue.
2314 : */
2315 : static int
2316 0 : handle_del_io_q(struct nvmf_vfio_user_ctrlr *ctrlr,
2317 : struct spdk_nvme_cmd *cmd, const bool is_cq)
2318 : {
2319 0 : uint16_t sct = SPDK_NVME_SCT_GENERIC;
2320 0 : uint16_t sc = SPDK_NVME_SC_SUCCESS;
2321 : struct nvmf_vfio_user_sq *sq;
2322 : struct nvmf_vfio_user_cq *cq;
2323 :
2324 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: delete I/O %cqid:%d\n",
2325 : ctrlr_id(ctrlr), is_cq ? 'c' : 's',
2326 : cmd->cdw10_bits.delete_io_q.qid);
2327 :
2328 0 : if (!io_q_exists(ctrlr, cmd->cdw10_bits.delete_io_q.qid, is_cq)) {
2329 0 : SPDK_ERRLOG("%s: I/O %cqid:%d does not exist\n", ctrlr_id(ctrlr),
2330 : is_cq ? 'c' : 's', cmd->cdw10_bits.delete_io_q.qid);
2331 0 : sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2332 0 : sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
2333 0 : goto out;
2334 : }
2335 :
2336 0 : if (is_cq) {
2337 0 : cq = ctrlr->cqs[cmd->cdw10_bits.delete_io_q.qid];
2338 0 : if (cq->cq_ref) {
2339 0 : SPDK_ERRLOG("%s: the associated SQ must be deleted first\n", ctrlr_id(ctrlr));
2340 0 : sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2341 0 : sc = SPDK_NVME_SC_INVALID_QUEUE_DELETION;
2342 0 : goto out;
2343 : }
2344 0 : delete_cq_done(ctrlr, cq);
2345 : } else {
2346 : /*
2347 : * Deletion of the CQ is only deferred to delete_sq_done() on
2348 : * VM reboot or CC.EN change, so we have to delete it in all
2349 : * other cases.
2350 : */
2351 0 : sq = ctrlr->sqs[cmd->cdw10_bits.delete_io_q.qid];
2352 0 : sq->delete_ctx = calloc(1, sizeof(*sq->delete_ctx));
2353 0 : if (!sq->delete_ctx) {
2354 0 : sct = SPDK_NVME_SCT_GENERIC;
2355 0 : sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2356 0 : goto out;
2357 : }
2358 0 : sq->delete_ctx->vu_ctrlr = ctrlr;
2359 0 : sq->delete_ctx->cid = cmd->cid;
2360 0 : sq->sq_state = VFIO_USER_SQ_DELETED;
2361 0 : assert(ctrlr->cqs[sq->cqid]->cq_ref);
2362 0 : ctrlr->cqs[sq->cqid]->cq_ref--;
2363 :
2364 0 : spdk_nvmf_qpair_disconnect(&sq->qpair);
2365 0 : return 0;
2366 : }
2367 :
2368 0 : out:
2369 0 : return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
2370 : }
2371 :
2372 : /*
2373 : * Configures Shadow Doorbells.
2374 : */
2375 : static int
2376 0 : handle_doorbell_buffer_config(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd)
2377 : {
2378 0 : struct nvmf_vfio_user_shadow_doorbells *sdbl = NULL;
2379 : uint32_t dstrd;
2380 : uintptr_t page_size, page_mask;
2381 : uint64_t prp1, prp2;
2382 0 : uint16_t sct = SPDK_NVME_SCT_GENERIC;
2383 0 : uint16_t sc = SPDK_NVME_SC_INVALID_FIELD;
2384 :
2385 0 : assert(ctrlr != NULL);
2386 0 : assert(ctrlr->endpoint != NULL);
2387 0 : assert(cmd != NULL);
2388 :
2389 0 : dstrd = doorbell_stride(ctrlr);
2390 0 : page_size = memory_page_size(ctrlr);
2391 0 : page_mask = memory_page_mask(ctrlr);
2392 :
2393 : /* FIXME: we don't check doorbell stride when setting queue doorbells. */
2394 0 : if ((4u << dstrd) * NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR > page_size) {
2395 0 : SPDK_ERRLOG("%s: doorbells do not fit in a single host page",
2396 : ctrlr_id(ctrlr));
2397 :
2398 0 : goto out;
2399 : }
2400 :
2401 : /* Verify guest physical addresses passed as PRPs. */
2402 0 : if (cmd->psdt != SPDK_NVME_PSDT_PRP) {
2403 0 : SPDK_ERRLOG("%s: received Doorbell Buffer Config without PRPs",
2404 : ctrlr_id(ctrlr));
2405 :
2406 0 : goto out;
2407 : }
2408 :
2409 0 : prp1 = cmd->dptr.prp.prp1;
2410 0 : prp2 = cmd->dptr.prp.prp2;
2411 :
2412 0 : SPDK_DEBUGLOG(nvmf_vfio,
2413 : "%s: configuring shadow doorbells with PRP1=%#lx and PRP2=%#lx (GPAs)\n",
2414 : ctrlr_id(ctrlr), prp1, prp2);
2415 :
2416 0 : if (prp1 == prp2
2417 0 : || prp1 != (prp1 & page_mask)
2418 0 : || prp2 != (prp2 & page_mask)) {
2419 0 : SPDK_ERRLOG("%s: invalid shadow doorbell GPAs\n",
2420 : ctrlr_id(ctrlr));
2421 :
2422 0 : goto out;
2423 : }
2424 :
2425 : /* Map guest physical addresses to our virtual address space. */
2426 0 : sdbl = map_sdbl(ctrlr->endpoint->vfu_ctx, prp1, prp2, page_size);
2427 0 : if (sdbl == NULL) {
2428 0 : SPDK_ERRLOG("%s: failed to map shadow doorbell buffers\n",
2429 : ctrlr_id(ctrlr));
2430 :
2431 0 : goto out;
2432 : }
2433 :
2434 0 : ctrlr->shadow_doorbell_buffer = prp1;
2435 0 : ctrlr->eventidx_buffer = prp2;
2436 :
2437 0 : SPDK_DEBUGLOG(nvmf_vfio,
2438 : "%s: mapped shadow doorbell buffers [%p, %p) and [%p, %p)\n",
2439 : ctrlr_id(ctrlr),
2440 : sdbl->iovs[0].iov_base,
2441 : sdbl->iovs[0].iov_base + sdbl->iovs[0].iov_len,
2442 : sdbl->iovs[1].iov_base,
2443 : sdbl->iovs[1].iov_base + sdbl->iovs[1].iov_len);
2444 :
2445 :
2446 : /*
2447 : * Set all possible CQ head doorbells to polling mode now, such that we
2448 : * don't have to worry about it later if the host creates more queues.
2449 : *
2450 : * We only ever want interrupts for writes to the SQ tail doorbells
2451 : * (which are initialised in set_ctrlr_intr_mode() below).
2452 : */
2453 0 : for (uint16_t i = 0; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; ++i) {
2454 0 : sdbl->eventidxs[queue_index(i, true)] = NVMF_VFIO_USER_EVENTIDX_POLL;
2455 : }
2456 :
2457 : /* Update controller. */
2458 0 : SWAP(ctrlr->sdbl, sdbl);
2459 :
2460 : /*
2461 : * Copy doorbells from either the previous shadow doorbell buffer or the
2462 : * BAR0 doorbells and make I/O queue doorbells point to the new buffer.
2463 : *
2464 : * This needs to account for older versions of the Linux NVMe driver,
2465 : * which don't clear out the buffer after a controller reset.
2466 : */
2467 0 : copy_doorbells(ctrlr, sdbl != NULL ?
2468 : sdbl->shadow_doorbells : ctrlr->bar0_doorbells,
2469 0 : ctrlr->sdbl->shadow_doorbells);
2470 :
2471 0 : vfio_user_ctrlr_switch_doorbells(ctrlr, true);
2472 :
2473 0 : ctrlr_kick(ctrlr);
2474 :
2475 0 : sc = SPDK_NVME_SC_SUCCESS;
2476 :
2477 0 : out:
2478 : /*
2479 : * Unmap existing buffers, in case Doorbell Buffer Config was sent
2480 : * more than once (pointless, but not prohibited by the spec), or
2481 : * in case of an error.
2482 : *
2483 : * If this is the first time Doorbell Buffer Config was processed,
2484 : * then we've just swapped a NULL from ctrlr->sdbl into sdbl, so
2485 : * free_sdbl() becomes a noop.
2486 : */
2487 0 : free_sdbl(ctrlr->endpoint->vfu_ctx, sdbl);
2488 :
2489 0 : return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
2490 : }
2491 :
2492 : /* Returns 0 on success and -errno on error. */
2493 : static int
2494 0 : consume_admin_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd)
2495 : {
2496 0 : assert(ctrlr != NULL);
2497 0 : assert(cmd != NULL);
2498 :
2499 0 : if (cmd->fuse != 0) {
2500 : /* Fused admin commands are not supported. */
2501 0 : return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid,
2502 : SPDK_NVME_SC_INVALID_FIELD,
2503 : SPDK_NVME_SCT_GENERIC);
2504 : }
2505 :
2506 0 : switch (cmd->opc) {
2507 0 : case SPDK_NVME_OPC_CREATE_IO_CQ:
2508 : case SPDK_NVME_OPC_CREATE_IO_SQ:
2509 0 : return handle_create_io_q(ctrlr, cmd,
2510 0 : cmd->opc == SPDK_NVME_OPC_CREATE_IO_CQ);
2511 0 : case SPDK_NVME_OPC_DELETE_IO_SQ:
2512 : case SPDK_NVME_OPC_DELETE_IO_CQ:
2513 0 : return handle_del_io_q(ctrlr, cmd,
2514 0 : cmd->opc == SPDK_NVME_OPC_DELETE_IO_CQ);
2515 0 : case SPDK_NVME_OPC_DOORBELL_BUFFER_CONFIG:
2516 0 : SPDK_NOTICELOG("%s: requested shadow doorbells (supported: %d)\n",
2517 : ctrlr_id(ctrlr),
2518 : !ctrlr->transport->transport_opts.disable_shadow_doorbells);
2519 0 : if (!ctrlr->transport->transport_opts.disable_shadow_doorbells) {
2520 0 : return handle_doorbell_buffer_config(ctrlr, cmd);
2521 : }
2522 : /* FALLTHROUGH */
2523 : default:
2524 0 : return handle_cmd_req(ctrlr, cmd, ctrlr->sqs[0]);
2525 : }
2526 : }
2527 :
2528 : static int
2529 0 : handle_cmd_rsp(struct nvmf_vfio_user_req *vu_req, void *cb_arg)
2530 : {
2531 0 : struct nvmf_vfio_user_sq *sq = cb_arg;
2532 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = sq->ctrlr;
2533 : uint16_t sqid, cqid;
2534 :
2535 0 : assert(sq != NULL);
2536 0 : assert(vu_req != NULL);
2537 0 : assert(vu_ctrlr != NULL);
2538 :
2539 0 : if (spdk_likely(vu_req->iovcnt)) {
2540 0 : vfu_sgl_put(vu_ctrlr->endpoint->vfu_ctx,
2541 0 : index_to_sg_t(vu_req->sg, 0),
2542 0 : vu_req->iov, vu_req->iovcnt);
2543 : }
2544 0 : sqid = sq->qid;
2545 0 : cqid = sq->cqid;
2546 :
2547 0 : return post_completion(vu_ctrlr, vu_ctrlr->cqs[cqid],
2548 0 : vu_req->req.rsp->nvme_cpl.cdw0,
2549 : sqid,
2550 0 : vu_req->req.cmd->nvme_cmd.cid,
2551 0 : vu_req->req.rsp->nvme_cpl.status.sc,
2552 0 : vu_req->req.rsp->nvme_cpl.status.sct);
2553 : }
2554 :
2555 : static int
2556 0 : consume_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_sq *sq,
2557 : struct spdk_nvme_cmd *cmd)
2558 : {
2559 0 : assert(sq != NULL);
2560 0 : if (spdk_unlikely(nvmf_qpair_is_admin_queue(&sq->qpair))) {
2561 0 : return consume_admin_cmd(ctrlr, cmd);
2562 : }
2563 :
2564 0 : return handle_cmd_req(ctrlr, cmd, sq);
2565 : }
2566 :
2567 : /* Returns the number of commands processed, or a negative value on error. */
2568 : static int
2569 0 : handle_sq_tdbl_write(struct nvmf_vfio_user_ctrlr *ctrlr, const uint32_t new_tail,
2570 : struct nvmf_vfio_user_sq *sq)
2571 : {
2572 : struct spdk_nvme_cmd *queue;
2573 0 : struct nvmf_vfio_user_cq *cq = ctrlr->cqs[sq->cqid];
2574 0 : int count = 0;
2575 : uint32_t free_cq_slots;
2576 :
2577 0 : assert(ctrlr != NULL);
2578 0 : assert(sq != NULL);
2579 :
2580 0 : if (ctrlr->sdbl != NULL && sq->qid != 0) {
2581 : /*
2582 : * Submission queue index has moved past the event index, so it
2583 : * needs to be re-armed before we go to sleep.
2584 : */
2585 0 : sq->need_rearm = true;
2586 : }
2587 :
2588 0 : free_cq_slots = cq_free_slots(cq);
2589 0 : queue = q_addr(&sq->mapping);
2590 0 : while (*sq_headp(sq) != new_tail) {
2591 : int err;
2592 : struct spdk_nvme_cmd *cmd;
2593 :
2594 : /*
2595 : * At least the Linux nvme driver can submit more requests than
2596 : * our current view of the available free CQ slots, although it
2597 : * is not clear exactly why or how; it is relatively rare even
2598 : * under high load.
2599 : *
2600 : * As we need to make sure we have free CQ slots (see
2601 : * post_completion()), we implement flow control here: if the
2602 : * number of currently outstanding requests for this SQ would
2603 : * use all the available CQ slots, then we cannot submit this
2604 : * new request.
2605 : *
2606 : * Instead we back off until the driver has informed us that CQ
2607 : * slots are available.
2608 : */
2609 0 : if ((free_cq_slots-- <= cq->nr_outstanding)) {
2610 : struct nvmf_vfio_user_poll_group *vu_group;
2611 0 : cq->last_head = *cq_dbl_headp(cq);
2612 :
2613 0 : free_cq_slots = cq_free_slots(cq);
2614 0 : if (free_cq_slots > cq->nr_outstanding) {
2615 0 : continue;
2616 : }
2617 :
2618 0 : vu_group = sq_to_poll_group(sq);
2619 :
2620 0 : vu_group->stats.cq_full++;
2621 :
2622 : /*
2623 : * There are no free CQ slots, so stop processing
2624 : * submissions for this SQ until "a later time". In
2625 : * interrupt mode, we need to kick ourselves, so that we
2626 : * are guaranteed to wake up and come back here.
2627 : */
2628 0 : if (in_interrupt_mode(ctrlr->transport)) {
2629 0 : vu_group->need_kick = true;
2630 : }
2631 0 : break;
2632 : }
2633 :
2634 0 : cmd = &queue[*sq_headp(sq)];
2635 0 : count++;
2636 :
2637 0 : cq->nr_outstanding++;
2638 :
2639 : /*
2640 : * SQHD must contain the new head pointer, so we must increase
2641 : * it before we generate a completion.
2642 : */
2643 0 : sq_head_advance(sq);
2644 :
2645 0 : err = consume_cmd(ctrlr, sq, cmd);
2646 0 : if (spdk_unlikely(err != 0)) {
2647 0 : return err;
2648 : }
2649 : }
2650 :
2651 0 : return count;
2652 : }
2653 :
2654 : /* Checks whether endpoint is connected from the same process */
2655 : static bool
2656 0 : is_peer_same_process(struct nvmf_vfio_user_endpoint *endpoint)
2657 : {
2658 : struct ucred ucred;
2659 0 : socklen_t ucredlen = sizeof(ucred);
2660 :
2661 0 : if (endpoint == NULL) {
2662 0 : return false;
2663 : }
2664 :
2665 0 : if (getsockopt(vfu_get_poll_fd(endpoint->vfu_ctx), SOL_SOCKET, SO_PEERCRED, &ucred,
2666 : &ucredlen) < 0) {
2667 0 : SPDK_ERRLOG("getsockopt(SO_PEERCRED): %s\n", strerror(errno));
2668 0 : return false;
2669 : }
2670 :
2671 0 : return ucred.pid == getpid();
2672 : }
2673 :
2674 : static void
2675 0 : memory_region_add_cb(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
2676 : {
2677 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
2678 : struct nvmf_vfio_user_ctrlr *ctrlr;
2679 : struct nvmf_vfio_user_sq *sq;
2680 : struct nvmf_vfio_user_cq *cq;
2681 : void *map_start, *map_end;
2682 : int ret;
2683 :
2684 : /*
2685 : * We're not interested in any DMA regions that aren't mappable (we don't
2686 : * support clients that don't share their memory).
2687 : */
2688 0 : if (!info->vaddr) {
2689 0 : return;
2690 : }
2691 :
2692 0 : map_start = info->mapping.iov_base;
2693 0 : map_end = info->mapping.iov_base + info->mapping.iov_len;
2694 :
2695 0 : if (((uintptr_t)info->mapping.iov_base & MASK_2MB) ||
2696 0 : (info->mapping.iov_len & MASK_2MB)) {
2697 0 : SPDK_DEBUGLOG(nvmf_vfio, "Invalid memory region vaddr %p, IOVA %p-%p\n",
2698 : info->vaddr, map_start, map_end);
2699 0 : return;
2700 : }
2701 :
2702 0 : assert(endpoint != NULL);
2703 0 : if (endpoint->ctrlr == NULL) {
2704 0 : return;
2705 : }
2706 0 : ctrlr = endpoint->ctrlr;
2707 :
2708 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: map IOVA %p-%p\n", endpoint_id(endpoint),
2709 : map_start, map_end);
2710 :
2711 : /* VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE are enabled when registering to VFIO, here we also
2712 : * check the protection bits before registering. When vfio client and server are run in same process
2713 : * there is no need to register the same memory again.
2714 : */
2715 0 : if (info->prot == (PROT_WRITE | PROT_READ) && !is_peer_same_process(endpoint)) {
2716 0 : ret = spdk_mem_register(info->mapping.iov_base, info->mapping.iov_len);
2717 0 : if (ret) {
2718 0 : SPDK_ERRLOG("Memory region register %p-%p failed, ret=%d\n",
2719 : map_start, map_end, ret);
2720 : }
2721 : }
2722 :
2723 0 : pthread_mutex_lock(&endpoint->lock);
2724 0 : TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
2725 0 : if (sq->sq_state != VFIO_USER_SQ_INACTIVE) {
2726 0 : continue;
2727 : }
2728 :
2729 0 : cq = ctrlr->cqs[sq->cqid];
2730 :
2731 : /* For shared CQ case, we will use q_addr() to avoid mapping CQ multiple times */
2732 0 : if (cq->size && q_addr(&cq->mapping) == NULL) {
2733 0 : ret = map_q(ctrlr, &cq->mapping, MAP_RW | MAP_QUIET);
2734 0 : if (ret) {
2735 0 : SPDK_DEBUGLOG(nvmf_vfio, "Memory isn't ready to remap cqid:%d %#lx-%#lx\n",
2736 : cq->qid, cq->mapping.prp1,
2737 : cq->mapping.prp1 + cq->mapping.len);
2738 0 : continue;
2739 : }
2740 : }
2741 :
2742 0 : if (sq->size) {
2743 0 : ret = map_q(ctrlr, &sq->mapping, MAP_R | MAP_QUIET);
2744 0 : if (ret) {
2745 0 : SPDK_DEBUGLOG(nvmf_vfio, "Memory isn't ready to remap sqid:%d %#lx-%#lx\n",
2746 : sq->qid, sq->mapping.prp1,
2747 : sq->mapping.prp1 + sq->mapping.len);
2748 0 : continue;
2749 : }
2750 : }
2751 0 : sq->sq_state = VFIO_USER_SQ_ACTIVE;
2752 0 : SPDK_DEBUGLOG(nvmf_vfio, "Remap sqid:%u successfully\n", sq->qid);
2753 : }
2754 0 : pthread_mutex_unlock(&endpoint->lock);
2755 : }
2756 :
2757 : static void
2758 0 : memory_region_remove_cb(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
2759 : {
2760 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
2761 : struct nvmf_vfio_user_sq *sq;
2762 : struct nvmf_vfio_user_cq *cq;
2763 : void *map_start, *map_end;
2764 0 : int ret = 0;
2765 :
2766 0 : if (!info->vaddr) {
2767 0 : return;
2768 : }
2769 :
2770 0 : map_start = info->mapping.iov_base;
2771 0 : map_end = info->mapping.iov_base + info->mapping.iov_len;
2772 :
2773 0 : if (((uintptr_t)info->mapping.iov_base & MASK_2MB) ||
2774 0 : (info->mapping.iov_len & MASK_2MB)) {
2775 0 : SPDK_DEBUGLOG(nvmf_vfio, "Invalid memory region vaddr %p, IOVA %p-%p\n",
2776 : info->vaddr, map_start, map_end);
2777 0 : return;
2778 : }
2779 :
2780 0 : assert(endpoint != NULL);
2781 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: unmap IOVA %p-%p\n", endpoint_id(endpoint),
2782 : map_start, map_end);
2783 :
2784 0 : if (endpoint->ctrlr != NULL) {
2785 : struct nvmf_vfio_user_ctrlr *ctrlr;
2786 0 : ctrlr = endpoint->ctrlr;
2787 :
2788 0 : pthread_mutex_lock(&endpoint->lock);
2789 0 : TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
2790 0 : if (q_addr(&sq->mapping) >= map_start && q_addr(&sq->mapping) <= map_end) {
2791 0 : unmap_q(ctrlr, &sq->mapping);
2792 0 : sq->sq_state = VFIO_USER_SQ_INACTIVE;
2793 : }
2794 :
2795 0 : cq = ctrlr->cqs[sq->cqid];
2796 0 : if (q_addr(&cq->mapping) >= map_start && q_addr(&cq->mapping) <= map_end) {
2797 0 : unmap_q(ctrlr, &cq->mapping);
2798 : }
2799 : }
2800 :
2801 0 : if (ctrlr->sdbl != NULL) {
2802 : size_t i;
2803 :
2804 0 : for (i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT; i++) {
2805 0 : const void *const iov_base = ctrlr->sdbl->iovs[i].iov_base;
2806 :
2807 0 : if (iov_base >= map_start && iov_base < map_end) {
2808 0 : copy_doorbells(ctrlr,
2809 0 : ctrlr->sdbl->shadow_doorbells,
2810 : ctrlr->bar0_doorbells);
2811 0 : vfio_user_ctrlr_switch_doorbells(ctrlr, false);
2812 0 : free_sdbl(endpoint->vfu_ctx, ctrlr->sdbl);
2813 0 : ctrlr->sdbl = NULL;
2814 0 : break;
2815 : }
2816 : }
2817 : }
2818 :
2819 0 : pthread_mutex_unlock(&endpoint->lock);
2820 : }
2821 :
2822 0 : if (info->prot == (PROT_WRITE | PROT_READ) && !is_peer_same_process(endpoint)) {
2823 0 : ret = spdk_mem_unregister(info->mapping.iov_base, info->mapping.iov_len);
2824 0 : if (ret) {
2825 0 : SPDK_ERRLOG("Memory region unregister %p-%p failed, ret=%d\n",
2826 : map_start, map_end, ret);
2827 : }
2828 : }
2829 : }
2830 :
2831 : /* Used to initiate a controller-level reset or a controller shutdown. */
2832 : static void
2833 0 : disable_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
2834 : {
2835 0 : SPDK_NOTICELOG("%s: disabling controller\n", ctrlr_id(vu_ctrlr));
2836 :
2837 : /* Unmap Admin queue. */
2838 :
2839 0 : assert(vu_ctrlr->sqs[0] != NULL);
2840 0 : assert(vu_ctrlr->cqs[0] != NULL);
2841 :
2842 0 : unmap_q(vu_ctrlr, &vu_ctrlr->sqs[0]->mapping);
2843 0 : unmap_q(vu_ctrlr, &vu_ctrlr->cqs[0]->mapping);
2844 :
2845 0 : vu_ctrlr->sqs[0]->size = 0;
2846 0 : *sq_headp(vu_ctrlr->sqs[0]) = 0;
2847 :
2848 0 : vu_ctrlr->sqs[0]->sq_state = VFIO_USER_SQ_INACTIVE;
2849 :
2850 0 : vu_ctrlr->cqs[0]->size = 0;
2851 0 : *cq_tailp(vu_ctrlr->cqs[0]) = 0;
2852 :
2853 : /*
2854 : * For PCIe controller reset or shutdown, we will drop all AER
2855 : * responses.
2856 : */
2857 0 : spdk_nvmf_ctrlr_abort_aer(vu_ctrlr->ctrlr);
2858 :
2859 : /* Free the shadow doorbell buffer. */
2860 0 : vfio_user_ctrlr_switch_doorbells(vu_ctrlr, false);
2861 0 : free_sdbl(vu_ctrlr->endpoint->vfu_ctx, vu_ctrlr->sdbl);
2862 0 : vu_ctrlr->sdbl = NULL;
2863 0 : }
2864 :
2865 : /* Used to re-enable the controller after a controller-level reset. */
2866 : static int
2867 0 : enable_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
2868 : {
2869 : int err;
2870 :
2871 0 : assert(vu_ctrlr != NULL);
2872 :
2873 0 : SPDK_NOTICELOG("%s: enabling controller\n", ctrlr_id(vu_ctrlr));
2874 :
2875 0 : err = acq_setup(vu_ctrlr);
2876 0 : if (err != 0) {
2877 0 : return err;
2878 : }
2879 :
2880 0 : err = asq_setup(vu_ctrlr);
2881 0 : if (err != 0) {
2882 0 : return err;
2883 : }
2884 :
2885 0 : vu_ctrlr->sqs[0]->sq_state = VFIO_USER_SQ_ACTIVE;
2886 :
2887 0 : return 0;
2888 : }
2889 :
2890 : static int
2891 0 : nvmf_vfio_user_prop_req_rsp_set(struct nvmf_vfio_user_req *req,
2892 : struct nvmf_vfio_user_sq *sq)
2893 : {
2894 : struct nvmf_vfio_user_ctrlr *vu_ctrlr;
2895 : union spdk_nvme_cc_register cc, diff;
2896 :
2897 0 : assert(req->req.cmd->prop_set_cmd.fctype == SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET);
2898 0 : assert(sq->ctrlr != NULL);
2899 0 : vu_ctrlr = sq->ctrlr;
2900 :
2901 0 : if (req->req.cmd->prop_set_cmd.ofst != offsetof(struct spdk_nvme_registers, cc)) {
2902 0 : return 0;
2903 : }
2904 :
2905 0 : cc.raw = req->req.cmd->prop_set_cmd.value.u64;
2906 0 : diff.raw = cc.raw ^ req->cc.raw;
2907 :
2908 0 : if (diff.bits.en) {
2909 0 : if (cc.bits.en) {
2910 0 : int ret = enable_ctrlr(vu_ctrlr);
2911 0 : if (ret) {
2912 0 : SPDK_ERRLOG("%s: failed to enable ctrlr\n", ctrlr_id(vu_ctrlr));
2913 0 : return ret;
2914 : }
2915 0 : vu_ctrlr->reset_shn = false;
2916 : } else {
2917 0 : vu_ctrlr->reset_shn = true;
2918 : }
2919 : }
2920 :
2921 0 : if (diff.bits.shn) {
2922 0 : if (cc.bits.shn == SPDK_NVME_SHN_NORMAL || cc.bits.shn == SPDK_NVME_SHN_ABRUPT) {
2923 0 : vu_ctrlr->reset_shn = true;
2924 : }
2925 : }
2926 :
2927 0 : if (vu_ctrlr->reset_shn) {
2928 0 : disable_ctrlr(vu_ctrlr);
2929 : }
2930 0 : return 0;
2931 : }
2932 :
2933 : static int
2934 0 : nvmf_vfio_user_prop_req_rsp(struct nvmf_vfio_user_req *req, void *cb_arg)
2935 : {
2936 0 : struct nvmf_vfio_user_sq *sq = cb_arg;
2937 :
2938 0 : assert(sq != NULL);
2939 0 : assert(req != NULL);
2940 :
2941 0 : if (req->req.cmd->prop_get_cmd.fctype == SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET) {
2942 0 : assert(sq->ctrlr != NULL);
2943 0 : assert(req != NULL);
2944 :
2945 0 : memcpy(req->req.iov[0].iov_base,
2946 0 : &req->req.rsp->prop_get_rsp.value.u64,
2947 0 : req->req.length);
2948 0 : return 0;
2949 : }
2950 :
2951 0 : return nvmf_vfio_user_prop_req_rsp_set(req, sq);
2952 : }
2953 :
2954 : /*
2955 : * Handles a write at offset 0x1000 or more; this is the non-mapped path when a
2956 : * doorbell is written via access_bar0_fn().
2957 : *
2958 : * DSTRD is set to fixed value 0 for NVMf.
2959 : *
2960 : */
2961 : static int
2962 0 : handle_dbl_access(struct nvmf_vfio_user_ctrlr *ctrlr, uint32_t *buf,
2963 : const size_t count, loff_t pos, const bool is_write)
2964 : {
2965 : struct nvmf_vfio_user_poll_group *group;
2966 :
2967 0 : assert(ctrlr != NULL);
2968 0 : assert(buf != NULL);
2969 :
2970 0 : if (spdk_unlikely(!is_write)) {
2971 0 : SPDK_WARNLOG("%s: host tried to read BAR0 doorbell %#lx\n",
2972 : ctrlr_id(ctrlr), pos);
2973 0 : errno = EPERM;
2974 0 : return -1;
2975 : }
2976 :
2977 0 : if (spdk_unlikely(count != sizeof(uint32_t))) {
2978 0 : SPDK_ERRLOG("%s: bad doorbell buffer size %ld\n",
2979 : ctrlr_id(ctrlr), count);
2980 0 : errno = EINVAL;
2981 0 : return -1;
2982 : }
2983 :
2984 0 : pos -= NVME_DOORBELLS_OFFSET;
2985 :
2986 : /* pos must be dword aligned */
2987 0 : if (spdk_unlikely((pos & 0x3) != 0)) {
2988 0 : SPDK_ERRLOG("%s: bad doorbell offset %#lx\n", ctrlr_id(ctrlr), pos);
2989 0 : errno = EINVAL;
2990 0 : return -1;
2991 : }
2992 :
2993 : /* convert byte offset to array index */
2994 0 : pos >>= 2;
2995 :
2996 0 : if (spdk_unlikely(pos >= NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR * 2)) {
2997 0 : SPDK_ERRLOG("%s: bad doorbell index %#lx\n", ctrlr_id(ctrlr), pos);
2998 0 : errno = EINVAL;
2999 0 : return -1;
3000 : }
3001 :
3002 0 : ctrlr->bar0_doorbells[pos] = *buf;
3003 0 : spdk_wmb();
3004 :
3005 0 : group = ctrlr_to_poll_group(ctrlr);
3006 0 : if (pos == 1) {
3007 0 : group->stats.cqh_admin_writes++;
3008 0 : } else if (pos & 1) {
3009 0 : group->stats.cqh_io_writes++;
3010 : }
3011 :
3012 0 : SPDK_DEBUGLOG(vfio_user_db, "%s: updating BAR0 doorbell %s:%ld to %u\n",
3013 : ctrlr_id(ctrlr), (pos & 1) ? "cqid" : "sqid",
3014 : pos / 2, *buf);
3015 :
3016 :
3017 0 : return 0;
3018 : }
3019 :
3020 : static size_t
3021 0 : vfio_user_property_access(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
3022 : char *buf, size_t count, loff_t pos,
3023 : bool is_write)
3024 : {
3025 : struct nvmf_vfio_user_req *req;
3026 : const struct spdk_nvmf_registers *regs;
3027 :
3028 0 : if ((count != 4) && (count != 8)) {
3029 0 : errno = EINVAL;
3030 0 : return -1;
3031 : }
3032 :
3033 : /* Construct a Fabric Property Get/Set command and send it */
3034 0 : req = get_nvmf_vfio_user_req(vu_ctrlr->sqs[0]);
3035 0 : if (req == NULL) {
3036 0 : errno = ENOBUFS;
3037 0 : return -1;
3038 : }
3039 0 : regs = spdk_nvmf_ctrlr_get_regs(vu_ctrlr->ctrlr);
3040 0 : req->cc.raw = regs->cc.raw;
3041 :
3042 0 : req->cb_fn = nvmf_vfio_user_prop_req_rsp;
3043 0 : req->cb_arg = vu_ctrlr->sqs[0];
3044 0 : req->req.cmd->prop_set_cmd.opcode = SPDK_NVME_OPC_FABRIC;
3045 0 : req->req.cmd->prop_set_cmd.cid = 0;
3046 0 : if (count == 4) {
3047 0 : req->req.cmd->prop_set_cmd.attrib.size = 0;
3048 : } else {
3049 0 : req->req.cmd->prop_set_cmd.attrib.size = 1;
3050 : }
3051 0 : req->req.cmd->prop_set_cmd.ofst = pos;
3052 0 : if (is_write) {
3053 0 : req->req.cmd->prop_set_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET;
3054 0 : if (req->req.cmd->prop_set_cmd.attrib.size) {
3055 0 : req->req.cmd->prop_set_cmd.value.u64 = *(uint64_t *)buf;
3056 : } else {
3057 0 : req->req.cmd->prop_set_cmd.value.u32.high = 0;
3058 0 : req->req.cmd->prop_set_cmd.value.u32.low = *(uint32_t *)buf;
3059 : }
3060 : } else {
3061 0 : req->req.cmd->prop_get_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET;
3062 : }
3063 0 : req->req.length = count;
3064 0 : SPDK_IOV_ONE(req->req.iov, &req->req.iovcnt, buf, req->req.length);
3065 :
3066 0 : spdk_nvmf_request_exec(&req->req);
3067 :
3068 0 : return count;
3069 : }
3070 :
3071 : static ssize_t
3072 0 : access_bar0_fn(vfu_ctx_t *vfu_ctx, char *buf, size_t count, loff_t pos,
3073 : bool is_write)
3074 : {
3075 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3076 : struct nvmf_vfio_user_ctrlr *ctrlr;
3077 : int ret;
3078 :
3079 0 : ctrlr = endpoint->ctrlr;
3080 0 : if (spdk_unlikely(endpoint->need_async_destroy || !ctrlr)) {
3081 0 : errno = EIO;
3082 0 : return -1;
3083 : }
3084 :
3085 0 : if (pos >= NVME_DOORBELLS_OFFSET) {
3086 : /*
3087 : * The fact that the doorbells can be memory mapped doesn't mean
3088 : * that the client (VFIO in QEMU) is obliged to memory map them,
3089 : * it might still elect to access them via regular read/write;
3090 : * we might also have had disable_mappable_bar0 set.
3091 : */
3092 0 : ret = handle_dbl_access(ctrlr, (uint32_t *)buf, count,
3093 : pos, is_write);
3094 0 : if (ret == 0) {
3095 0 : return count;
3096 : }
3097 0 : return ret;
3098 : }
3099 :
3100 0 : return vfio_user_property_access(ctrlr, buf, count, pos, is_write);
3101 : }
3102 :
3103 : static ssize_t
3104 0 : access_pci_config(vfu_ctx_t *vfu_ctx, char *buf, size_t count, loff_t offset,
3105 : bool is_write)
3106 : {
3107 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3108 :
3109 0 : if (is_write) {
3110 0 : SPDK_ERRLOG("%s: write %#lx-%#lx not supported\n",
3111 : endpoint_id(endpoint), offset, offset + count);
3112 0 : errno = EINVAL;
3113 0 : return -1;
3114 : }
3115 :
3116 0 : if (offset + count > NVME_REG_CFG_SIZE) {
3117 0 : SPDK_ERRLOG("%s: access past end of extended PCI configuration space, want=%ld+%ld, max=%d\n",
3118 : endpoint_id(endpoint), offset, count,
3119 : NVME_REG_CFG_SIZE);
3120 0 : errno = ERANGE;
3121 0 : return -1;
3122 : }
3123 :
3124 0 : memcpy(buf, ((unsigned char *)endpoint->pci_config_space) + offset, count);
3125 :
3126 0 : return count;
3127 : }
3128 :
3129 : static void
3130 0 : vfio_user_log(vfu_ctx_t *vfu_ctx, int level, char const *msg)
3131 : {
3132 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3133 :
3134 0 : if (level >= LOG_DEBUG) {
3135 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: %s\n", endpoint_id(endpoint), msg);
3136 0 : } else if (level >= LOG_INFO) {
3137 0 : SPDK_INFOLOG(nvmf_vfio, "%s: %s\n", endpoint_id(endpoint), msg);
3138 0 : } else if (level >= LOG_NOTICE) {
3139 0 : SPDK_NOTICELOG("%s: %s\n", endpoint_id(endpoint), msg);
3140 0 : } else if (level >= LOG_WARNING) {
3141 0 : SPDK_WARNLOG("%s: %s\n", endpoint_id(endpoint), msg);
3142 : } else {
3143 0 : SPDK_ERRLOG("%s: %s\n", endpoint_id(endpoint), msg);
3144 : }
3145 0 : }
3146 :
3147 : static int
3148 0 : vfio_user_get_log_level(void)
3149 : {
3150 : int level;
3151 :
3152 0 : if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
3153 0 : return LOG_DEBUG;
3154 : }
3155 :
3156 0 : level = spdk_log_to_syslog_level(spdk_log_get_level());
3157 0 : if (level < 0) {
3158 0 : return LOG_ERR;
3159 : }
3160 :
3161 0 : return level;
3162 : }
3163 :
3164 : static void
3165 0 : init_pci_config_space(vfu_pci_config_space_t *p)
3166 : {
3167 : /* MLBAR */
3168 0 : p->hdr.bars[0].raw = 0x0;
3169 : /* MUBAR */
3170 0 : p->hdr.bars[1].raw = 0x0;
3171 :
3172 : /* vendor specific, let's set them to zero for now */
3173 0 : p->hdr.bars[3].raw = 0x0;
3174 0 : p->hdr.bars[4].raw = 0x0;
3175 0 : p->hdr.bars[5].raw = 0x0;
3176 :
3177 : /* enable INTx */
3178 0 : p->hdr.intr.ipin = 0x1;
3179 0 : }
3180 :
3181 : struct ctrlr_quiesce_ctx {
3182 : struct nvmf_vfio_user_endpoint *endpoint;
3183 : struct nvmf_vfio_user_poll_group *group;
3184 : int status;
3185 : };
3186 :
3187 : static void ctrlr_quiesce(struct nvmf_vfio_user_ctrlr *vu_ctrlr);
3188 :
3189 : static void
3190 0 : _vfio_user_endpoint_resume_done_msg(void *ctx)
3191 : {
3192 0 : struct nvmf_vfio_user_endpoint *endpoint = ctx;
3193 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3194 :
3195 0 : endpoint->need_resume = false;
3196 :
3197 0 : if (!vu_ctrlr) {
3198 0 : return;
3199 : }
3200 :
3201 0 : if (!vu_ctrlr->queued_quiesce) {
3202 0 : vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
3203 :
3204 : /*
3205 : * We might have ignored new SQ entries while we were quiesced:
3206 : * kick ourselves so we'll definitely check again while in
3207 : * VFIO_USER_CTRLR_RUNNING state.
3208 : */
3209 0 : if (in_interrupt_mode(endpoint->transport)) {
3210 0 : ctrlr_kick(vu_ctrlr);
3211 : }
3212 0 : return;
3213 : }
3214 :
3215 :
3216 : /*
3217 : * Basically, once we call `vfu_device_quiesced` the device is
3218 : * unquiesced from libvfio-user's perspective so from the moment
3219 : * `vfio_user_quiesce_done` returns libvfio-user might quiesce the device
3220 : * again. However, because the NVMf subsystem is an asynchronous
3221 : * operation, this quiesce might come _before_ the NVMf subsystem has
3222 : * been resumed, so in the callback of `spdk_nvmf_subsystem_resume` we
3223 : * need to check whether a quiesce was requested.
3224 : */
3225 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s has queued quiesce event, quiesce again\n",
3226 : ctrlr_id(vu_ctrlr));
3227 0 : ctrlr_quiesce(vu_ctrlr);
3228 : }
3229 :
3230 : static void
3231 0 : vfio_user_endpoint_resume_done(struct spdk_nvmf_subsystem *subsystem,
3232 : void *cb_arg, int status)
3233 : {
3234 0 : struct nvmf_vfio_user_endpoint *endpoint = cb_arg;
3235 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3236 :
3237 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s resumed done with status %d\n", endpoint_id(endpoint), status);
3238 :
3239 0 : if (!vu_ctrlr) {
3240 0 : return;
3241 : }
3242 :
3243 0 : spdk_thread_send_msg(vu_ctrlr->thread, _vfio_user_endpoint_resume_done_msg, endpoint);
3244 : }
3245 :
3246 : static void
3247 0 : vfio_user_quiesce_done(void *ctx)
3248 : {
3249 0 : struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
3250 0 : struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
3251 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3252 : int ret;
3253 :
3254 0 : if (!vu_ctrlr) {
3255 0 : free(quiesce_ctx);
3256 0 : return;
3257 : }
3258 :
3259 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s device quiesced\n", ctrlr_id(vu_ctrlr));
3260 :
3261 0 : assert(vu_ctrlr->state == VFIO_USER_CTRLR_PAUSING);
3262 0 : vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
3263 0 : vfu_device_quiesced(endpoint->vfu_ctx, quiesce_ctx->status);
3264 0 : vu_ctrlr->queued_quiesce = false;
3265 0 : free(quiesce_ctx);
3266 :
3267 : /* `vfu_device_quiesced` can change the migration state,
3268 : * so we need to re-check `vu_ctrlr->state`.
3269 : */
3270 0 : if (vu_ctrlr->state == VFIO_USER_CTRLR_MIGRATING) {
3271 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s is in MIGRATION state\n", ctrlr_id(vu_ctrlr));
3272 0 : return;
3273 : }
3274 :
3275 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s start to resume\n", ctrlr_id(vu_ctrlr));
3276 0 : vu_ctrlr->state = VFIO_USER_CTRLR_RESUMING;
3277 0 : ret = spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
3278 : vfio_user_endpoint_resume_done, endpoint);
3279 0 : if (ret < 0) {
3280 0 : vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
3281 0 : SPDK_ERRLOG("%s: failed to resume, ret=%d\n", endpoint_id(endpoint), ret);
3282 : }
3283 : }
3284 :
3285 : static void
3286 0 : vfio_user_pause_done(struct spdk_nvmf_subsystem *subsystem,
3287 : void *ctx, int status)
3288 : {
3289 0 : struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
3290 0 : struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
3291 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3292 :
3293 0 : if (!vu_ctrlr) {
3294 0 : free(quiesce_ctx);
3295 0 : return;
3296 : }
3297 :
3298 0 : quiesce_ctx->status = status;
3299 :
3300 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s pause done with status %d\n",
3301 : ctrlr_id(vu_ctrlr), status);
3302 :
3303 0 : spdk_thread_send_msg(vu_ctrlr->thread,
3304 : vfio_user_quiesce_done, ctx);
3305 : }
3306 :
3307 : /*
3308 : * Ensure that, for this PG, we've stopped running in nvmf_vfio_user_sq_poll();
3309 : * we've already set ctrlr->state, so we won't process new entries, but we need
3310 : * to ensure that this PG is quiesced. This only works because there's no
3311 : * callback context set up between polling the SQ and spdk_nvmf_request_exec().
3312 : *
3313 : * Once we've walked all PGs, we need to pause any submitted I/O via
3314 : * spdk_nvmf_subsystem_pause(SPDK_NVME_GLOBAL_NS_TAG).
3315 : */
3316 : static void
3317 0 : vfio_user_quiesce_pg(void *ctx)
3318 : {
3319 0 : struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
3320 0 : struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
3321 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3322 0 : struct nvmf_vfio_user_poll_group *vu_group = quiesce_ctx->group;
3323 0 : struct spdk_nvmf_subsystem *subsystem = endpoint->subsystem;
3324 : int ret;
3325 :
3326 0 : SPDK_DEBUGLOG(nvmf_vfio, "quiesced pg:%p\n", vu_group);
3327 :
3328 0 : if (!vu_ctrlr) {
3329 0 : free(quiesce_ctx);
3330 0 : return;
3331 : }
3332 :
3333 0 : quiesce_ctx->group = TAILQ_NEXT(vu_group, link);
3334 0 : if (quiesce_ctx->group != NULL) {
3335 0 : spdk_thread_send_msg(poll_group_to_thread(quiesce_ctx->group),
3336 : vfio_user_quiesce_pg, quiesce_ctx);
3337 0 : return;
3338 : }
3339 :
3340 0 : ret = spdk_nvmf_subsystem_pause(subsystem, SPDK_NVME_GLOBAL_NS_TAG,
3341 : vfio_user_pause_done, quiesce_ctx);
3342 0 : if (ret < 0) {
3343 0 : SPDK_ERRLOG("%s: failed to pause, ret=%d\n",
3344 : endpoint_id(endpoint), ret);
3345 0 : vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
3346 0 : fail_ctrlr(vu_ctrlr);
3347 0 : free(quiesce_ctx);
3348 : }
3349 : }
3350 :
3351 : static void
3352 0 : ctrlr_quiesce(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3353 : {
3354 : struct ctrlr_quiesce_ctx *quiesce_ctx;
3355 :
3356 0 : vu_ctrlr->state = VFIO_USER_CTRLR_PAUSING;
3357 :
3358 0 : quiesce_ctx = calloc(1, sizeof(*quiesce_ctx));
3359 0 : if (!quiesce_ctx) {
3360 0 : SPDK_ERRLOG("Failed to allocate subsystem pause context\n");
3361 0 : assert(false);
3362 : return;
3363 : }
3364 :
3365 0 : quiesce_ctx->endpoint = vu_ctrlr->endpoint;
3366 0 : quiesce_ctx->status = 0;
3367 0 : quiesce_ctx->group = TAILQ_FIRST(&vu_ctrlr->transport->poll_groups);
3368 :
3369 0 : spdk_thread_send_msg(poll_group_to_thread(quiesce_ctx->group),
3370 : vfio_user_quiesce_pg, quiesce_ctx);
3371 : }
3372 :
3373 : static int
3374 0 : vfio_user_dev_quiesce_cb(vfu_ctx_t *vfu_ctx)
3375 : {
3376 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3377 0 : struct spdk_nvmf_subsystem *subsystem = endpoint->subsystem;
3378 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3379 :
3380 0 : if (!vu_ctrlr) {
3381 0 : return 0;
3382 : }
3383 :
3384 : /* NVMf library will destruct controller when no
3385 : * connected queue pairs.
3386 : */
3387 0 : if (!nvmf_subsystem_get_ctrlr(subsystem, vu_ctrlr->cntlid)) {
3388 0 : return 0;
3389 : }
3390 :
3391 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s starts to quiesce\n", ctrlr_id(vu_ctrlr));
3392 :
3393 : /* There is no race condition here as device quiesce callback
3394 : * and nvmf_prop_set_cc() are running in the same thread context.
3395 : */
3396 0 : if (!vu_ctrlr->ctrlr->vcprop.cc.bits.en) {
3397 0 : return 0;
3398 0 : } else if (!vu_ctrlr->ctrlr->vcprop.csts.bits.rdy) {
3399 0 : return 0;
3400 0 : } else if (vu_ctrlr->ctrlr->vcprop.csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
3401 0 : return 0;
3402 : }
3403 :
3404 0 : switch (vu_ctrlr->state) {
3405 0 : case VFIO_USER_CTRLR_PAUSED:
3406 : case VFIO_USER_CTRLR_MIGRATING:
3407 0 : return 0;
3408 0 : case VFIO_USER_CTRLR_RUNNING:
3409 0 : ctrlr_quiesce(vu_ctrlr);
3410 0 : break;
3411 0 : case VFIO_USER_CTRLR_RESUMING:
3412 0 : vu_ctrlr->queued_quiesce = true;
3413 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s is busy to quiesce, current state %u\n", ctrlr_id(vu_ctrlr),
3414 : vu_ctrlr->state);
3415 0 : break;
3416 0 : default:
3417 0 : assert(vu_ctrlr->state != VFIO_USER_CTRLR_PAUSING);
3418 0 : break;
3419 : }
3420 :
3421 0 : errno = EBUSY;
3422 0 : return -1;
3423 : }
3424 :
3425 : static void
3426 0 : vfio_user_ctrlr_dump_migr_data(const char *name,
3427 : struct vfio_user_nvme_migr_state *migr_data,
3428 : struct nvmf_vfio_user_shadow_doorbells *sdbl)
3429 : {
3430 : struct spdk_nvmf_registers *regs;
3431 : struct nvme_migr_sq_state *sq;
3432 : struct nvme_migr_cq_state *cq;
3433 : uint32_t *doorbell_base;
3434 : uint32_t i;
3435 :
3436 0 : SPDK_NOTICELOG("Dump %s\n", name);
3437 :
3438 0 : regs = &migr_data->nvmf_data.regs;
3439 0 : doorbell_base = (uint32_t *)&migr_data->doorbells;
3440 :
3441 0 : SPDK_NOTICELOG("Registers\n");
3442 0 : SPDK_NOTICELOG("CSTS 0x%x\n", regs->csts.raw);
3443 0 : SPDK_NOTICELOG("CAP 0x%"PRIx64"\n", regs->cap.raw);
3444 0 : SPDK_NOTICELOG("VS 0x%x\n", regs->vs.raw);
3445 0 : SPDK_NOTICELOG("CC 0x%x\n", regs->cc.raw);
3446 0 : SPDK_NOTICELOG("AQA 0x%x\n", regs->aqa.raw);
3447 0 : SPDK_NOTICELOG("ASQ 0x%"PRIx64"\n", regs->asq);
3448 0 : SPDK_NOTICELOG("ACQ 0x%"PRIx64"\n", regs->acq);
3449 :
3450 0 : SPDK_NOTICELOG("Number of IO Queues %u\n", migr_data->ctrlr_header.num_io_queues);
3451 :
3452 0 : if (sdbl != NULL) {
3453 0 : SPDK_NOTICELOG("shadow doorbell buffer=%#lx\n",
3454 : migr_data->ctrlr_header.shadow_doorbell_buffer);
3455 0 : SPDK_NOTICELOG("eventidx buffer=%#lx\n",
3456 : migr_data->ctrlr_header.eventidx_buffer);
3457 : }
3458 :
3459 0 : for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3460 0 : sq = &migr_data->qps[i].sq;
3461 0 : cq = &migr_data->qps[i].cq;
3462 :
3463 0 : if (sq->size) {
3464 0 : SPDK_NOTICELOG("sqid:%u, bar0_doorbell:%u\n", sq->sqid, doorbell_base[i * 2]);
3465 0 : if (i > 0 && sdbl != NULL) {
3466 0 : SPDK_NOTICELOG("sqid:%u, shadow_doorbell:%u, eventidx:%u\n",
3467 : sq->sqid,
3468 : sdbl->shadow_doorbells[queue_index(i, false)],
3469 : sdbl->eventidxs[queue_index(i, false)]);
3470 : }
3471 0 : SPDK_NOTICELOG("SQ sqid:%u, cqid:%u, sqhead:%u, size:%u, dma_addr:0x%"PRIx64"\n",
3472 : sq->sqid, sq->cqid, sq->head, sq->size, sq->dma_addr);
3473 : }
3474 :
3475 0 : if (cq->size) {
3476 0 : SPDK_NOTICELOG("cqid:%u, bar0_doorbell:%u\n", cq->cqid, doorbell_base[i * 2 + 1]);
3477 0 : if (i > 0 && sdbl != NULL) {
3478 0 : SPDK_NOTICELOG("cqid:%u, shadow_doorbell:%u, eventidx:%u\n",
3479 : cq->cqid,
3480 : sdbl->shadow_doorbells[queue_index(i, true)],
3481 : sdbl->eventidxs[queue_index(i, true)]);
3482 : }
3483 0 : SPDK_NOTICELOG("CQ cqid:%u, phase:%u, cqtail:%u, size:%u, iv:%u, ien:%u, dma_addr:0x%"PRIx64"\n",
3484 : cq->cqid, cq->phase, cq->tail, cq->size, cq->iv, cq->ien, cq->dma_addr);
3485 : }
3486 : }
3487 :
3488 0 : SPDK_NOTICELOG("%s Dump Done\n", name);
3489 0 : }
3490 :
3491 : /* Read region 9 content and restore it to migration data structures */
3492 : static int
3493 0 : vfio_user_migr_stream_to_data(struct nvmf_vfio_user_endpoint *endpoint,
3494 : struct vfio_user_nvme_migr_state *migr_state)
3495 : {
3496 0 : void *data_ptr = endpoint->migr_data;
3497 :
3498 : /* Load vfio_user_nvme_migr_header first */
3499 0 : memcpy(&migr_state->ctrlr_header, data_ptr, sizeof(struct vfio_user_nvme_migr_header));
3500 : /* TODO: version check */
3501 0 : if (migr_state->ctrlr_header.magic != VFIO_USER_NVME_MIGR_MAGIC) {
3502 0 : SPDK_ERRLOG("%s: bad magic number %x\n", endpoint_id(endpoint), migr_state->ctrlr_header.magic);
3503 0 : return -EINVAL;
3504 : }
3505 :
3506 : /* Load nvmf controller data */
3507 0 : data_ptr = endpoint->migr_data + migr_state->ctrlr_header.nvmf_data_offset;
3508 0 : memcpy(&migr_state->nvmf_data, data_ptr, migr_state->ctrlr_header.nvmf_data_len);
3509 :
3510 : /* Load queue pairs */
3511 0 : data_ptr = endpoint->migr_data + migr_state->ctrlr_header.qp_offset;
3512 0 : memcpy(&migr_state->qps, data_ptr, migr_state->ctrlr_header.qp_len);
3513 :
3514 : /* Load doorbells */
3515 0 : data_ptr = endpoint->migr_data + migr_state->ctrlr_header.bar_offset[VFU_PCI_DEV_BAR0_REGION_IDX];
3516 0 : memcpy(&migr_state->doorbells, data_ptr,
3517 : migr_state->ctrlr_header.bar_len[VFU_PCI_DEV_BAR0_REGION_IDX]);
3518 :
3519 : /* Load CFG */
3520 0 : data_ptr = endpoint->migr_data + migr_state->ctrlr_header.bar_offset[VFU_PCI_DEV_CFG_REGION_IDX];
3521 0 : memcpy(&migr_state->cfg, data_ptr, migr_state->ctrlr_header.bar_len[VFU_PCI_DEV_CFG_REGION_IDX]);
3522 :
3523 0 : return 0;
3524 : }
3525 :
3526 :
3527 : static void
3528 0 : vfio_user_migr_ctrlr_save_data(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3529 : {
3530 0 : struct spdk_nvmf_ctrlr *ctrlr = vu_ctrlr->ctrlr;
3531 0 : struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
3532 : struct nvmf_vfio_user_sq *sq;
3533 : struct nvmf_vfio_user_cq *cq;
3534 : uint64_t data_offset;
3535 : void *data_ptr;
3536 : uint32_t *doorbell_base;
3537 0 : uint32_t i = 0;
3538 : uint16_t sqid, cqid;
3539 0 : struct vfio_user_nvme_migr_state migr_state = {
3540 : .nvmf_data = {
3541 : .data_size = offsetof(struct spdk_nvmf_ctrlr_migr_data, unused),
3542 : .regs_size = sizeof(struct spdk_nvmf_registers),
3543 : .feat_size = sizeof(struct spdk_nvmf_ctrlr_feat)
3544 : }
3545 : };
3546 :
3547 : /* Save all data to vfio_user_nvme_migr_state first, then we will
3548 : * copy it to device migration region at last.
3549 : */
3550 :
3551 : /* save magic number */
3552 0 : migr_state.ctrlr_header.magic = VFIO_USER_NVME_MIGR_MAGIC;
3553 :
3554 : /* save controller data */
3555 0 : spdk_nvmf_ctrlr_save_migr_data(ctrlr, &migr_state.nvmf_data);
3556 :
3557 : /* save connected queue pairs */
3558 0 : TAILQ_FOREACH(sq, &vu_ctrlr->connected_sqs, tailq) {
3559 : /* save sq */
3560 0 : sqid = sq->qid;
3561 0 : migr_state.qps[sqid].sq.sqid = sq->qid;
3562 0 : migr_state.qps[sqid].sq.cqid = sq->cqid;
3563 0 : migr_state.qps[sqid].sq.head = *sq_headp(sq);
3564 0 : migr_state.qps[sqid].sq.size = sq->size;
3565 0 : migr_state.qps[sqid].sq.dma_addr = sq->mapping.prp1;
3566 :
3567 : /* save cq, for shared cq case, cq may be saved multiple times */
3568 0 : cqid = sq->cqid;
3569 0 : cq = vu_ctrlr->cqs[cqid];
3570 0 : migr_state.qps[cqid].cq.cqid = cqid;
3571 0 : migr_state.qps[cqid].cq.tail = *cq_tailp(cq);
3572 0 : migr_state.qps[cqid].cq.ien = cq->ien;
3573 0 : migr_state.qps[cqid].cq.iv = cq->iv;
3574 0 : migr_state.qps[cqid].cq.size = cq->size;
3575 0 : migr_state.qps[cqid].cq.phase = cq->phase;
3576 0 : migr_state.qps[cqid].cq.dma_addr = cq->mapping.prp1;
3577 0 : i++;
3578 : }
3579 :
3580 0 : assert(i > 0);
3581 0 : migr_state.ctrlr_header.num_io_queues = i - 1;
3582 :
3583 : /* Save doorbells */
3584 0 : doorbell_base = (uint32_t *)&migr_state.doorbells;
3585 0 : memcpy(doorbell_base, (void *)vu_ctrlr->bar0_doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
3586 :
3587 : /* Save PCI configuration space */
3588 0 : memcpy(&migr_state.cfg, (void *)endpoint->pci_config_space, NVME_REG_CFG_SIZE);
3589 :
3590 : /* Save all data to device migration region */
3591 0 : data_ptr = endpoint->migr_data;
3592 :
3593 : /* Copy nvmf controller data */
3594 0 : data_offset = sizeof(struct vfio_user_nvme_migr_header);
3595 0 : data_ptr += data_offset;
3596 0 : migr_state.ctrlr_header.nvmf_data_offset = data_offset;
3597 0 : migr_state.ctrlr_header.nvmf_data_len = sizeof(struct spdk_nvmf_ctrlr_migr_data);
3598 0 : memcpy(data_ptr, &migr_state.nvmf_data, sizeof(struct spdk_nvmf_ctrlr_migr_data));
3599 :
3600 : /* Copy queue pairs */
3601 0 : data_offset += sizeof(struct spdk_nvmf_ctrlr_migr_data);
3602 0 : data_ptr += sizeof(struct spdk_nvmf_ctrlr_migr_data);
3603 0 : migr_state.ctrlr_header.qp_offset = data_offset;
3604 0 : migr_state.ctrlr_header.qp_len = i * (sizeof(struct nvme_migr_sq_state) + sizeof(
3605 : struct nvme_migr_cq_state));
3606 0 : memcpy(data_ptr, &migr_state.qps, migr_state.ctrlr_header.qp_len);
3607 :
3608 : /* Copy doorbells */
3609 0 : data_offset += migr_state.ctrlr_header.qp_len;
3610 0 : data_ptr += migr_state.ctrlr_header.qp_len;
3611 0 : migr_state.ctrlr_header.bar_offset[VFU_PCI_DEV_BAR0_REGION_IDX] = data_offset;
3612 0 : migr_state.ctrlr_header.bar_len[VFU_PCI_DEV_BAR0_REGION_IDX] = NVMF_VFIO_USER_DOORBELLS_SIZE;
3613 0 : memcpy(data_ptr, &migr_state.doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
3614 :
3615 : /* Copy CFG */
3616 0 : data_offset += NVMF_VFIO_USER_DOORBELLS_SIZE;
3617 0 : data_ptr += NVMF_VFIO_USER_DOORBELLS_SIZE;
3618 0 : migr_state.ctrlr_header.bar_offset[VFU_PCI_DEV_CFG_REGION_IDX] = data_offset;
3619 0 : migr_state.ctrlr_header.bar_len[VFU_PCI_DEV_CFG_REGION_IDX] = NVME_REG_CFG_SIZE;
3620 0 : memcpy(data_ptr, &migr_state.cfg, NVME_REG_CFG_SIZE);
3621 :
3622 : /* copy shadow doorbells */
3623 0 : if (vu_ctrlr->sdbl != NULL) {
3624 0 : migr_state.ctrlr_header.sdbl = true;
3625 0 : migr_state.ctrlr_header.shadow_doorbell_buffer = vu_ctrlr->shadow_doorbell_buffer;
3626 0 : migr_state.ctrlr_header.eventidx_buffer = vu_ctrlr->eventidx_buffer;
3627 : }
3628 :
3629 : /* Copy nvme migration header finally */
3630 0 : memcpy(endpoint->migr_data, &migr_state.ctrlr_header, sizeof(struct vfio_user_nvme_migr_header));
3631 :
3632 0 : if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
3633 0 : vfio_user_ctrlr_dump_migr_data("SAVE", &migr_state, vu_ctrlr->sdbl);
3634 : }
3635 0 : }
3636 :
3637 : /*
3638 : * If we are about to close the connection, we need to unregister the interrupt,
3639 : * as the library will subsequently close the file descriptor we registered.
3640 : */
3641 : static int
3642 0 : vfio_user_device_reset(vfu_ctx_t *vfu_ctx, vfu_reset_type_t type)
3643 : {
3644 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3645 0 : struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
3646 :
3647 0 : SPDK_DEBUGLOG(nvmf_vfio, "Device reset type %u\n", type);
3648 :
3649 0 : if (type == VFU_RESET_LOST_CONN) {
3650 0 : if (ctrlr != NULL) {
3651 0 : spdk_interrupt_unregister(&ctrlr->intr);
3652 0 : ctrlr->intr_fd = -1;
3653 : }
3654 0 : return 0;
3655 : }
3656 :
3657 : /* FIXME: LOST_CONN case ? */
3658 0 : if (ctrlr->sdbl != NULL) {
3659 0 : vfio_user_ctrlr_switch_doorbells(ctrlr, false);
3660 0 : free_sdbl(vfu_ctx, ctrlr->sdbl);
3661 0 : ctrlr->sdbl = NULL;
3662 : }
3663 :
3664 : /* FIXME: much more needed here. */
3665 :
3666 0 : return 0;
3667 : }
3668 :
3669 : static int
3670 0 : vfio_user_migr_ctrlr_construct_qps(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
3671 : struct vfio_user_nvme_migr_state *migr_state)
3672 : {
3673 0 : uint32_t i, qsize = 0;
3674 : uint16_t sqid, cqid;
3675 : struct vfio_user_nvme_migr_qp migr_qp;
3676 : void *addr;
3677 0 : uint32_t cqs_ref[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR] = {};
3678 : int ret;
3679 :
3680 0 : if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
3681 0 : vfio_user_ctrlr_dump_migr_data("RESUME", migr_state, vu_ctrlr->sdbl);
3682 : }
3683 :
3684 : /* restore submission queues */
3685 0 : for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3686 0 : migr_qp = migr_state->qps[i];
3687 :
3688 0 : qsize = migr_qp.sq.size;
3689 0 : if (qsize) {
3690 : struct nvmf_vfio_user_sq *sq;
3691 :
3692 0 : sqid = migr_qp.sq.sqid;
3693 0 : if (sqid != i) {
3694 0 : SPDK_ERRLOG("Expected sqid %u while got %u", i, sqid);
3695 0 : return -EINVAL;
3696 : }
3697 :
3698 : /* allocate sq if necessary */
3699 0 : if (vu_ctrlr->sqs[sqid] == NULL) {
3700 0 : ret = init_sq(vu_ctrlr, &vu_ctrlr->transport->transport, sqid);
3701 0 : if (ret) {
3702 0 : SPDK_ERRLOG("Construct qpair with qid %u failed\n", sqid);
3703 0 : return -EFAULT;
3704 : }
3705 : }
3706 :
3707 0 : sq = vu_ctrlr->sqs[sqid];
3708 0 : sq->size = qsize;
3709 :
3710 0 : ret = alloc_sq_reqs(vu_ctrlr, sq);
3711 0 : if (ret) {
3712 0 : SPDK_ERRLOG("Construct sq with qid %u failed\n", sqid);
3713 0 : return -EFAULT;
3714 : }
3715 :
3716 : /* restore sq */
3717 0 : sq->sq_state = VFIO_USER_SQ_CREATED;
3718 0 : sq->cqid = migr_qp.sq.cqid;
3719 0 : *sq_headp(sq) = migr_qp.sq.head;
3720 0 : sq->mapping.prp1 = migr_qp.sq.dma_addr;
3721 0 : sq->mapping.len = sq->size * sizeof(struct spdk_nvme_cmd);
3722 0 : addr = map_one(vu_ctrlr->endpoint->vfu_ctx,
3723 : sq->mapping.prp1, sq->mapping.len,
3724 : sq->mapping.sg, &sq->mapping.iov,
3725 : PROT_READ);
3726 0 : if (addr == NULL) {
3727 0 : SPDK_ERRLOG("Restore sq with qid %u PRP1 0x%"PRIx64" with size %u failed\n",
3728 : sqid, sq->mapping.prp1, sq->size);
3729 0 : return -EFAULT;
3730 : }
3731 0 : cqs_ref[sq->cqid]++;
3732 : }
3733 : }
3734 :
3735 : /* restore completion queues */
3736 0 : for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3737 0 : migr_qp = migr_state->qps[i];
3738 :
3739 0 : qsize = migr_qp.cq.size;
3740 0 : if (qsize) {
3741 : struct nvmf_vfio_user_cq *cq;
3742 :
3743 : /* restore cq */
3744 0 : cqid = migr_qp.sq.cqid;
3745 0 : assert(cqid == i);
3746 :
3747 : /* allocate cq if necessary */
3748 0 : if (vu_ctrlr->cqs[cqid] == NULL) {
3749 0 : ret = init_cq(vu_ctrlr, cqid);
3750 0 : if (ret) {
3751 0 : SPDK_ERRLOG("Construct qpair with qid %u failed\n", cqid);
3752 0 : return -EFAULT;
3753 : }
3754 : }
3755 :
3756 0 : cq = vu_ctrlr->cqs[cqid];
3757 :
3758 0 : cq->size = qsize;
3759 :
3760 0 : cq->cq_state = VFIO_USER_CQ_CREATED;
3761 0 : cq->cq_ref = cqs_ref[cqid];
3762 0 : *cq_tailp(cq) = migr_qp.cq.tail;
3763 0 : cq->mapping.prp1 = migr_qp.cq.dma_addr;
3764 0 : cq->mapping.len = cq->size * sizeof(struct spdk_nvme_cpl);
3765 0 : cq->ien = migr_qp.cq.ien;
3766 0 : cq->iv = migr_qp.cq.iv;
3767 0 : cq->phase = migr_qp.cq.phase;
3768 0 : addr = map_one(vu_ctrlr->endpoint->vfu_ctx,
3769 : cq->mapping.prp1, cq->mapping.len,
3770 : cq->mapping.sg, &cq->mapping.iov,
3771 : PROT_READ | PROT_WRITE);
3772 0 : if (addr == NULL) {
3773 0 : SPDK_ERRLOG("Restore cq with qid %u PRP1 0x%"PRIx64" with size %u failed\n",
3774 : cqid, cq->mapping.prp1, cq->size);
3775 0 : return -EFAULT;
3776 : }
3777 : }
3778 : }
3779 :
3780 0 : return 0;
3781 : }
3782 :
3783 : static int
3784 0 : vfio_user_migr_ctrlr_restore(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3785 : {
3786 0 : struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
3787 0 : struct spdk_nvmf_ctrlr *ctrlr = vu_ctrlr->ctrlr;
3788 : uint32_t *doorbell_base;
3789 : struct spdk_nvme_cmd cmd;
3790 : uint16_t i;
3791 0 : int rc = 0;
3792 0 : struct vfio_user_nvme_migr_state migr_state = {
3793 : .nvmf_data = {
3794 : .data_size = offsetof(struct spdk_nvmf_ctrlr_migr_data, unused),
3795 : .regs_size = sizeof(struct spdk_nvmf_registers),
3796 : .feat_size = sizeof(struct spdk_nvmf_ctrlr_feat)
3797 : }
3798 : };
3799 :
3800 0 : assert(endpoint->migr_data != NULL);
3801 0 : assert(ctrlr != NULL);
3802 0 : rc = vfio_user_migr_stream_to_data(endpoint, &migr_state);
3803 0 : if (rc) {
3804 0 : return rc;
3805 : }
3806 :
3807 : /* restore shadow doorbells */
3808 0 : if (migr_state.ctrlr_header.sdbl) {
3809 : struct nvmf_vfio_user_shadow_doorbells *sdbl;
3810 0 : sdbl = map_sdbl(vu_ctrlr->endpoint->vfu_ctx,
3811 : migr_state.ctrlr_header.shadow_doorbell_buffer,
3812 : migr_state.ctrlr_header.eventidx_buffer,
3813 : memory_page_size(vu_ctrlr));
3814 0 : if (sdbl == NULL) {
3815 0 : SPDK_ERRLOG("%s: failed to re-map shadow doorbell buffers\n",
3816 : ctrlr_id(vu_ctrlr));
3817 0 : return -1;
3818 : }
3819 :
3820 0 : vu_ctrlr->shadow_doorbell_buffer = migr_state.ctrlr_header.shadow_doorbell_buffer;
3821 0 : vu_ctrlr->eventidx_buffer = migr_state.ctrlr_header.eventidx_buffer;
3822 :
3823 0 : SWAP(vu_ctrlr->sdbl, sdbl);
3824 : }
3825 :
3826 0 : rc = vfio_user_migr_ctrlr_construct_qps(vu_ctrlr, &migr_state);
3827 0 : if (rc) {
3828 0 : return rc;
3829 : }
3830 :
3831 : /* restore PCI configuration space */
3832 0 : memcpy((void *)endpoint->pci_config_space, &migr_state.cfg, NVME_REG_CFG_SIZE);
3833 :
3834 0 : doorbell_base = (uint32_t *)&migr_state.doorbells;
3835 : /* restore doorbells from saved registers */
3836 0 : memcpy((void *)vu_ctrlr->bar0_doorbells, doorbell_base, NVMF_VFIO_USER_DOORBELLS_SIZE);
3837 :
3838 : /* restore nvmf controller data */
3839 0 : rc = spdk_nvmf_ctrlr_restore_migr_data(ctrlr, &migr_state.nvmf_data);
3840 0 : if (rc) {
3841 0 : return rc;
3842 : }
3843 :
3844 : /* resubmit pending AERs */
3845 0 : for (i = 0; i < migr_state.nvmf_data.num_aer_cids; i++) {
3846 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s AER resubmit, CID %u\n", ctrlr_id(vu_ctrlr),
3847 : migr_state.nvmf_data.aer_cids[i]);
3848 0 : memset(&cmd, 0, sizeof(cmd));
3849 0 : cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3850 0 : cmd.cid = migr_state.nvmf_data.aer_cids[i];
3851 0 : rc = handle_cmd_req(vu_ctrlr, &cmd, vu_ctrlr->sqs[0]);
3852 0 : if (spdk_unlikely(rc)) {
3853 0 : break;
3854 : }
3855 : }
3856 :
3857 0 : return rc;
3858 : }
3859 :
3860 : static void
3861 0 : vfio_user_migr_ctrlr_enable_sqs(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3862 : {
3863 : uint32_t i;
3864 : struct nvmf_vfio_user_sq *sq;
3865 :
3866 : /* The Admin queue (qid: 0) does not ever use shadow doorbells. */
3867 :
3868 0 : if (vu_ctrlr->sqs[0] != NULL) {
3869 0 : vu_ctrlr->sqs[0]->dbl_tailp = vu_ctrlr->bar0_doorbells +
3870 0 : queue_index(0, false);
3871 : }
3872 :
3873 0 : if (vu_ctrlr->cqs[0] != NULL) {
3874 0 : vu_ctrlr->cqs[0]->dbl_headp = vu_ctrlr->bar0_doorbells +
3875 0 : queue_index(0, true);
3876 : }
3877 :
3878 0 : vfio_user_ctrlr_switch_doorbells(vu_ctrlr, vu_ctrlr->sdbl != NULL);
3879 :
3880 0 : for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3881 0 : sq = vu_ctrlr->sqs[i];
3882 0 : if (!sq || !sq->size) {
3883 0 : continue;
3884 : }
3885 :
3886 0 : if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
3887 : /* ADMIN queue pair is always in the poll group, just enable it */
3888 0 : sq->sq_state = VFIO_USER_SQ_ACTIVE;
3889 : } else {
3890 0 : spdk_nvmf_tgt_new_qpair(vu_ctrlr->transport->transport.tgt, &sq->qpair);
3891 : }
3892 : }
3893 0 : }
3894 :
3895 : /*
3896 : * We are in stop-and-copy state, but still potentially have some current dirty
3897 : * sgls: while we're quiesced and thus should have no active requests, we still
3898 : * have potentially dirty maps of the shadow doorbells and the CQs (SQs are
3899 : * mapped read only).
3900 : *
3901 : * Since we won't be calling vfu_sgl_put() for them, we need to explicitly
3902 : * mark them dirty now.
3903 : */
3904 : static void
3905 0 : vfio_user_migr_ctrlr_mark_dirty(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3906 : {
3907 0 : struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
3908 :
3909 0 : assert(vu_ctrlr->state == VFIO_USER_CTRLR_MIGRATING);
3910 :
3911 0 : for (size_t i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3912 0 : struct nvmf_vfio_user_cq *cq = vu_ctrlr->cqs[i];
3913 :
3914 0 : if (cq == NULL || q_addr(&cq->mapping) == NULL) {
3915 0 : continue;
3916 : }
3917 :
3918 0 : vfu_sgl_mark_dirty(endpoint->vfu_ctx, cq->mapping.sg, 1);
3919 : }
3920 :
3921 0 : if (vu_ctrlr->sdbl != NULL) {
3922 : dma_sg_t *sg;
3923 : size_t i;
3924 :
3925 0 : for (i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT;
3926 0 : ++i) {
3927 :
3928 0 : if (!vu_ctrlr->sdbl->iovs[i].iov_len) {
3929 0 : continue;
3930 : }
3931 :
3932 0 : sg = index_to_sg_t(vu_ctrlr->sdbl->sgs, i);
3933 :
3934 0 : vfu_sgl_mark_dirty(endpoint->vfu_ctx, sg, 1);
3935 : }
3936 : }
3937 0 : }
3938 :
3939 : static int
3940 0 : vfio_user_migration_device_state_transition(vfu_ctx_t *vfu_ctx, vfu_migr_state_t state)
3941 : {
3942 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3943 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3944 : struct nvmf_vfio_user_sq *sq;
3945 0 : int ret = 0;
3946 :
3947 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s controller state %u, migration state %u\n", endpoint_id(endpoint),
3948 : vu_ctrlr->state, state);
3949 :
3950 0 : switch (state) {
3951 0 : case VFU_MIGR_STATE_STOP_AND_COPY:
3952 0 : vu_ctrlr->in_source_vm = true;
3953 0 : vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
3954 0 : vfio_user_migr_ctrlr_mark_dirty(vu_ctrlr);
3955 0 : vfio_user_migr_ctrlr_save_data(vu_ctrlr);
3956 0 : break;
3957 0 : case VFU_MIGR_STATE_STOP:
3958 0 : vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
3959 : /* The controller associates with source VM is dead now, we will resume
3960 : * the subsystem after destroying the controller data structure, then the
3961 : * subsystem can be re-used for another new client.
3962 : */
3963 0 : if (vu_ctrlr->in_source_vm) {
3964 0 : endpoint->need_resume = true;
3965 : }
3966 0 : break;
3967 0 : case VFU_MIGR_STATE_PRE_COPY:
3968 0 : assert(vu_ctrlr->state == VFIO_USER_CTRLR_PAUSED);
3969 0 : break;
3970 0 : case VFU_MIGR_STATE_RESUME:
3971 : /*
3972 : * Destination ADMIN queue pair is connected when starting the VM,
3973 : * but the ADMIN queue pair isn't enabled in destination VM, the poll
3974 : * group will do nothing to ADMIN queue pair for now.
3975 : */
3976 0 : if (vu_ctrlr->state != VFIO_USER_CTRLR_RUNNING) {
3977 0 : break;
3978 : }
3979 :
3980 0 : assert(!vu_ctrlr->in_source_vm);
3981 0 : vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
3982 :
3983 0 : sq = TAILQ_FIRST(&vu_ctrlr->connected_sqs);
3984 0 : assert(sq != NULL);
3985 0 : assert(sq->qpair.qid == 0);
3986 0 : sq->sq_state = VFIO_USER_SQ_INACTIVE;
3987 :
3988 : /* Free ADMIN SQ resources first, SQ resources will be
3989 : * allocated based on queue size from source VM.
3990 : */
3991 0 : free_sq_reqs(sq);
3992 0 : sq->size = 0;
3993 0 : break;
3994 0 : case VFU_MIGR_STATE_RUNNING:
3995 :
3996 0 : if (vu_ctrlr->state != VFIO_USER_CTRLR_MIGRATING) {
3997 0 : break;
3998 : }
3999 :
4000 0 : if (!vu_ctrlr->in_source_vm) {
4001 : /* Restore destination VM from BAR9 */
4002 0 : ret = vfio_user_migr_ctrlr_restore(vu_ctrlr);
4003 0 : if (ret) {
4004 0 : break;
4005 : }
4006 :
4007 0 : vfio_user_ctrlr_switch_doorbells(vu_ctrlr, false);
4008 0 : vfio_user_migr_ctrlr_enable_sqs(vu_ctrlr);
4009 0 : vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
4010 : /* FIXME where do we resume nvmf? */
4011 : } else {
4012 : /* Rollback source VM */
4013 0 : vu_ctrlr->state = VFIO_USER_CTRLR_RESUMING;
4014 0 : ret = spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
4015 : vfio_user_endpoint_resume_done, endpoint);
4016 0 : if (ret < 0) {
4017 : /* TODO: fail controller with CFS bit set */
4018 0 : vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
4019 0 : SPDK_ERRLOG("%s: failed to resume, ret=%d\n", endpoint_id(endpoint), ret);
4020 : }
4021 : }
4022 0 : vu_ctrlr->migr_data_prepared = false;
4023 0 : vu_ctrlr->in_source_vm = false;
4024 0 : break;
4025 :
4026 0 : default:
4027 0 : return -EINVAL;
4028 : }
4029 :
4030 0 : return ret;
4031 : }
4032 :
4033 : static uint64_t
4034 0 : vfio_user_migration_get_pending_bytes(vfu_ctx_t *vfu_ctx)
4035 : {
4036 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
4037 0 : struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
4038 : uint64_t pending_bytes;
4039 :
4040 0 : if (ctrlr->migr_data_prepared) {
4041 0 : assert(ctrlr->state == VFIO_USER_CTRLR_MIGRATING);
4042 0 : pending_bytes = 0;
4043 : } else {
4044 0 : pending_bytes = vfio_user_migr_data_len();
4045 : }
4046 :
4047 0 : SPDK_DEBUGLOG(nvmf_vfio,
4048 : "%s current state %u, pending bytes 0x%"PRIx64"\n",
4049 : endpoint_id(endpoint), ctrlr->state, pending_bytes);
4050 :
4051 0 : return pending_bytes;
4052 : }
4053 :
4054 : static int
4055 0 : vfio_user_migration_prepare_data(vfu_ctx_t *vfu_ctx, uint64_t *offset, uint64_t *size)
4056 : {
4057 0 : struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
4058 0 : struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
4059 :
4060 : /*
4061 : * When transitioning to pre-copy state we set pending_bytes to 0,
4062 : * so the vfio-user client shouldn't attempt to read any migration
4063 : * data. This is not yet guaranteed by libvfio-user.
4064 : */
4065 0 : if (ctrlr->state != VFIO_USER_CTRLR_MIGRATING) {
4066 0 : assert(size != NULL);
4067 0 : *offset = 0;
4068 0 : *size = 0;
4069 0 : return 0;
4070 : }
4071 :
4072 0 : if (ctrlr->in_source_vm) { /* migration source */
4073 0 : assert(size != NULL);
4074 0 : *size = vfio_user_migr_data_len();
4075 0 : vfio_user_migr_ctrlr_save_data(ctrlr);
4076 : } else { /* migration destination */
4077 0 : assert(size == NULL);
4078 0 : assert(!ctrlr->migr_data_prepared);
4079 : }
4080 0 : *offset = 0;
4081 0 : ctrlr->migr_data_prepared = true;
4082 :
4083 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s current state %u\n", endpoint_id(endpoint), ctrlr->state);
4084 :
4085 0 : return 0;
4086 : }
4087 :
4088 : static ssize_t
4089 0 : vfio_user_migration_read_data(vfu_ctx_t *vfu_ctx __attribute__((unused)),
4090 : void *buf __attribute__((unused)),
4091 : uint64_t count __attribute__((unused)),
4092 : uint64_t offset __attribute__((unused)))
4093 : {
4094 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: migration read data not supported\n",
4095 : endpoint_id(vfu_get_private(vfu_ctx)));
4096 0 : errno = ENOTSUP;
4097 0 : return -1;
4098 : }
4099 :
4100 : static ssize_t
4101 0 : vfio_user_migration_write_data(vfu_ctx_t *vfu_ctx __attribute__((unused)),
4102 : void *buf __attribute__((unused)),
4103 : uint64_t count __attribute__((unused)),
4104 : uint64_t offset __attribute__((unused)))
4105 : {
4106 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: migration write data not supported\n",
4107 : endpoint_id(vfu_get_private(vfu_ctx)));
4108 0 : errno = ENOTSUP;
4109 0 : return -1;
4110 : }
4111 :
4112 : static int
4113 0 : vfio_user_migration_data_written(vfu_ctx_t *vfu_ctx __attribute__((unused)),
4114 : uint64_t count)
4115 : {
4116 0 : SPDK_DEBUGLOG(nvmf_vfio, "write 0x%"PRIx64"\n", (uint64_t)count);
4117 :
4118 0 : if (count != vfio_user_migr_data_len()) {
4119 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s bad count %#lx\n",
4120 : endpoint_id(vfu_get_private(vfu_ctx)), count);
4121 0 : errno = EINVAL;
4122 0 : return -1;
4123 : }
4124 :
4125 0 : return 0;
4126 : }
4127 :
4128 : static int
4129 0 : vfio_user_dev_info_fill(struct nvmf_vfio_user_transport *vu_transport,
4130 : struct nvmf_vfio_user_endpoint *endpoint)
4131 : {
4132 : int ret;
4133 : ssize_t cap_offset;
4134 0 : vfu_ctx_t *vfu_ctx = endpoint->vfu_ctx;
4135 0 : struct iovec migr_sparse_mmap = {};
4136 :
4137 0 : struct pmcap pmcap = { .hdr.id = PCI_CAP_ID_PM, .pmcs.nsfrst = 0x1 };
4138 0 : struct pxcap pxcap = {
4139 : .hdr.id = PCI_CAP_ID_EXP,
4140 : .pxcaps.ver = 0x2,
4141 : .pxdcap = {.rer = 0x1, .flrc = 0x1},
4142 : .pxdcap2.ctds = 0x1
4143 : };
4144 :
4145 0 : struct msixcap msixcap = {
4146 : .hdr.id = PCI_CAP_ID_MSIX,
4147 : .mxc.ts = NVMF_VFIO_USER_MSIX_NUM - 1,
4148 : .mtab = {.tbir = NVMF_VFIO_USER_MSIX_TABLE_BIR, .to = 0x0},
4149 : .mpba = {.pbir = NVMF_VFIO_USER_MSIX_PBA_BIR, .pbao = 0x0}
4150 : };
4151 :
4152 0 : struct iovec sparse_mmap[] = {
4153 : {
4154 : .iov_base = (void *)NVME_DOORBELLS_OFFSET,
4155 : .iov_len = NVMF_VFIO_USER_DOORBELLS_SIZE,
4156 : },
4157 : };
4158 :
4159 0 : const vfu_migration_callbacks_t migr_callbacks = {
4160 : .version = VFIO_USER_MIGR_CALLBACK_VERS,
4161 : .transition = &vfio_user_migration_device_state_transition,
4162 : .get_pending_bytes = &vfio_user_migration_get_pending_bytes,
4163 : .prepare_data = &vfio_user_migration_prepare_data,
4164 : .read_data = &vfio_user_migration_read_data,
4165 : .data_written = &vfio_user_migration_data_written,
4166 : .write_data = &vfio_user_migration_write_data
4167 : };
4168 :
4169 0 : ret = vfu_pci_init(vfu_ctx, VFU_PCI_TYPE_EXPRESS, PCI_HEADER_TYPE_NORMAL, 0);
4170 0 : if (ret < 0) {
4171 0 : SPDK_ERRLOG("vfu_ctx %p failed to initialize PCI\n", vfu_ctx);
4172 0 : return ret;
4173 : }
4174 0 : vfu_pci_set_id(vfu_ctx, SPDK_PCI_VID_NUTANIX, 0x0001, SPDK_PCI_VID_NUTANIX, 0);
4175 : /*
4176 : * 0x02, controller uses the NVM Express programming interface
4177 : * 0x08, non-volatile memory controller
4178 : * 0x01, mass storage controller
4179 : */
4180 0 : vfu_pci_set_class(vfu_ctx, 0x01, 0x08, 0x02);
4181 :
4182 0 : cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &pmcap);
4183 0 : if (cap_offset < 0) {
4184 0 : SPDK_ERRLOG("vfu_ctx %p failed add pmcap\n", vfu_ctx);
4185 0 : return ret;
4186 : }
4187 :
4188 0 : cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &pxcap);
4189 0 : if (cap_offset < 0) {
4190 0 : SPDK_ERRLOG("vfu_ctx %p failed add pxcap\n", vfu_ctx);
4191 0 : return ret;
4192 : }
4193 :
4194 0 : cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &msixcap);
4195 0 : if (cap_offset < 0) {
4196 0 : SPDK_ERRLOG("vfu_ctx %p failed add msixcap\n", vfu_ctx);
4197 0 : return ret;
4198 : }
4199 :
4200 0 : ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_CFG_REGION_IDX, NVME_REG_CFG_SIZE,
4201 : access_pci_config, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
4202 0 : if (ret < 0) {
4203 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup cfg\n", vfu_ctx);
4204 0 : return ret;
4205 : }
4206 :
4207 0 : if (vu_transport->transport_opts.disable_mappable_bar0) {
4208 0 : ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX, NVME_REG_BAR0_SIZE,
4209 : access_bar0_fn, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM,
4210 : NULL, 0, -1, 0);
4211 : } else {
4212 0 : ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX, NVME_REG_BAR0_SIZE,
4213 : access_bar0_fn, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM,
4214 : sparse_mmap, 1, endpoint->devmem_fd, 0);
4215 : }
4216 :
4217 0 : if (ret < 0) {
4218 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup bar 0\n", vfu_ctx);
4219 0 : return ret;
4220 : }
4221 :
4222 0 : ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR4_REGION_IDX, NVMF_VFIO_USER_BAR4_SIZE,
4223 : NULL, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
4224 0 : if (ret < 0) {
4225 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup bar 4\n", vfu_ctx);
4226 0 : return ret;
4227 : }
4228 :
4229 0 : ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR5_REGION_IDX, NVMF_VFIO_USER_BAR5_SIZE,
4230 : NULL, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
4231 0 : if (ret < 0) {
4232 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup bar 5\n", vfu_ctx);
4233 0 : return ret;
4234 : }
4235 :
4236 0 : ret = vfu_setup_device_dma(vfu_ctx, memory_region_add_cb, memory_region_remove_cb);
4237 0 : if (ret < 0) {
4238 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup dma callback\n", vfu_ctx);
4239 0 : return ret;
4240 : }
4241 :
4242 0 : ret = vfu_setup_device_reset_cb(vfu_ctx, vfio_user_device_reset);
4243 0 : if (ret < 0) {
4244 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup reset callback\n", vfu_ctx);
4245 0 : return ret;
4246 : }
4247 :
4248 0 : ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_INTX_IRQ, 1);
4249 0 : if (ret < 0) {
4250 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup INTX\n", vfu_ctx);
4251 0 : return ret;
4252 : }
4253 :
4254 0 : ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_MSIX_IRQ, NVMF_VFIO_USER_MSIX_NUM);
4255 0 : if (ret < 0) {
4256 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup MSIX\n", vfu_ctx);
4257 0 : return ret;
4258 : }
4259 :
4260 0 : vfu_setup_device_quiesce_cb(vfu_ctx, vfio_user_dev_quiesce_cb);
4261 :
4262 0 : migr_sparse_mmap.iov_base = (void *)4096;
4263 0 : migr_sparse_mmap.iov_len = vfio_user_migr_data_len();
4264 0 : ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_MIGR_REGION_IDX,
4265 0 : vfu_get_migr_register_area_size() + vfio_user_migr_data_len(),
4266 : NULL, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM, &migr_sparse_mmap,
4267 : 1, endpoint->migr_fd, 0);
4268 0 : if (ret < 0) {
4269 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup migration region\n", vfu_ctx);
4270 0 : return ret;
4271 : }
4272 :
4273 0 : ret = vfu_setup_device_migration_callbacks(vfu_ctx, &migr_callbacks,
4274 : vfu_get_migr_register_area_size());
4275 0 : if (ret < 0) {
4276 0 : SPDK_ERRLOG("vfu_ctx %p failed to setup migration callbacks\n", vfu_ctx);
4277 0 : return ret;
4278 : }
4279 :
4280 0 : ret = vfu_realize_ctx(vfu_ctx);
4281 0 : if (ret < 0) {
4282 0 : SPDK_ERRLOG("vfu_ctx %p failed to realize\n", vfu_ctx);
4283 0 : return ret;
4284 : }
4285 :
4286 0 : endpoint->pci_config_space = vfu_pci_get_config_space(endpoint->vfu_ctx);
4287 0 : assert(endpoint->pci_config_space != NULL);
4288 0 : init_pci_config_space(endpoint->pci_config_space);
4289 :
4290 0 : assert(cap_offset != 0);
4291 0 : endpoint->msix = (struct msixcap *)((uint8_t *)endpoint->pci_config_space + cap_offset);
4292 :
4293 0 : return 0;
4294 : }
4295 :
4296 : static int nvmf_vfio_user_accept(void *ctx);
4297 :
4298 : /*
4299 : * Register an "accept" poller: this is polling for incoming vfio-user socket
4300 : * connections (on the listening socket).
4301 : *
4302 : * We need to do this on first listening, and also after destroying a
4303 : * controller, so we can accept another connection.
4304 : */
4305 : static int
4306 0 : vfio_user_register_accept_poller(struct nvmf_vfio_user_endpoint *endpoint)
4307 : {
4308 0 : uint64_t poll_rate_us = endpoint->transport->transport.opts.acceptor_poll_rate;
4309 :
4310 0 : SPDK_DEBUGLOG(nvmf_vfio, "registering accept poller\n");
4311 :
4312 0 : endpoint->accept_poller = SPDK_POLLER_REGISTER(nvmf_vfio_user_accept,
4313 : endpoint, poll_rate_us);
4314 :
4315 0 : if (!endpoint->accept_poller) {
4316 0 : return -1;
4317 : }
4318 :
4319 0 : endpoint->accept_thread = spdk_get_thread();
4320 0 : endpoint->need_relisten = false;
4321 :
4322 0 : if (!spdk_interrupt_mode_is_enabled()) {
4323 0 : return 0;
4324 : }
4325 :
4326 0 : endpoint->accept_intr_fd = vfu_get_poll_fd(endpoint->vfu_ctx);
4327 0 : assert(endpoint->accept_intr_fd != -1);
4328 :
4329 0 : endpoint->accept_intr = SPDK_INTERRUPT_REGISTER(endpoint->accept_intr_fd,
4330 : nvmf_vfio_user_accept, endpoint);
4331 :
4332 0 : assert(endpoint->accept_intr != NULL);
4333 :
4334 0 : spdk_poller_register_interrupt(endpoint->accept_poller, NULL, NULL);
4335 0 : return 0;
4336 : }
4337 :
4338 : static void
4339 0 : _vfio_user_relisten(void *ctx)
4340 : {
4341 0 : struct nvmf_vfio_user_endpoint *endpoint = ctx;
4342 :
4343 0 : vfio_user_register_accept_poller(endpoint);
4344 0 : }
4345 :
4346 : static void
4347 0 : _free_ctrlr(void *ctx)
4348 : {
4349 0 : struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
4350 0 : struct nvmf_vfio_user_endpoint *endpoint = ctrlr->endpoint;
4351 :
4352 0 : free_sdbl(endpoint->vfu_ctx, ctrlr->sdbl);
4353 :
4354 0 : spdk_interrupt_unregister(&ctrlr->intr);
4355 0 : ctrlr->intr_fd = -1;
4356 0 : spdk_poller_unregister(&ctrlr->vfu_ctx_poller);
4357 :
4358 0 : free(ctrlr);
4359 :
4360 0 : if (endpoint->need_async_destroy) {
4361 0 : nvmf_vfio_user_destroy_endpoint(endpoint);
4362 0 : } else if (endpoint->need_relisten) {
4363 0 : spdk_thread_send_msg(endpoint->accept_thread,
4364 : _vfio_user_relisten, endpoint);
4365 : }
4366 0 : }
4367 :
4368 : static void
4369 0 : free_ctrlr(struct nvmf_vfio_user_ctrlr *ctrlr)
4370 : {
4371 : struct spdk_thread *thread;
4372 : int i;
4373 :
4374 0 : assert(ctrlr != NULL);
4375 0 : thread = ctrlr->thread ? ctrlr->thread : spdk_get_thread();
4376 :
4377 0 : SPDK_DEBUGLOG(nvmf_vfio, "free %s\n", ctrlr_id(ctrlr));
4378 :
4379 0 : for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
4380 0 : free_qp(ctrlr, i);
4381 : }
4382 :
4383 0 : spdk_thread_exec_msg(thread, _free_ctrlr, ctrlr);
4384 0 : }
4385 :
4386 : static int
4387 0 : nvmf_vfio_user_create_ctrlr(struct nvmf_vfio_user_transport *transport,
4388 : struct nvmf_vfio_user_endpoint *endpoint)
4389 : {
4390 : struct nvmf_vfio_user_ctrlr *ctrlr;
4391 0 : int err = 0;
4392 :
4393 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s\n", endpoint_id(endpoint));
4394 :
4395 : /* First, construct a vfio-user CUSTOM transport controller */
4396 0 : ctrlr = calloc(1, sizeof(*ctrlr));
4397 0 : if (ctrlr == NULL) {
4398 0 : err = -ENOMEM;
4399 0 : goto out;
4400 : }
4401 : /*
4402 : * We can only support one connection for now, but generate a unique cntlid in case vfio-user
4403 : * transport is used together with RDMA or TCP transports in the same target
4404 : */
4405 0 : ctrlr->cntlid = nvmf_subsystem_gen_cntlid(endpoint->subsystem);
4406 0 : ctrlr->intr_fd = -1;
4407 0 : ctrlr->transport = transport;
4408 0 : ctrlr->endpoint = endpoint;
4409 0 : ctrlr->bar0_doorbells = endpoint->bar0_doorbells;
4410 0 : TAILQ_INIT(&ctrlr->connected_sqs);
4411 :
4412 0 : ctrlr->adaptive_irqs_enabled =
4413 0 : !transport->transport_opts.disable_adaptive_irq;
4414 :
4415 : /* Then, construct an admin queue pair */
4416 0 : err = init_sq(ctrlr, &transport->transport, 0);
4417 0 : if (err != 0) {
4418 0 : free(ctrlr);
4419 0 : goto out;
4420 : }
4421 :
4422 0 : err = init_cq(ctrlr, 0);
4423 0 : if (err != 0) {
4424 0 : free(ctrlr);
4425 0 : goto out;
4426 : }
4427 :
4428 0 : ctrlr->sqs[0]->size = NVMF_VFIO_USER_DEFAULT_AQ_DEPTH;
4429 :
4430 0 : err = alloc_sq_reqs(ctrlr, ctrlr->sqs[0]);
4431 0 : if (err != 0) {
4432 0 : free(ctrlr);
4433 0 : goto out;
4434 : }
4435 0 : endpoint->ctrlr = ctrlr;
4436 :
4437 : /* Notify the generic layer about the new admin queue pair */
4438 0 : spdk_nvmf_tgt_new_qpair(transport->transport.tgt, &ctrlr->sqs[0]->qpair);
4439 :
4440 0 : out:
4441 0 : if (err != 0) {
4442 0 : SPDK_ERRLOG("%s: failed to create vfio-user controller: %s\n",
4443 : endpoint_id(endpoint), strerror(-err));
4444 : }
4445 :
4446 0 : return err;
4447 : }
4448 :
4449 : static int
4450 0 : nvmf_vfio_user_listen(struct spdk_nvmf_transport *transport,
4451 : const struct spdk_nvme_transport_id *trid,
4452 : struct spdk_nvmf_listen_opts *listen_opts)
4453 : {
4454 : struct nvmf_vfio_user_transport *vu_transport;
4455 : struct nvmf_vfio_user_endpoint *endpoint, *tmp;
4456 0 : char path[PATH_MAX] = {};
4457 0 : char uuid[PATH_MAX] = {};
4458 : int ret;
4459 :
4460 0 : vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
4461 : transport);
4462 :
4463 0 : pthread_mutex_lock(&vu_transport->lock);
4464 0 : TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
4465 : /* Only compare traddr */
4466 0 : if (strncmp(endpoint->trid.traddr, trid->traddr, sizeof(endpoint->trid.traddr)) == 0) {
4467 0 : pthread_mutex_unlock(&vu_transport->lock);
4468 0 : return -EEXIST;
4469 : }
4470 : }
4471 0 : pthread_mutex_unlock(&vu_transport->lock);
4472 :
4473 0 : endpoint = calloc(1, sizeof(*endpoint));
4474 0 : if (!endpoint) {
4475 0 : return -ENOMEM;
4476 : }
4477 :
4478 0 : pthread_mutex_init(&endpoint->lock, NULL);
4479 0 : endpoint->devmem_fd = -1;
4480 0 : memcpy(&endpoint->trid, trid, sizeof(endpoint->trid));
4481 0 : endpoint->transport = vu_transport;
4482 :
4483 0 : ret = snprintf(path, PATH_MAX, "%s/bar0", endpoint_id(endpoint));
4484 0 : if (ret < 0 || ret >= PATH_MAX) {
4485 0 : SPDK_ERRLOG("%s: error to get socket path: %s.\n", endpoint_id(endpoint), spdk_strerror(errno));
4486 0 : ret = -1;
4487 0 : goto out;
4488 : }
4489 :
4490 0 : ret = open(path, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
4491 0 : if (ret == -1) {
4492 0 : SPDK_ERRLOG("%s: failed to open device memory at %s: %s.\n",
4493 : endpoint_id(endpoint), path, spdk_strerror(errno));
4494 0 : goto out;
4495 : }
4496 0 : unlink(path);
4497 :
4498 0 : endpoint->devmem_fd = ret;
4499 0 : ret = ftruncate(endpoint->devmem_fd,
4500 : NVME_DOORBELLS_OFFSET + NVMF_VFIO_USER_DOORBELLS_SIZE);
4501 0 : if (ret != 0) {
4502 0 : SPDK_ERRLOG("%s: error to ftruncate file %s: %s.\n", endpoint_id(endpoint), path,
4503 : spdk_strerror(errno));
4504 0 : goto out;
4505 : }
4506 :
4507 0 : endpoint->bar0_doorbells = mmap(NULL, NVMF_VFIO_USER_DOORBELLS_SIZE,
4508 : PROT_READ | PROT_WRITE, MAP_SHARED, endpoint->devmem_fd, NVME_DOORBELLS_OFFSET);
4509 0 : if (endpoint->bar0_doorbells == MAP_FAILED) {
4510 0 : SPDK_ERRLOG("%s: error to mmap file %s: %s.\n", endpoint_id(endpoint), path, spdk_strerror(errno));
4511 0 : endpoint->bar0_doorbells = NULL;
4512 0 : ret = -1;
4513 0 : goto out;
4514 : }
4515 :
4516 0 : ret = snprintf(path, PATH_MAX, "%s/migr", endpoint_id(endpoint));
4517 0 : if (ret < 0 || ret >= PATH_MAX) {
4518 0 : SPDK_ERRLOG("%s: error to get migration file path: %s.\n", endpoint_id(endpoint),
4519 : spdk_strerror(errno));
4520 0 : ret = -1;
4521 0 : goto out;
4522 : }
4523 0 : ret = open(path, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
4524 0 : if (ret == -1) {
4525 0 : SPDK_ERRLOG("%s: failed to open device memory at %s: %s.\n",
4526 : endpoint_id(endpoint), path, spdk_strerror(errno));
4527 0 : goto out;
4528 : }
4529 0 : unlink(path);
4530 :
4531 0 : endpoint->migr_fd = ret;
4532 0 : ret = ftruncate(endpoint->migr_fd,
4533 0 : vfu_get_migr_register_area_size() + vfio_user_migr_data_len());
4534 0 : if (ret != 0) {
4535 0 : SPDK_ERRLOG("%s: error to ftruncate migration file %s: %s.\n", endpoint_id(endpoint), path,
4536 : spdk_strerror(errno));
4537 0 : goto out;
4538 : }
4539 :
4540 0 : endpoint->migr_data = mmap(NULL, vfio_user_migr_data_len(),
4541 0 : PROT_READ | PROT_WRITE, MAP_SHARED, endpoint->migr_fd, vfu_get_migr_register_area_size());
4542 0 : if (endpoint->migr_data == MAP_FAILED) {
4543 0 : SPDK_ERRLOG("%s: error to mmap file %s: %s.\n", endpoint_id(endpoint), path, spdk_strerror(errno));
4544 0 : endpoint->migr_data = NULL;
4545 0 : ret = -1;
4546 0 : goto out;
4547 : }
4548 :
4549 0 : ret = snprintf(uuid, PATH_MAX, "%s/cntrl", endpoint_id(endpoint));
4550 0 : if (ret < 0 || ret >= PATH_MAX) {
4551 0 : SPDK_ERRLOG("%s: error to get ctrlr file path: %s\n", endpoint_id(endpoint), spdk_strerror(errno));
4552 0 : ret = -1;
4553 0 : goto out;
4554 : }
4555 :
4556 0 : endpoint->vfu_ctx = vfu_create_ctx(VFU_TRANS_SOCK, uuid, LIBVFIO_USER_FLAG_ATTACH_NB,
4557 : endpoint, VFU_DEV_TYPE_PCI);
4558 0 : if (endpoint->vfu_ctx == NULL) {
4559 0 : SPDK_ERRLOG("%s: error creating libmuser context: %m\n",
4560 : endpoint_id(endpoint));
4561 0 : ret = -1;
4562 0 : goto out;
4563 : }
4564 :
4565 0 : ret = vfu_setup_log(endpoint->vfu_ctx, vfio_user_log,
4566 : vfio_user_get_log_level());
4567 0 : if (ret < 0) {
4568 0 : goto out;
4569 : }
4570 :
4571 :
4572 0 : ret = vfio_user_dev_info_fill(vu_transport, endpoint);
4573 0 : if (ret < 0) {
4574 0 : goto out;
4575 : }
4576 :
4577 0 : ret = vfio_user_register_accept_poller(endpoint);
4578 :
4579 0 : if (ret != 0) {
4580 0 : goto out;
4581 : }
4582 :
4583 0 : pthread_mutex_lock(&vu_transport->lock);
4584 0 : TAILQ_INSERT_TAIL(&vu_transport->endpoints, endpoint, link);
4585 0 : pthread_mutex_unlock(&vu_transport->lock);
4586 :
4587 0 : out:
4588 0 : if (ret != 0) {
4589 0 : nvmf_vfio_user_destroy_endpoint(endpoint);
4590 : }
4591 :
4592 0 : return ret;
4593 : }
4594 :
4595 : static void
4596 0 : nvmf_vfio_user_stop_listen(struct spdk_nvmf_transport *transport,
4597 : const struct spdk_nvme_transport_id *trid)
4598 : {
4599 : struct nvmf_vfio_user_transport *vu_transport;
4600 : struct nvmf_vfio_user_endpoint *endpoint, *tmp;
4601 :
4602 0 : assert(trid != NULL);
4603 0 : assert(trid->traddr != NULL);
4604 :
4605 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: stop listen\n", trid->traddr);
4606 :
4607 0 : vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
4608 : transport);
4609 :
4610 0 : pthread_mutex_lock(&vu_transport->lock);
4611 0 : TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
4612 0 : if (strcmp(trid->traddr, endpoint->trid.traddr) == 0) {
4613 0 : TAILQ_REMOVE(&vu_transport->endpoints, endpoint, link);
4614 : /* Defer to free endpoint resources until the controller
4615 : * is freed. There are two cases when running here:
4616 : * 1. kill nvmf target while VM is connected
4617 : * 2. remove listener via RPC call
4618 : * nvmf library will disconnect all queue paris.
4619 : */
4620 0 : if (endpoint->ctrlr) {
4621 0 : assert(!endpoint->need_async_destroy);
4622 0 : endpoint->need_async_destroy = true;
4623 0 : pthread_mutex_unlock(&vu_transport->lock);
4624 0 : return;
4625 : }
4626 :
4627 0 : nvmf_vfio_user_destroy_endpoint(endpoint);
4628 0 : pthread_mutex_unlock(&vu_transport->lock);
4629 0 : return;
4630 : }
4631 : }
4632 0 : pthread_mutex_unlock(&vu_transport->lock);
4633 :
4634 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: not found\n", trid->traddr);
4635 : }
4636 :
4637 : static void
4638 0 : nvmf_vfio_user_cdata_init(struct spdk_nvmf_transport *transport,
4639 : struct spdk_nvmf_subsystem *subsystem,
4640 : struct spdk_nvmf_ctrlr_data *cdata)
4641 : {
4642 : struct nvmf_vfio_user_transport *vu_transport;
4643 :
4644 0 : vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport, transport);
4645 :
4646 0 : cdata->vid = SPDK_PCI_VID_NUTANIX;
4647 0 : cdata->ssvid = SPDK_PCI_VID_NUTANIX;
4648 0 : cdata->ieee[0] = 0x8d;
4649 0 : cdata->ieee[1] = 0x6b;
4650 0 : cdata->ieee[2] = 0x50;
4651 0 : memset(&cdata->sgls, 0, sizeof(struct spdk_nvme_cdata_sgls));
4652 0 : cdata->sgls.supported = SPDK_NVME_SGLS_SUPPORTED_DWORD_ALIGNED;
4653 0 : cdata->oncs.compare = !vu_transport->transport_opts.disable_compare;
4654 : /* libvfio-user can only support 1 connection for now */
4655 0 : cdata->oncs.reservations = 0;
4656 0 : cdata->oacs.doorbell_buffer_config = !vu_transport->transport_opts.disable_shadow_doorbells;
4657 0 : cdata->fuses.compare_and_write = !vu_transport->transport_opts.disable_compare;
4658 0 : }
4659 :
4660 : static int
4661 0 : nvmf_vfio_user_listen_associate(struct spdk_nvmf_transport *transport,
4662 : const struct spdk_nvmf_subsystem *subsystem,
4663 : const struct spdk_nvme_transport_id *trid)
4664 : {
4665 : struct nvmf_vfio_user_transport *vu_transport;
4666 : struct nvmf_vfio_user_endpoint *endpoint;
4667 :
4668 0 : vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport, transport);
4669 :
4670 0 : pthread_mutex_lock(&vu_transport->lock);
4671 0 : TAILQ_FOREACH(endpoint, &vu_transport->endpoints, link) {
4672 0 : if (strncmp(endpoint->trid.traddr, trid->traddr, sizeof(endpoint->trid.traddr)) == 0) {
4673 0 : break;
4674 : }
4675 : }
4676 0 : pthread_mutex_unlock(&vu_transport->lock);
4677 :
4678 0 : if (endpoint == NULL) {
4679 0 : return -ENOENT;
4680 : }
4681 :
4682 : /* Drop const - we will later need to pause/unpause. */
4683 0 : endpoint->subsystem = (struct spdk_nvmf_subsystem *)subsystem;
4684 :
4685 0 : return 0;
4686 : }
4687 :
4688 : /*
4689 : * Executed periodically at a default SPDK_NVMF_DEFAULT_ACCEPT_POLL_RATE_US
4690 : * frequency.
4691 : *
4692 : * For this endpoint (which at the libvfio-user level corresponds to a socket),
4693 : * if we don't currently have a controller set up, peek to see if the socket is
4694 : * able to accept a new connection.
4695 : */
4696 : static int
4697 0 : nvmf_vfio_user_accept(void *ctx)
4698 : {
4699 0 : struct nvmf_vfio_user_endpoint *endpoint = ctx;
4700 : struct nvmf_vfio_user_transport *vu_transport;
4701 : int err;
4702 :
4703 0 : vu_transport = endpoint->transport;
4704 :
4705 0 : if (endpoint->ctrlr != NULL) {
4706 0 : return SPDK_POLLER_IDLE;
4707 : }
4708 :
4709 : /* While we're here, the controller is already destroyed,
4710 : * subsystem may still be in RESUMING state, we will wait
4711 : * until the subsystem is in RUNNING state.
4712 : */
4713 0 : if (endpoint->need_resume) {
4714 0 : return SPDK_POLLER_IDLE;
4715 : }
4716 :
4717 0 : err = vfu_attach_ctx(endpoint->vfu_ctx);
4718 0 : if (err == 0) {
4719 0 : SPDK_DEBUGLOG(nvmf_vfio, "attach succeeded\n");
4720 0 : err = nvmf_vfio_user_create_ctrlr(vu_transport, endpoint);
4721 0 : if (err == 0) {
4722 : /*
4723 : * Unregister ourselves: now we've accepted a
4724 : * connection, there is nothing for us to poll for, and
4725 : * we will poll the connection via vfu_run_ctx()
4726 : * instead.
4727 : */
4728 0 : spdk_interrupt_unregister(&endpoint->accept_intr);
4729 0 : spdk_poller_unregister(&endpoint->accept_poller);
4730 : }
4731 0 : return SPDK_POLLER_BUSY;
4732 : }
4733 :
4734 0 : if (errno == EAGAIN || errno == EWOULDBLOCK) {
4735 0 : return SPDK_POLLER_IDLE;
4736 : }
4737 :
4738 0 : return SPDK_POLLER_BUSY;
4739 : }
4740 :
4741 : static void
4742 0 : nvmf_vfio_user_discover(struct spdk_nvmf_transport *transport,
4743 : struct spdk_nvme_transport_id *trid,
4744 : struct spdk_nvmf_discovery_log_page_entry *entry)
4745 0 : { }
4746 :
4747 : static int vfio_user_poll_group_intr(void *ctx);
4748 :
4749 : static void
4750 0 : vfio_user_poll_group_add_intr(struct nvmf_vfio_user_poll_group *vu_group,
4751 : struct spdk_nvmf_poll_group *group)
4752 : {
4753 0 : vu_group->intr_fd = eventfd(0, EFD_NONBLOCK);
4754 0 : assert(vu_group->intr_fd != -1);
4755 :
4756 0 : vu_group->intr = SPDK_INTERRUPT_REGISTER(vu_group->intr_fd,
4757 : vfio_user_poll_group_intr, vu_group);
4758 0 : assert(vu_group->intr != NULL);
4759 0 : }
4760 :
4761 : static struct spdk_nvmf_transport_poll_group *
4762 0 : nvmf_vfio_user_poll_group_create(struct spdk_nvmf_transport *transport,
4763 : struct spdk_nvmf_poll_group *group)
4764 : {
4765 : struct nvmf_vfio_user_transport *vu_transport;
4766 : struct nvmf_vfio_user_poll_group *vu_group;
4767 :
4768 0 : vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
4769 : transport);
4770 :
4771 0 : SPDK_DEBUGLOG(nvmf_vfio, "create poll group\n");
4772 :
4773 0 : vu_group = calloc(1, sizeof(*vu_group));
4774 0 : if (vu_group == NULL) {
4775 0 : SPDK_ERRLOG("Error allocating poll group: %m");
4776 0 : return NULL;
4777 : }
4778 :
4779 0 : if (in_interrupt_mode(vu_transport)) {
4780 0 : vfio_user_poll_group_add_intr(vu_group, group);
4781 : }
4782 :
4783 0 : TAILQ_INIT(&vu_group->sqs);
4784 :
4785 0 : pthread_mutex_lock(&vu_transport->pg_lock);
4786 0 : TAILQ_INSERT_TAIL(&vu_transport->poll_groups, vu_group, link);
4787 0 : if (vu_transport->next_pg == NULL) {
4788 0 : vu_transport->next_pg = vu_group;
4789 : }
4790 0 : pthread_mutex_unlock(&vu_transport->pg_lock);
4791 :
4792 0 : return &vu_group->group;
4793 : }
4794 :
4795 : static struct spdk_nvmf_transport_poll_group *
4796 0 : nvmf_vfio_user_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4797 : {
4798 : struct nvmf_vfio_user_transport *vu_transport;
4799 : struct nvmf_vfio_user_poll_group **vu_group;
4800 : struct nvmf_vfio_user_sq *sq;
4801 : struct nvmf_vfio_user_cq *cq;
4802 :
4803 0 : struct spdk_nvmf_transport_poll_group *result = NULL;
4804 :
4805 0 : sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
4806 0 : cq = sq->ctrlr->cqs[sq->cqid];
4807 0 : assert(cq != NULL);
4808 0 : vu_transport = SPDK_CONTAINEROF(qpair->transport, struct nvmf_vfio_user_transport, transport);
4809 :
4810 0 : pthread_mutex_lock(&vu_transport->pg_lock);
4811 0 : if (TAILQ_EMPTY(&vu_transport->poll_groups)) {
4812 0 : goto out;
4813 : }
4814 :
4815 0 : if (!nvmf_qpair_is_admin_queue(qpair)) {
4816 : /*
4817 : * If this is shared IO CQ case, just return the used CQ's poll
4818 : * group, so I/O completions don't have to use
4819 : * spdk_thread_send_msg().
4820 : */
4821 0 : if (cq->group != NULL) {
4822 0 : result = cq->group;
4823 0 : goto out;
4824 : }
4825 :
4826 : /*
4827 : * If we're in interrupt mode, align all qpairs for a controller
4828 : * on the same poll group by default, unless requested. This can
4829 : * be lower in performance than running on a single poll group,
4830 : * so we disable spreading by default.
4831 : */
4832 0 : if (in_interrupt_mode(vu_transport) &&
4833 0 : !vu_transport->transport_opts.enable_intr_mode_sq_spreading) {
4834 0 : result = sq->ctrlr->sqs[0]->group;
4835 0 : goto out;
4836 : }
4837 :
4838 : }
4839 :
4840 0 : vu_group = &vu_transport->next_pg;
4841 0 : assert(*vu_group != NULL);
4842 :
4843 0 : result = &(*vu_group)->group;
4844 0 : *vu_group = TAILQ_NEXT(*vu_group, link);
4845 0 : if (*vu_group == NULL) {
4846 0 : *vu_group = TAILQ_FIRST(&vu_transport->poll_groups);
4847 : }
4848 :
4849 0 : out:
4850 0 : if (cq->group == NULL) {
4851 0 : cq->group = result;
4852 : }
4853 :
4854 0 : pthread_mutex_unlock(&vu_transport->pg_lock);
4855 0 : return result;
4856 : }
4857 :
4858 : static void
4859 0 : vfio_user_poll_group_del_intr(struct nvmf_vfio_user_poll_group *vu_group)
4860 : {
4861 0 : assert(vu_group->intr_fd != -1);
4862 :
4863 0 : spdk_interrupt_unregister(&vu_group->intr);
4864 :
4865 0 : close(vu_group->intr_fd);
4866 0 : vu_group->intr_fd = -1;
4867 0 : }
4868 :
4869 : /* called when process exits */
4870 : static void
4871 0 : nvmf_vfio_user_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4872 : {
4873 : struct nvmf_vfio_user_poll_group *vu_group, *next_tgroup;
4874 : struct nvmf_vfio_user_transport *vu_transport;
4875 :
4876 0 : SPDK_DEBUGLOG(nvmf_vfio, "destroy poll group\n");
4877 :
4878 0 : vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
4879 0 : vu_transport = SPDK_CONTAINEROF(vu_group->group.transport, struct nvmf_vfio_user_transport,
4880 : transport);
4881 :
4882 0 : if (in_interrupt_mode(vu_transport)) {
4883 0 : vfio_user_poll_group_del_intr(vu_group);
4884 : }
4885 :
4886 0 : pthread_mutex_lock(&vu_transport->pg_lock);
4887 0 : next_tgroup = TAILQ_NEXT(vu_group, link);
4888 0 : TAILQ_REMOVE(&vu_transport->poll_groups, vu_group, link);
4889 0 : if (next_tgroup == NULL) {
4890 0 : next_tgroup = TAILQ_FIRST(&vu_transport->poll_groups);
4891 : }
4892 0 : if (vu_transport->next_pg == vu_group) {
4893 0 : vu_transport->next_pg = next_tgroup;
4894 : }
4895 0 : pthread_mutex_unlock(&vu_transport->pg_lock);
4896 :
4897 0 : free(vu_group);
4898 0 : }
4899 :
4900 : static void
4901 0 : _vfio_user_qpair_disconnect(void *ctx)
4902 : {
4903 0 : struct nvmf_vfio_user_sq *sq = ctx;
4904 :
4905 0 : spdk_nvmf_qpair_disconnect(&sq->qpair);
4906 0 : }
4907 :
4908 : /* The function is used when socket connection is destroyed */
4909 : static int
4910 0 : vfio_user_destroy_ctrlr(struct nvmf_vfio_user_ctrlr *ctrlr)
4911 : {
4912 : struct nvmf_vfio_user_sq *sq;
4913 : struct nvmf_vfio_user_endpoint *endpoint;
4914 :
4915 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s stop processing\n", ctrlr_id(ctrlr));
4916 :
4917 0 : endpoint = ctrlr->endpoint;
4918 0 : assert(endpoint != NULL);
4919 :
4920 0 : pthread_mutex_lock(&endpoint->lock);
4921 0 : endpoint->need_relisten = true;
4922 0 : ctrlr->disconnect = true;
4923 0 : if (TAILQ_EMPTY(&ctrlr->connected_sqs)) {
4924 0 : endpoint->ctrlr = NULL;
4925 0 : free_ctrlr(ctrlr);
4926 0 : pthread_mutex_unlock(&endpoint->lock);
4927 0 : return 0;
4928 : }
4929 :
4930 0 : TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
4931 : /* add another round thread poll to avoid recursive endpoint lock */
4932 0 : spdk_thread_send_msg(ctrlr->thread, _vfio_user_qpair_disconnect, sq);
4933 : }
4934 0 : pthread_mutex_unlock(&endpoint->lock);
4935 :
4936 0 : return 0;
4937 : }
4938 :
4939 : /*
4940 : * Poll for and process any incoming vfio-user messages.
4941 : */
4942 : static int
4943 0 : vfio_user_poll_vfu_ctx(void *ctx)
4944 : {
4945 0 : struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
4946 : int ret;
4947 :
4948 0 : assert(ctrlr != NULL);
4949 :
4950 : /* This will call access_bar0_fn() if there are any writes
4951 : * to the portion of the BAR that is not mmap'd */
4952 0 : ret = vfu_run_ctx(ctrlr->endpoint->vfu_ctx);
4953 0 : if (spdk_unlikely(ret == -1)) {
4954 0 : if (errno == EBUSY) {
4955 0 : return SPDK_POLLER_IDLE;
4956 : }
4957 :
4958 0 : spdk_poller_unregister(&ctrlr->vfu_ctx_poller);
4959 :
4960 : /*
4961 : * We lost the client; the reset callback will already have
4962 : * unregistered the interrupt.
4963 : */
4964 0 : if (errno == ENOTCONN) {
4965 0 : vfio_user_destroy_ctrlr(ctrlr);
4966 0 : return SPDK_POLLER_BUSY;
4967 : }
4968 :
4969 : /*
4970 : * We might not have got a reset callback in this case, so
4971 : * explicitly unregister the interrupt here.
4972 : */
4973 0 : spdk_interrupt_unregister(&ctrlr->intr);
4974 0 : ctrlr->intr_fd = -1;
4975 0 : fail_ctrlr(ctrlr);
4976 : }
4977 :
4978 0 : return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
4979 : }
4980 :
4981 : struct vfio_user_post_cpl_ctx {
4982 : struct nvmf_vfio_user_ctrlr *ctrlr;
4983 : struct nvmf_vfio_user_cq *cq;
4984 : struct spdk_nvme_cpl cpl;
4985 : };
4986 :
4987 : static void
4988 0 : _post_completion_msg(void *ctx)
4989 : {
4990 0 : struct vfio_user_post_cpl_ctx *cpl_ctx = ctx;
4991 :
4992 0 : post_completion(cpl_ctx->ctrlr, cpl_ctx->cq, cpl_ctx->cpl.cdw0, cpl_ctx->cpl.sqid,
4993 0 : cpl_ctx->cpl.cid, cpl_ctx->cpl.status.sc, cpl_ctx->cpl.status.sct);
4994 0 : free(cpl_ctx);
4995 0 : }
4996 :
4997 : static int nvmf_vfio_user_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
4998 :
4999 : static int
5000 0 : vfio_user_poll_group_process(void *ctx)
5001 : {
5002 0 : struct nvmf_vfio_user_poll_group *vu_group = ctx;
5003 0 : int ret = 0;
5004 :
5005 0 : SPDK_DEBUGLOG(vfio_user_db, "pg:%p got intr\n", vu_group);
5006 :
5007 0 : ret |= nvmf_vfio_user_poll_group_poll(&vu_group->group);
5008 :
5009 : /*
5010 : * Re-arm the event indexes. NB: this also could rearm other
5011 : * controller's SQs.
5012 : */
5013 0 : ret |= vfio_user_poll_group_rearm(vu_group);
5014 :
5015 0 : vu_group->stats.pg_process_count++;
5016 0 : return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
5017 : }
5018 :
5019 : static int
5020 0 : vfio_user_poll_group_intr(void *ctx)
5021 : {
5022 0 : struct nvmf_vfio_user_poll_group *vu_group = ctx;
5023 : eventfd_t val;
5024 :
5025 0 : eventfd_read(vu_group->intr_fd, &val);
5026 :
5027 0 : vu_group->stats.intr++;
5028 :
5029 0 : return vfio_user_poll_group_process(ctx);
5030 : }
5031 :
5032 : /*
5033 : * Handle an interrupt for the given controller: we must poll the vfu_ctx, and
5034 : * the SQs assigned to our own poll group. Other poll groups are handled via
5035 : * vfio_user_poll_group_intr().
5036 : */
5037 : static int
5038 0 : vfio_user_ctrlr_intr(void *ctx)
5039 : {
5040 : struct nvmf_vfio_user_poll_group *vu_ctrlr_group;
5041 0 : struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx;
5042 : struct nvmf_vfio_user_poll_group *vu_group;
5043 0 : int ret = SPDK_POLLER_IDLE;
5044 :
5045 0 : vu_ctrlr_group = ctrlr_to_poll_group(vu_ctrlr);
5046 :
5047 0 : SPDK_DEBUGLOG(vfio_user_db, "ctrlr pg:%p got intr\n", vu_ctrlr_group);
5048 :
5049 0 : vu_ctrlr_group->stats.ctrlr_intr++;
5050 :
5051 : /*
5052 : * Poll vfio-user for this controller. We need to do this before polling
5053 : * any SQs, as this is where doorbell writes may be handled.
5054 : */
5055 0 : ret = vfio_user_poll_vfu_ctx(vu_ctrlr);
5056 :
5057 : /*
5058 : * `sqs[0]` could be set to NULL in vfio_user_poll_vfu_ctx() context,
5059 : * just return for this case.
5060 : */
5061 0 : if (vu_ctrlr->sqs[0] == NULL) {
5062 0 : return ret;
5063 : }
5064 :
5065 0 : if (vu_ctrlr->transport->transport_opts.enable_intr_mode_sq_spreading) {
5066 : /*
5067 : * We may have just written to a doorbell owned by another
5068 : * reactor: we need to prod them to make sure its SQs are polled
5069 : * *after* the doorbell value is updated.
5070 : */
5071 0 : TAILQ_FOREACH(vu_group, &vu_ctrlr->transport->poll_groups, link) {
5072 0 : if (vu_group != vu_ctrlr_group) {
5073 0 : SPDK_DEBUGLOG(vfio_user_db, "prodding pg:%p\n", vu_group);
5074 0 : eventfd_write(vu_group->intr_fd, 1);
5075 : }
5076 : }
5077 : }
5078 :
5079 0 : ret |= vfio_user_poll_group_process(vu_ctrlr_group);
5080 :
5081 0 : return ret;
5082 : }
5083 :
5084 : static void
5085 0 : vfio_user_ctrlr_set_intr_mode(struct spdk_poller *poller, void *ctx,
5086 : bool interrupt_mode)
5087 : {
5088 0 : struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
5089 0 : assert(ctrlr != NULL);
5090 0 : assert(ctrlr->endpoint != NULL);
5091 :
5092 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: setting interrupt mode to %d\n",
5093 : ctrlr_id(ctrlr), interrupt_mode);
5094 :
5095 : /*
5096 : * interrupt_mode needs to persist across controller resets, so store
5097 : * it in the endpoint instead.
5098 : */
5099 0 : ctrlr->endpoint->interrupt_mode = interrupt_mode;
5100 :
5101 0 : vfio_user_poll_group_rearm(ctrlr_to_poll_group(ctrlr));
5102 0 : }
5103 :
5104 : /*
5105 : * In response to the nvmf_vfio_user_create_ctrlr() path, the admin queue is now
5106 : * set up and we can start operating on this controller.
5107 : */
5108 : static void
5109 0 : start_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
5110 : struct spdk_nvmf_ctrlr *ctrlr)
5111 : {
5112 0 : struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
5113 :
5114 0 : vu_ctrlr->ctrlr = ctrlr;
5115 0 : vu_ctrlr->cntlid = ctrlr->cntlid;
5116 0 : vu_ctrlr->thread = spdk_get_thread();
5117 0 : vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
5118 :
5119 0 : if (!in_interrupt_mode(endpoint->transport)) {
5120 0 : vu_ctrlr->vfu_ctx_poller = SPDK_POLLER_REGISTER(vfio_user_poll_vfu_ctx,
5121 : vu_ctrlr, 1000);
5122 0 : return;
5123 : }
5124 :
5125 0 : vu_ctrlr->vfu_ctx_poller = SPDK_POLLER_REGISTER(vfio_user_poll_vfu_ctx,
5126 : vu_ctrlr, 0);
5127 :
5128 0 : vu_ctrlr->intr_fd = vfu_get_poll_fd(vu_ctrlr->endpoint->vfu_ctx);
5129 0 : assert(vu_ctrlr->intr_fd != -1);
5130 :
5131 0 : vu_ctrlr->intr = SPDK_INTERRUPT_REGISTER(vu_ctrlr->intr_fd,
5132 : vfio_user_ctrlr_intr, vu_ctrlr);
5133 :
5134 0 : assert(vu_ctrlr->intr != NULL);
5135 :
5136 0 : spdk_poller_register_interrupt(vu_ctrlr->vfu_ctx_poller,
5137 : vfio_user_ctrlr_set_intr_mode,
5138 : vu_ctrlr);
5139 : }
5140 :
5141 : static int
5142 0 : handle_queue_connect_rsp(struct nvmf_vfio_user_req *req, void *cb_arg)
5143 : {
5144 : struct nvmf_vfio_user_poll_group *vu_group;
5145 0 : struct nvmf_vfio_user_sq *sq = cb_arg;
5146 : struct nvmf_vfio_user_cq *admin_cq;
5147 : struct nvmf_vfio_user_ctrlr *vu_ctrlr;
5148 : struct nvmf_vfio_user_endpoint *endpoint;
5149 :
5150 0 : assert(sq != NULL);
5151 0 : assert(req != NULL);
5152 :
5153 0 : vu_ctrlr = sq->ctrlr;
5154 0 : assert(vu_ctrlr != NULL);
5155 0 : endpoint = vu_ctrlr->endpoint;
5156 0 : assert(endpoint != NULL);
5157 :
5158 0 : if (spdk_nvme_cpl_is_error(&req->req.rsp->nvme_cpl)) {
5159 0 : SPDK_ERRLOG("SC %u, SCT %u\n", req->req.rsp->nvme_cpl.status.sc, req->req.rsp->nvme_cpl.status.sct);
5160 0 : endpoint->ctrlr = NULL;
5161 0 : free_ctrlr(vu_ctrlr);
5162 0 : return -1;
5163 : }
5164 :
5165 0 : vu_group = SPDK_CONTAINEROF(sq->group, struct nvmf_vfio_user_poll_group, group);
5166 0 : TAILQ_INSERT_TAIL(&vu_group->sqs, sq, link);
5167 :
5168 0 : admin_cq = vu_ctrlr->cqs[0];
5169 0 : assert(admin_cq != NULL);
5170 0 : assert(admin_cq->group != NULL);
5171 0 : assert(admin_cq->group->group->thread != NULL);
5172 :
5173 0 : pthread_mutex_lock(&endpoint->lock);
5174 0 : if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
5175 0 : assert(admin_cq->group->group->thread == spdk_get_thread());
5176 : /*
5177 : * The admin queue is special as SQ0 and CQ0 are created
5178 : * together.
5179 : */
5180 0 : admin_cq->cq_ref = 1;
5181 0 : start_ctrlr(vu_ctrlr, sq->qpair.ctrlr);
5182 : } else {
5183 : /* For I/O queues this command was generated in response to an
5184 : * ADMIN I/O CREATE SUBMISSION QUEUE command which has not yet
5185 : * been completed. Complete it now.
5186 : */
5187 0 : if (sq->post_create_io_sq_completion) {
5188 0 : if (admin_cq->group->group->thread != spdk_get_thread()) {
5189 : struct vfio_user_post_cpl_ctx *cpl_ctx;
5190 :
5191 0 : cpl_ctx = calloc(1, sizeof(*cpl_ctx));
5192 0 : if (!cpl_ctx) {
5193 0 : return -ENOMEM;
5194 : }
5195 0 : cpl_ctx->ctrlr = vu_ctrlr;
5196 0 : cpl_ctx->cq = admin_cq;
5197 0 : cpl_ctx->cpl.sqid = 0;
5198 0 : cpl_ctx->cpl.cdw0 = 0;
5199 0 : cpl_ctx->cpl.cid = sq->create_io_sq_cmd.cid;
5200 0 : cpl_ctx->cpl.status.sc = SPDK_NVME_SC_SUCCESS;
5201 0 : cpl_ctx->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
5202 :
5203 0 : spdk_thread_send_msg(admin_cq->group->group->thread,
5204 : _post_completion_msg,
5205 : cpl_ctx);
5206 : } else {
5207 0 : post_completion(vu_ctrlr, admin_cq, 0, 0,
5208 0 : sq->create_io_sq_cmd.cid, SPDK_NVME_SC_SUCCESS, SPDK_NVME_SCT_GENERIC);
5209 : }
5210 0 : sq->post_create_io_sq_completion = false;
5211 0 : } else if (in_interrupt_mode(endpoint->transport)) {
5212 : /*
5213 : * If we're live migrating a guest, there is a window
5214 : * where the I/O queues haven't been set up but the
5215 : * device is in running state, during which the guest
5216 : * might write to a doorbell. This doorbell write will
5217 : * go unnoticed, so let's poll the whole controller to
5218 : * pick that up.
5219 : */
5220 0 : ctrlr_kick(vu_ctrlr);
5221 : }
5222 0 : sq->sq_state = VFIO_USER_SQ_ACTIVE;
5223 : }
5224 :
5225 0 : TAILQ_INSERT_TAIL(&vu_ctrlr->connected_sqs, sq, tailq);
5226 0 : pthread_mutex_unlock(&endpoint->lock);
5227 :
5228 0 : free(req->req.iov[0].iov_base);
5229 0 : req->req.iov[0].iov_base = NULL;
5230 0 : req->req.iovcnt = 0;
5231 :
5232 0 : return 0;
5233 : }
5234 :
5235 : static void
5236 0 : _nvmf_vfio_user_poll_group_add(void *req)
5237 : {
5238 0 : spdk_nvmf_request_exec(req);
5239 0 : }
5240 :
5241 : /*
5242 : * Add the given qpair to the given poll group. New qpairs are added via
5243 : * spdk_nvmf_tgt_new_qpair(), which picks a poll group via
5244 : * nvmf_vfio_user_get_optimal_poll_group(), then calls back here via
5245 : * nvmf_transport_poll_group_add().
5246 : */
5247 : static int
5248 0 : nvmf_vfio_user_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
5249 : struct spdk_nvmf_qpair *qpair)
5250 : {
5251 : struct nvmf_vfio_user_sq *sq;
5252 : struct nvmf_vfio_user_req *vu_req;
5253 : struct nvmf_vfio_user_ctrlr *ctrlr;
5254 : struct spdk_nvmf_request *req;
5255 : struct spdk_nvmf_fabric_connect_data *data;
5256 : bool admin;
5257 :
5258 0 : sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5259 0 : sq->group = group;
5260 0 : ctrlr = sq->ctrlr;
5261 :
5262 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: add QP%d=%p(%p) to poll_group=%p\n",
5263 : ctrlr_id(ctrlr), sq->qpair.qid,
5264 : sq, qpair, group);
5265 :
5266 0 : admin = nvmf_qpair_is_admin_queue(&sq->qpair);
5267 :
5268 0 : vu_req = get_nvmf_vfio_user_req(sq);
5269 0 : if (vu_req == NULL) {
5270 0 : return -1;
5271 : }
5272 :
5273 0 : req = &vu_req->req;
5274 0 : req->cmd->connect_cmd.opcode = SPDK_NVME_OPC_FABRIC;
5275 0 : req->cmd->connect_cmd.cid = 0;
5276 0 : req->cmd->connect_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_CONNECT;
5277 0 : req->cmd->connect_cmd.recfmt = 0;
5278 0 : req->cmd->connect_cmd.sqsize = sq->size - 1;
5279 0 : req->cmd->connect_cmd.qid = admin ? 0 : qpair->qid;
5280 :
5281 0 : req->length = sizeof(struct spdk_nvmf_fabric_connect_data);
5282 :
5283 0 : data = calloc(1, req->length);
5284 0 : if (data == NULL) {
5285 0 : nvmf_vfio_user_req_free(req);
5286 0 : return -ENOMEM;
5287 : }
5288 :
5289 0 : SPDK_IOV_ONE(req->iov, &req->iovcnt, data, req->length);
5290 :
5291 0 : data->cntlid = ctrlr->cntlid;
5292 0 : snprintf(data->subnqn, sizeof(data->subnqn), "%s",
5293 0 : spdk_nvmf_subsystem_get_nqn(ctrlr->endpoint->subsystem));
5294 :
5295 0 : vu_req->cb_fn = handle_queue_connect_rsp;
5296 0 : vu_req->cb_arg = sq;
5297 :
5298 0 : SPDK_DEBUGLOG(nvmf_vfio,
5299 : "%s: sending connect fabrics command for qid:%#x cntlid=%#x\n",
5300 : ctrlr_id(ctrlr), qpair->qid, data->cntlid);
5301 :
5302 : /*
5303 : * By the time transport's poll_group_add() callback is executed, the
5304 : * qpair isn't in the ACTIVE state yet, so spdk_nvmf_request_exec()
5305 : * would fail. The state changes to ACTIVE immediately after the
5306 : * callback finishes, so delay spdk_nvmf_request_exec() by sending a
5307 : * message.
5308 : */
5309 0 : spdk_thread_send_msg(spdk_get_thread(), _nvmf_vfio_user_poll_group_add, req);
5310 0 : return 0;
5311 : }
5312 :
5313 : static int
5314 0 : nvmf_vfio_user_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
5315 : struct spdk_nvmf_qpair *qpair)
5316 : {
5317 : struct nvmf_vfio_user_sq *sq;
5318 : struct nvmf_vfio_user_poll_group *vu_group;
5319 :
5320 0 : sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5321 :
5322 0 : SPDK_DEBUGLOG(nvmf_vfio,
5323 : "%s: remove NVMf QP%d=%p from NVMf poll_group=%p\n",
5324 : ctrlr_id(sq->ctrlr), qpair->qid, qpair, group);
5325 :
5326 :
5327 0 : vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
5328 0 : TAILQ_REMOVE(&vu_group->sqs, sq, link);
5329 :
5330 0 : return 0;
5331 : }
5332 :
5333 : static void
5334 0 : _nvmf_vfio_user_req_free(struct nvmf_vfio_user_sq *sq, struct nvmf_vfio_user_req *vu_req)
5335 : {
5336 0 : memset(&vu_req->cmd, 0, sizeof(vu_req->cmd));
5337 0 : memset(&vu_req->rsp, 0, sizeof(vu_req->rsp));
5338 0 : vu_req->iovcnt = 0;
5339 0 : vu_req->req.iovcnt = 0;
5340 0 : vu_req->req.length = 0;
5341 0 : vu_req->state = VFIO_USER_REQUEST_STATE_FREE;
5342 :
5343 0 : TAILQ_INSERT_TAIL(&sq->free_reqs, vu_req, link);
5344 0 : }
5345 :
5346 : static int
5347 0 : nvmf_vfio_user_req_free(struct spdk_nvmf_request *req)
5348 : {
5349 : struct nvmf_vfio_user_sq *sq;
5350 : struct nvmf_vfio_user_req *vu_req;
5351 :
5352 0 : assert(req != NULL);
5353 :
5354 0 : vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
5355 0 : sq = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
5356 :
5357 0 : _nvmf_vfio_user_req_free(sq, vu_req);
5358 :
5359 0 : return 0;
5360 : }
5361 :
5362 : static int
5363 0 : nvmf_vfio_user_req_complete(struct spdk_nvmf_request *req)
5364 : {
5365 : struct nvmf_vfio_user_sq *sq;
5366 : struct nvmf_vfio_user_req *vu_req;
5367 :
5368 0 : assert(req != NULL);
5369 :
5370 0 : vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
5371 0 : sq = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
5372 :
5373 0 : if (vu_req->cb_fn != NULL) {
5374 0 : if (vu_req->cb_fn(vu_req, vu_req->cb_arg) != 0) {
5375 0 : fail_ctrlr(sq->ctrlr);
5376 : }
5377 : }
5378 :
5379 0 : _nvmf_vfio_user_req_free(sq, vu_req);
5380 :
5381 0 : return 0;
5382 : }
5383 :
5384 : static void
5385 0 : nvmf_vfio_user_close_qpair(struct spdk_nvmf_qpair *qpair,
5386 : spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
5387 : {
5388 : struct nvmf_vfio_user_sq *sq;
5389 : struct nvmf_vfio_user_ctrlr *vu_ctrlr;
5390 : struct nvmf_vfio_user_endpoint *endpoint;
5391 : struct vfio_user_delete_sq_ctx *del_ctx;
5392 :
5393 0 : assert(qpair != NULL);
5394 0 : sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5395 0 : vu_ctrlr = sq->ctrlr;
5396 0 : endpoint = vu_ctrlr->endpoint;
5397 0 : del_ctx = sq->delete_ctx;
5398 0 : sq->delete_ctx = NULL;
5399 :
5400 0 : pthread_mutex_lock(&endpoint->lock);
5401 0 : TAILQ_REMOVE(&vu_ctrlr->connected_sqs, sq, tailq);
5402 0 : delete_sq_done(vu_ctrlr, sq);
5403 0 : if (TAILQ_EMPTY(&vu_ctrlr->connected_sqs)) {
5404 0 : endpoint->ctrlr = NULL;
5405 0 : if (vu_ctrlr->in_source_vm && endpoint->need_resume) {
5406 : /* The controller will be freed, we can resume the subsystem
5407 : * now so that the endpoint can be ready to accept another
5408 : * new connection.
5409 : */
5410 0 : spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
5411 : vfio_user_endpoint_resume_done, endpoint);
5412 : }
5413 0 : free_ctrlr(vu_ctrlr);
5414 : }
5415 0 : pthread_mutex_unlock(&endpoint->lock);
5416 :
5417 0 : if (del_ctx) {
5418 0 : vfio_user_qpair_delete_cb(del_ctx);
5419 : }
5420 :
5421 0 : if (cb_fn) {
5422 0 : cb_fn(cb_arg);
5423 : }
5424 0 : }
5425 :
5426 : /**
5427 : * Returns a preallocated request, or NULL if there isn't one available.
5428 : */
5429 : static struct nvmf_vfio_user_req *
5430 0 : get_nvmf_vfio_user_req(struct nvmf_vfio_user_sq *sq)
5431 : {
5432 : struct nvmf_vfio_user_req *req;
5433 :
5434 0 : if (sq == NULL) {
5435 0 : return NULL;
5436 : }
5437 :
5438 0 : req = TAILQ_FIRST(&sq->free_reqs);
5439 0 : if (req == NULL) {
5440 0 : return NULL;
5441 : }
5442 :
5443 0 : TAILQ_REMOVE(&sq->free_reqs, req, link);
5444 :
5445 0 : return req;
5446 : }
5447 :
5448 : static int
5449 0 : get_nvmf_io_req_length(struct spdk_nvmf_request *req)
5450 : {
5451 : uint16_t nr;
5452 : uint32_t nlb, nsid;
5453 0 : struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
5454 0 : struct spdk_nvmf_ctrlr *ctrlr = req->qpair->ctrlr;
5455 : struct spdk_nvmf_ns *ns;
5456 :
5457 0 : nsid = cmd->nsid;
5458 0 : ns = _nvmf_subsystem_get_ns(ctrlr->subsys, nsid);
5459 0 : if (ns == NULL || ns->bdev == NULL) {
5460 0 : SPDK_ERRLOG("unsuccessful query for nsid %u\n", cmd->nsid);
5461 0 : return -EINVAL;
5462 : }
5463 :
5464 0 : if (cmd->opc == SPDK_NVME_OPC_DATASET_MANAGEMENT) {
5465 0 : nr = cmd->cdw10_bits.dsm.nr + 1;
5466 0 : return nr * sizeof(struct spdk_nvme_dsm_range);
5467 : }
5468 :
5469 0 : if (cmd->opc == SPDK_NVME_OPC_COPY) {
5470 0 : nr = (cmd->cdw12 & 0x000000ffu) + 1;
5471 0 : return nr * sizeof(struct spdk_nvme_scc_source_range);
5472 : }
5473 :
5474 0 : nlb = (cmd->cdw12 & 0x0000ffffu) + 1;
5475 0 : return nlb * spdk_bdev_desc_get_block_size(ns->desc);
5476 : }
5477 :
5478 : static int
5479 0 : map_admin_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req)
5480 : {
5481 0 : struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
5482 0 : uint32_t len = 0, numdw = 0;
5483 : uint8_t fid;
5484 : int iovcnt;
5485 :
5486 0 : req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
5487 :
5488 0 : if (req->xfer == SPDK_NVME_DATA_NONE) {
5489 0 : return 0;
5490 : }
5491 :
5492 0 : switch (cmd->opc) {
5493 0 : case SPDK_NVME_OPC_IDENTIFY:
5494 0 : len = 4096;
5495 0 : break;
5496 0 : case SPDK_NVME_OPC_GET_LOG_PAGE:
5497 0 : numdw = ((((uint32_t)cmd->cdw11_bits.get_log_page.numdu << 16) |
5498 0 : cmd->cdw10_bits.get_log_page.numdl) + 1);
5499 0 : if (numdw > UINT32_MAX / 4) {
5500 0 : return -EINVAL;
5501 : }
5502 0 : len = numdw * 4;
5503 0 : break;
5504 0 : case SPDK_NVME_OPC_GET_FEATURES:
5505 : case SPDK_NVME_OPC_SET_FEATURES:
5506 0 : fid = cmd->cdw10_bits.set_features.fid;
5507 0 : switch (fid) {
5508 0 : case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
5509 0 : len = 4096;
5510 0 : break;
5511 0 : case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
5512 0 : len = 256;
5513 0 : break;
5514 0 : case SPDK_NVME_FEAT_TIMESTAMP:
5515 0 : len = 8;
5516 0 : break;
5517 0 : case SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
5518 0 : len = 512;
5519 0 : break;
5520 0 : case SPDK_NVME_FEAT_HOST_IDENTIFIER:
5521 0 : if (cmd->cdw11_bits.feat_host_identifier.bits.exhid) {
5522 0 : len = 16;
5523 : } else {
5524 0 : len = 8;
5525 : }
5526 0 : break;
5527 0 : default:
5528 0 : return 0;
5529 : }
5530 0 : break;
5531 0 : case SPDK_NVME_OPC_FABRIC:
5532 0 : return -ENOTSUP;
5533 0 : default:
5534 0 : return 0;
5535 : }
5536 :
5537 : /* ADMIN command will not use SGL */
5538 0 : if (cmd->psdt != 0) {
5539 0 : return -EINVAL;
5540 : }
5541 :
5542 0 : iovcnt = vfio_user_map_cmd(ctrlr, req, req->iov, len);
5543 0 : if (iovcnt < 0) {
5544 0 : SPDK_ERRLOG("%s: map Admin Opc %x failed\n",
5545 : ctrlr_id(ctrlr), cmd->opc);
5546 0 : return -1;
5547 : }
5548 0 : req->length = len;
5549 0 : req->iovcnt = iovcnt;
5550 :
5551 0 : return 0;
5552 : }
5553 :
5554 : /*
5555 : * Map an I/O command's buffers.
5556 : *
5557 : * Returns 0 on success and -errno on failure.
5558 : */
5559 : static int
5560 0 : map_io_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req)
5561 : {
5562 : int len, iovcnt;
5563 : struct spdk_nvme_cmd *cmd;
5564 :
5565 0 : assert(ctrlr != NULL);
5566 0 : assert(req != NULL);
5567 :
5568 0 : cmd = &req->cmd->nvme_cmd;
5569 0 : req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
5570 :
5571 0 : if (spdk_unlikely(req->xfer == SPDK_NVME_DATA_NONE)) {
5572 0 : return 0;
5573 : }
5574 :
5575 0 : len = get_nvmf_io_req_length(req);
5576 0 : if (len < 0) {
5577 0 : return -EINVAL;
5578 : }
5579 0 : req->length = len;
5580 :
5581 0 : iovcnt = vfio_user_map_cmd(ctrlr, req, req->iov, req->length);
5582 0 : if (iovcnt < 0) {
5583 0 : SPDK_ERRLOG("%s: failed to map IO OPC %u\n", ctrlr_id(ctrlr), cmd->opc);
5584 0 : return -EFAULT;
5585 : }
5586 0 : req->iovcnt = iovcnt;
5587 :
5588 0 : return 0;
5589 : }
5590 :
5591 : static int
5592 0 : handle_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd,
5593 : struct nvmf_vfio_user_sq *sq)
5594 : {
5595 : int err;
5596 : struct nvmf_vfio_user_req *vu_req;
5597 : struct spdk_nvmf_request *req;
5598 :
5599 0 : assert(ctrlr != NULL);
5600 0 : assert(cmd != NULL);
5601 :
5602 0 : vu_req = get_nvmf_vfio_user_req(sq);
5603 0 : if (spdk_unlikely(vu_req == NULL)) {
5604 0 : SPDK_ERRLOG("%s: no request for NVMe command opc 0x%x\n", ctrlr_id(ctrlr), cmd->opc);
5605 0 : return post_completion(ctrlr, ctrlr->cqs[sq->cqid], 0, 0, cmd->cid,
5606 : SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, SPDK_NVME_SCT_GENERIC);
5607 :
5608 : }
5609 0 : req = &vu_req->req;
5610 :
5611 0 : assert(req->qpair != NULL);
5612 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: handle sqid:%u, req opc=%#x cid=%d\n",
5613 : ctrlr_id(ctrlr), req->qpair->qid, cmd->opc, cmd->cid);
5614 :
5615 0 : vu_req->cb_fn = handle_cmd_rsp;
5616 0 : vu_req->cb_arg = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
5617 0 : req->cmd->nvme_cmd = *cmd;
5618 :
5619 0 : if (nvmf_qpair_is_admin_queue(req->qpair)) {
5620 0 : err = map_admin_cmd_req(ctrlr, req);
5621 : } else {
5622 0 : switch (cmd->opc) {
5623 0 : case SPDK_NVME_OPC_RESERVATION_REGISTER:
5624 : case SPDK_NVME_OPC_RESERVATION_REPORT:
5625 : case SPDK_NVME_OPC_RESERVATION_ACQUIRE:
5626 : case SPDK_NVME_OPC_RESERVATION_RELEASE:
5627 : case SPDK_NVME_OPC_FABRIC:
5628 0 : err = -ENOTSUP;
5629 0 : break;
5630 0 : default:
5631 0 : err = map_io_cmd_req(ctrlr, req);
5632 0 : break;
5633 : }
5634 : }
5635 :
5636 0 : if (spdk_unlikely(err < 0)) {
5637 0 : SPDK_ERRLOG("%s: process NVMe command opc 0x%x failed\n",
5638 : ctrlr_id(ctrlr), cmd->opc);
5639 0 : req->rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
5640 0 : req->rsp->nvme_cpl.status.sc = err == -ENOTSUP ?
5641 : SPDK_NVME_SC_INVALID_OPCODE :
5642 : SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
5643 0 : err = handle_cmd_rsp(vu_req, vu_req->cb_arg);
5644 0 : _nvmf_vfio_user_req_free(sq, vu_req);
5645 0 : return err;
5646 : }
5647 :
5648 0 : vu_req->state = VFIO_USER_REQUEST_STATE_EXECUTING;
5649 0 : spdk_nvmf_request_exec(req);
5650 :
5651 0 : return 0;
5652 : }
5653 :
5654 : /*
5655 : * If we suppressed an IRQ in post_completion(), check if it needs to be fired
5656 : * here: if the host isn't up to date, and is apparently not actively processing
5657 : * the queue (i.e. ->last_head isn't changing), we need an IRQ.
5658 : */
5659 : static void
5660 0 : handle_suppressed_irq(struct nvmf_vfio_user_ctrlr *ctrlr,
5661 : struct nvmf_vfio_user_sq *sq)
5662 : {
5663 0 : struct nvmf_vfio_user_cq *cq = ctrlr->cqs[sq->cqid];
5664 : uint32_t cq_head;
5665 : uint32_t cq_tail;
5666 :
5667 0 : if (!cq->ien || cq->qid == 0 || !ctrlr_interrupt_enabled(ctrlr)) {
5668 0 : return;
5669 : }
5670 :
5671 0 : cq_tail = *cq_tailp(cq);
5672 :
5673 : /* Already sent? */
5674 0 : if (cq_tail == cq->last_trigger_irq_tail) {
5675 0 : return;
5676 : }
5677 :
5678 : spdk_ivdt_dcache(cq_dbl_headp(cq));
5679 0 : cq_head = *cq_dbl_headp(cq);
5680 :
5681 0 : if (cq_head != cq_tail && cq_head == cq->last_head) {
5682 0 : int err = vfu_irq_trigger(ctrlr->endpoint->vfu_ctx, cq->iv);
5683 0 : if (err != 0) {
5684 0 : SPDK_ERRLOG("%s: failed to trigger interrupt: %m\n",
5685 : ctrlr_id(ctrlr));
5686 : } else {
5687 0 : cq->last_trigger_irq_tail = cq_tail;
5688 : }
5689 : }
5690 :
5691 0 : cq->last_head = cq_head;
5692 : }
5693 :
5694 : /* Returns the number of commands processed, or a negative value on error. */
5695 : static int
5696 0 : nvmf_vfio_user_sq_poll(struct nvmf_vfio_user_sq *sq)
5697 : {
5698 : struct nvmf_vfio_user_ctrlr *ctrlr;
5699 : uint32_t new_tail;
5700 0 : int count = 0;
5701 :
5702 0 : assert(sq != NULL);
5703 :
5704 0 : ctrlr = sq->ctrlr;
5705 :
5706 : /*
5707 : * A quiesced, or migrating, controller should never process new
5708 : * commands.
5709 : */
5710 0 : if (ctrlr->state != VFIO_USER_CTRLR_RUNNING) {
5711 0 : return SPDK_POLLER_IDLE;
5712 : }
5713 :
5714 0 : if (ctrlr->adaptive_irqs_enabled) {
5715 0 : handle_suppressed_irq(ctrlr, sq);
5716 : }
5717 :
5718 : /* On aarch64 platforms, doorbells update from guest VM may not be seen
5719 : * on SPDK target side. This is because there is memory type mismatch
5720 : * situation here. That is on guest VM side, the doorbells are treated as
5721 : * device memory while on SPDK target side, it is treated as normal
5722 : * memory. And this situation cause problem on ARM platform.
5723 : * Refer to "https://developer.arm.com/documentation/102376/0100/
5724 : * Memory-aliasing-and-mismatched-memory-types". Only using spdk_mb()
5725 : * cannot fix this. Use "dc civac" to invalidate cache may solve
5726 : * this.
5727 : */
5728 : spdk_ivdt_dcache(sq_dbl_tailp(sq));
5729 :
5730 : /* Load-Acquire. */
5731 0 : new_tail = *sq_dbl_tailp(sq);
5732 :
5733 0 : new_tail = new_tail & 0xffffu;
5734 0 : if (spdk_unlikely(new_tail >= sq->size)) {
5735 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: invalid sqid:%u doorbell value %u\n", ctrlr_id(ctrlr), sq->qid,
5736 : new_tail);
5737 0 : spdk_nvmf_ctrlr_async_event_error_event(ctrlr->ctrlr, SPDK_NVME_ASYNC_EVENT_INVALID_DB_WRITE);
5738 :
5739 0 : return -1;
5740 : }
5741 :
5742 0 : if (*sq_headp(sq) == new_tail) {
5743 0 : return 0;
5744 : }
5745 :
5746 0 : SPDK_DEBUGLOG(nvmf_vfio, "%s: sqid:%u doorbell old=%u new=%u\n",
5747 : ctrlr_id(ctrlr), sq->qid, *sq_headp(sq), new_tail);
5748 0 : if (ctrlr->sdbl != NULL) {
5749 0 : SPDK_DEBUGLOG(nvmf_vfio,
5750 : "%s: sqid:%u bar0_doorbell=%u shadow_doorbell=%u eventidx=%u\n",
5751 : ctrlr_id(ctrlr), sq->qid,
5752 : ctrlr->bar0_doorbells[queue_index(sq->qid, false)],
5753 : ctrlr->sdbl->shadow_doorbells[queue_index(sq->qid, false)],
5754 : ctrlr->sdbl->eventidxs[queue_index(sq->qid, false)]);
5755 : }
5756 :
5757 : /*
5758 : * Ensure that changes to the queue are visible to us.
5759 : * The host driver should write the queue first, do a wmb(), and then
5760 : * update the SQ tail doorbell (their Store-Release).
5761 : */
5762 0 : spdk_rmb();
5763 :
5764 0 : count = handle_sq_tdbl_write(ctrlr, new_tail, sq);
5765 0 : if (spdk_unlikely(count < 0)) {
5766 0 : fail_ctrlr(ctrlr);
5767 : }
5768 :
5769 0 : return count;
5770 : }
5771 :
5772 : /*
5773 : * vfio-user transport poll handler. Note that the library context is polled in
5774 : * a separate poller (->vfu_ctx_poller), so this poller only needs to poll the
5775 : * active SQs.
5776 : *
5777 : * Returns the number of commands processed, or a negative value on error.
5778 : */
5779 : static int
5780 0 : nvmf_vfio_user_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
5781 : {
5782 : struct nvmf_vfio_user_poll_group *vu_group;
5783 : struct nvmf_vfio_user_sq *sq, *tmp;
5784 0 : int count = 0;
5785 :
5786 0 : assert(group != NULL);
5787 :
5788 0 : vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
5789 :
5790 0 : SPDK_DEBUGLOG(vfio_user_db, "polling all SQs\n");
5791 :
5792 0 : TAILQ_FOREACH_SAFE(sq, &vu_group->sqs, link, tmp) {
5793 : int ret;
5794 :
5795 0 : if (spdk_unlikely(sq->sq_state != VFIO_USER_SQ_ACTIVE || !sq->size)) {
5796 0 : continue;
5797 : }
5798 :
5799 0 : ret = nvmf_vfio_user_sq_poll(sq);
5800 :
5801 0 : if (spdk_unlikely(ret < 0)) {
5802 0 : return ret;
5803 : }
5804 :
5805 0 : count += ret;
5806 : }
5807 :
5808 0 : vu_group->stats.polls++;
5809 0 : vu_group->stats.poll_reqs += count;
5810 0 : vu_group->stats.poll_reqs_squared += count * count;
5811 0 : if (count == 0) {
5812 0 : vu_group->stats.polls_spurious++;
5813 : }
5814 :
5815 0 : if (vu_group->need_kick) {
5816 0 : poll_group_kick(vu_group);
5817 : }
5818 :
5819 0 : return count;
5820 : }
5821 :
5822 : static int
5823 0 : nvmf_vfio_user_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
5824 : struct spdk_nvme_transport_id *trid)
5825 : {
5826 : struct nvmf_vfio_user_sq *sq;
5827 : struct nvmf_vfio_user_ctrlr *ctrlr;
5828 :
5829 0 : sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5830 0 : ctrlr = sq->ctrlr;
5831 :
5832 0 : memcpy(trid, &ctrlr->endpoint->trid, sizeof(*trid));
5833 0 : return 0;
5834 : }
5835 :
5836 : static int
5837 0 : nvmf_vfio_user_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
5838 : struct spdk_nvme_transport_id *trid)
5839 : {
5840 0 : return 0;
5841 : }
5842 :
5843 : static int
5844 0 : nvmf_vfio_user_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
5845 : struct spdk_nvme_transport_id *trid)
5846 : {
5847 : struct nvmf_vfio_user_sq *sq;
5848 : struct nvmf_vfio_user_ctrlr *ctrlr;
5849 :
5850 0 : sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5851 0 : ctrlr = sq->ctrlr;
5852 :
5853 0 : memcpy(trid, &ctrlr->endpoint->trid, sizeof(*trid));
5854 0 : return 0;
5855 : }
5856 :
5857 : static void
5858 0 : nvmf_vfio_user_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
5859 : struct spdk_nvmf_request *req)
5860 : {
5861 0 : struct spdk_nvmf_request *req_to_abort = NULL;
5862 0 : struct spdk_nvmf_request *temp_req = NULL;
5863 : uint16_t cid;
5864 :
5865 0 : cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
5866 :
5867 0 : TAILQ_FOREACH(temp_req, &qpair->outstanding, link) {
5868 : struct nvmf_vfio_user_req *vu_req;
5869 :
5870 0 : vu_req = SPDK_CONTAINEROF(temp_req, struct nvmf_vfio_user_req, req);
5871 :
5872 0 : if (vu_req->state == VFIO_USER_REQUEST_STATE_EXECUTING && vu_req->cmd.cid == cid) {
5873 0 : req_to_abort = temp_req;
5874 0 : break;
5875 : }
5876 : }
5877 :
5878 0 : if (req_to_abort == NULL) {
5879 0 : spdk_nvmf_request_complete(req);
5880 0 : return;
5881 : }
5882 :
5883 0 : req->req_to_abort = req_to_abort;
5884 0 : nvmf_ctrlr_abort_request(req);
5885 : }
5886 :
5887 : static void
5888 0 : nvmf_vfio_user_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
5889 : struct spdk_json_write_ctx *w)
5890 : {
5891 0 : struct nvmf_vfio_user_poll_group *vu_group = SPDK_CONTAINEROF(group,
5892 : struct nvmf_vfio_user_poll_group, group);
5893 : uint64_t polls_denom;
5894 :
5895 0 : spdk_json_write_named_uint64(w, "ctrlr_intr", vu_group->stats.ctrlr_intr);
5896 0 : spdk_json_write_named_uint64(w, "ctrlr_kicks", vu_group->stats.ctrlr_kicks);
5897 0 : spdk_json_write_named_uint64(w, "pg_kicks", vu_group->stats.pg_kicks);
5898 0 : spdk_json_write_named_uint64(w, "won", vu_group->stats.won);
5899 0 : spdk_json_write_named_uint64(w, "lost", vu_group->stats.lost);
5900 0 : spdk_json_write_named_uint64(w, "lost_count", vu_group->stats.lost_count);
5901 0 : spdk_json_write_named_uint64(w, "rearms", vu_group->stats.rearms);
5902 0 : spdk_json_write_named_uint64(w, "cq_full", vu_group->stats.cq_full);
5903 0 : spdk_json_write_named_uint64(w, "pg_process_count", vu_group->stats.pg_process_count);
5904 0 : spdk_json_write_named_uint64(w, "intr", vu_group->stats.intr);
5905 0 : spdk_json_write_named_uint64(w, "polls", vu_group->stats.polls);
5906 0 : spdk_json_write_named_uint64(w, "polls_spurious", vu_group->stats.polls_spurious);
5907 0 : spdk_json_write_named_uint64(w, "poll_reqs", vu_group->stats.poll_reqs);
5908 0 : polls_denom = vu_group->stats.polls * (vu_group->stats.polls - 1);
5909 0 : if (polls_denom) {
5910 0 : uint64_t n = vu_group->stats.polls * vu_group->stats.poll_reqs_squared - vu_group->stats.poll_reqs *
5911 0 : vu_group->stats.poll_reqs;
5912 0 : spdk_json_write_named_double(w, "poll_reqs_variance", sqrt(n / polls_denom));
5913 : }
5914 :
5915 0 : spdk_json_write_named_uint64(w, "cqh_admin_writes", vu_group->stats.cqh_admin_writes);
5916 0 : spdk_json_write_named_uint64(w, "cqh_io_writes", vu_group->stats.cqh_io_writes);
5917 0 : }
5918 :
5919 : static void
5920 0 : nvmf_vfio_user_opts_init(struct spdk_nvmf_transport_opts *opts)
5921 : {
5922 0 : opts->max_queue_depth = NVMF_VFIO_USER_DEFAULT_MAX_QUEUE_DEPTH;
5923 0 : opts->max_qpairs_per_ctrlr = NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR;
5924 0 : opts->in_capsule_data_size = 0;
5925 0 : opts->max_io_size = NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE;
5926 0 : opts->io_unit_size = NVMF_VFIO_USER_DEFAULT_IO_UNIT_SIZE;
5927 0 : opts->max_aq_depth = NVMF_VFIO_USER_DEFAULT_AQ_DEPTH;
5928 0 : opts->num_shared_buffers = 0;
5929 0 : opts->buf_cache_size = 0;
5930 0 : opts->association_timeout = 0;
5931 0 : opts->transport_specific = NULL;
5932 0 : }
5933 :
5934 : const struct spdk_nvmf_transport_ops spdk_nvmf_transport_vfio_user = {
5935 : .name = "VFIOUSER",
5936 : .type = SPDK_NVME_TRANSPORT_VFIOUSER,
5937 : .opts_init = nvmf_vfio_user_opts_init,
5938 : .create = nvmf_vfio_user_create,
5939 : .destroy = nvmf_vfio_user_destroy,
5940 :
5941 : .listen = nvmf_vfio_user_listen,
5942 : .stop_listen = nvmf_vfio_user_stop_listen,
5943 : .cdata_init = nvmf_vfio_user_cdata_init,
5944 : .listen_associate = nvmf_vfio_user_listen_associate,
5945 :
5946 : .listener_discover = nvmf_vfio_user_discover,
5947 :
5948 : .poll_group_create = nvmf_vfio_user_poll_group_create,
5949 : .get_optimal_poll_group = nvmf_vfio_user_get_optimal_poll_group,
5950 : .poll_group_destroy = nvmf_vfio_user_poll_group_destroy,
5951 : .poll_group_add = nvmf_vfio_user_poll_group_add,
5952 : .poll_group_remove = nvmf_vfio_user_poll_group_remove,
5953 : .poll_group_poll = nvmf_vfio_user_poll_group_poll,
5954 :
5955 : .req_free = nvmf_vfio_user_req_free,
5956 : .req_complete = nvmf_vfio_user_req_complete,
5957 :
5958 : .qpair_fini = nvmf_vfio_user_close_qpair,
5959 : .qpair_get_local_trid = nvmf_vfio_user_qpair_get_local_trid,
5960 : .qpair_get_peer_trid = nvmf_vfio_user_qpair_get_peer_trid,
5961 : .qpair_get_listen_trid = nvmf_vfio_user_qpair_get_listen_trid,
5962 : .qpair_abort_request = nvmf_vfio_user_qpair_abort_request,
5963 :
5964 : .poll_group_dump_stat = nvmf_vfio_user_poll_group_dump_stat,
5965 : };
5966 :
5967 1 : SPDK_NVMF_TRANSPORT_REGISTER(muser, &spdk_nvmf_transport_vfio_user);
5968 1 : SPDK_LOG_REGISTER_COMPONENT(nvmf_vfio)
5969 1 : SPDK_LOG_REGISTER_COMPONENT(vfio_user_db)
|