Line data Source code
1 : /* SPDX-License-Identifier: BSD-3-Clause
2 : * Copyright (C) 2015 Intel Corporation. All rights reserved.
3 : * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4 : * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5 : */
6 :
7 : #include "spdk/stdinc.h"
8 :
9 : #include "nvme_internal.h"
10 : #include "nvme_io_msg.h"
11 :
12 : #include "spdk/env.h"
13 : #include "spdk/string.h"
14 : #include "spdk/endian.h"
15 :
16 : struct nvme_active_ns_ctx;
17 :
18 : static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 : struct nvme_async_event_request *aer);
20 : static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 : static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 : static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 : static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 : static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 : static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 : uint64_t timeout_in_ms);
27 :
28 : static int
29 477891 : nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 : {
31 477891 : if (ns1->id < ns2->id) {
32 164867 : return -1;
33 313024 : } else if (ns1->id > ns2->id) {
34 276062 : return 1;
35 : } else {
36 36962 : return 0;
37 : }
38 : }
39 :
40 599405 : RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 :
42 : #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
43 : nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
44 : offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
45 :
46 : #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
47 : nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
48 : offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
49 :
50 : #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
51 : nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
52 :
53 : #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
54 : nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
55 :
56 : #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
57 : nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
58 :
59 : #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
60 : nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
61 :
62 : #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
63 : nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
64 :
65 : static int
66 0 : nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
67 : {
68 0 : return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
69 : &cc->raw);
70 : }
71 :
72 : static int
73 0 : nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
74 : {
75 0 : return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
76 : &csts->raw);
77 : }
78 :
79 : int
80 0 : nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
81 : {
82 0 : return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
83 : &cap->raw);
84 : }
85 :
86 : int
87 1 : nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
88 : {
89 1 : return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
90 : &vs->raw);
91 : }
92 :
93 : int
94 0 : nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
95 : {
96 0 : return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
97 : &cmbsz->raw);
98 : }
99 :
100 : int
101 0 : nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
102 : {
103 0 : return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
104 : &pmrcap->raw);
105 : }
106 :
107 : int
108 0 : nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
109 : {
110 0 : return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
111 : &bpinfo->raw);
112 : }
113 :
114 : int
115 0 : nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
116 : {
117 0 : return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
118 : bprsel->raw);
119 : }
120 :
121 : int
122 0 : nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
123 : {
124 0 : return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
125 : bpmbl_value);
126 : }
127 :
128 : static int
129 0 : nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
130 : {
131 0 : return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
132 : nssr_value);
133 : }
134 :
135 : bool
136 33 : nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
137 : {
138 35 : return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
139 2 : ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
140 : }
141 :
142 : /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
143 : * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
144 : */
145 : void
146 2 : spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
147 : {
148 2 : assert(opts);
149 :
150 2 : opts->opts_size = opts_size;
151 :
152 : #define FIELD_OK(field) \
153 : offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
154 :
155 : #define SET_FIELD(field, value) \
156 : if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
157 : opts->field = value; \
158 : } \
159 :
160 2 : SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
161 2 : SET_FIELD(use_cmb_sqs, false);
162 2 : SET_FIELD(no_shn_notification, false);
163 2 : SET_FIELD(enable_interrupts, false);
164 2 : SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
165 2 : SET_FIELD(arbitration_burst, 0);
166 2 : SET_FIELD(low_priority_weight, 0);
167 2 : SET_FIELD(medium_priority_weight, 0);
168 2 : SET_FIELD(high_priority_weight, 0);
169 2 : SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
170 2 : SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
171 2 : SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
172 :
173 2 : if (nvme_driver_init() == 0) {
174 2 : if (FIELD_OK(hostnqn)) {
175 1 : nvme_get_default_hostnqn(opts->hostnqn, sizeof(opts->hostnqn));
176 : }
177 :
178 2 : if (FIELD_OK(extended_host_id)) {
179 1 : memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
180 : sizeof(opts->extended_host_id));
181 : }
182 :
183 : }
184 :
185 2 : SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
186 :
187 2 : if (FIELD_OK(src_addr)) {
188 1 : memset(opts->src_addr, 0, sizeof(opts->src_addr));
189 : }
190 :
191 2 : if (FIELD_OK(src_svcid)) {
192 1 : memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
193 : }
194 :
195 2 : if (FIELD_OK(host_id)) {
196 1 : memset(opts->host_id, 0, sizeof(opts->host_id));
197 : }
198 :
199 2 : SET_FIELD(command_set, CHAR_BIT);
200 2 : SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
201 2 : SET_FIELD(header_digest, false);
202 2 : SET_FIELD(data_digest, false);
203 2 : SET_FIELD(disable_error_logging, false);
204 2 : SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
205 2 : SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
206 2 : SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
207 2 : SET_FIELD(disable_read_ana_log_page, false);
208 2 : SET_FIELD(disable_read_changed_ns_list_log_page, false);
209 2 : SET_FIELD(tls_psk, NULL);
210 2 : SET_FIELD(dhchap_key, NULL);
211 2 : SET_FIELD(dhchap_ctrlr_key, NULL);
212 2 : SET_FIELD(dhchap_digests,
213 : SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) |
214 : SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) |
215 : SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512));
216 2 : SET_FIELD(dhchap_dhgroups,
217 : SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) |
218 : SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) |
219 : SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) |
220 : SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) |
221 : SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) |
222 : SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192));
223 : #undef FIELD_OK
224 : #undef SET_FIELD
225 2 : }
226 :
227 : const struct spdk_nvme_ctrlr_opts *
228 0 : spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
229 : {
230 0 : return &ctrlr->opts;
231 : }
232 :
233 : /**
234 : * This function will be called when the process allocates the IO qpair.
235 : * Note: the ctrlr_lock must be held when calling this function.
236 : */
237 : static void
238 15 : nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
239 : {
240 : struct spdk_nvme_ctrlr_process *active_proc;
241 15 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
242 :
243 15 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
244 15 : if (active_proc) {
245 0 : TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
246 0 : qpair->active_proc = active_proc;
247 : }
248 15 : }
249 :
250 : /**
251 : * This function will be called when the process frees the IO qpair.
252 : * Note: the ctrlr_lock must be held when calling this function.
253 : */
254 : static void
255 15 : nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
256 : {
257 : struct spdk_nvme_ctrlr_process *active_proc;
258 15 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
259 : struct spdk_nvme_qpair *active_qpair, *tmp_qpair;
260 :
261 15 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
262 15 : if (!active_proc) {
263 15 : return;
264 : }
265 :
266 0 : TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
267 : per_process_tailq, tmp_qpair) {
268 0 : if (active_qpair == qpair) {
269 0 : TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
270 : active_qpair, per_process_tailq);
271 :
272 0 : break;
273 : }
274 : }
275 : }
276 :
277 : void
278 27 : spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
279 : struct spdk_nvme_io_qpair_opts *opts,
280 : size_t opts_size)
281 : {
282 27 : assert(ctrlr);
283 :
284 27 : assert(opts);
285 :
286 27 : memset(opts, 0, opts_size);
287 27 : opts->opts_size = opts_size;
288 :
289 : #define FIELD_OK(field) \
290 : offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
291 :
292 : #define SET_FIELD(field, value) \
293 : if (FIELD_OK(field)) { \
294 : opts->field = value; \
295 : } \
296 :
297 27 : SET_FIELD(qprio, SPDK_NVME_QPRIO_URGENT);
298 27 : SET_FIELD(io_queue_size, ctrlr->opts.io_queue_size);
299 27 : SET_FIELD(io_queue_requests, ctrlr->opts.io_queue_requests);
300 27 : SET_FIELD(delay_cmd_submit, false);
301 27 : SET_FIELD(sq.vaddr, NULL);
302 27 : SET_FIELD(sq.paddr, 0);
303 27 : SET_FIELD(sq.buffer_size, 0);
304 27 : SET_FIELD(cq.vaddr, NULL);
305 27 : SET_FIELD(cq.paddr, 0);
306 27 : SET_FIELD(cq.buffer_size, 0);
307 27 : SET_FIELD(create_only, false);
308 27 : SET_FIELD(async_mode, false);
309 27 : SET_FIELD(disable_pcie_sgl_merge, false);
310 :
311 : #undef FIELD_OK
312 : #undef SET_FIELD
313 27 : }
314 :
315 : static void
316 18 : nvme_ctrlr_io_qpair_opts_copy(struct spdk_nvme_io_qpair_opts *dst,
317 : const struct spdk_nvme_io_qpair_opts *src, size_t opts_size_src)
318 : {
319 18 : if (!opts_size_src) {
320 0 : SPDK_ERRLOG("opts_size_src should not be zero value\n");
321 0 : assert(false);
322 : }
323 :
324 : #define FIELD_OK(field) \
325 : offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(src->field) <= opts_size_src
326 :
327 : #define SET_FIELD(field) \
328 : if (FIELD_OK(field)) { \
329 : dst->field = src->field; \
330 : } \
331 :
332 18 : SET_FIELD(qprio);
333 18 : SET_FIELD(io_queue_size);
334 18 : SET_FIELD(io_queue_requests);
335 18 : SET_FIELD(delay_cmd_submit);
336 18 : SET_FIELD(sq.vaddr);
337 18 : SET_FIELD(sq.paddr);
338 18 : SET_FIELD(sq.buffer_size);
339 18 : SET_FIELD(cq.vaddr);
340 18 : SET_FIELD(cq.paddr);
341 18 : SET_FIELD(cq.buffer_size);
342 18 : SET_FIELD(create_only);
343 18 : SET_FIELD(async_mode);
344 18 : SET_FIELD(disable_pcie_sgl_merge);
345 :
346 18 : dst->opts_size = opts_size_src;
347 :
348 : /* You should not remove this statement, but need to update the assert statement
349 : * if you add a new field, and also add a corresponding SET_FIELD statement */
350 : SPDK_STATIC_ASSERT(sizeof(struct spdk_nvme_io_qpair_opts) == 80, "Incorrect size");
351 :
352 : #undef FIELD_OK
353 : #undef SET_FIELD
354 18 : }
355 :
356 : static struct spdk_nvme_qpair *
357 22 : nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
358 : const struct spdk_nvme_io_qpair_opts *opts)
359 : {
360 : int32_t qid;
361 : struct spdk_nvme_qpair *qpair;
362 : union spdk_nvme_cc_register cc;
363 :
364 22 : if (!ctrlr) {
365 0 : return NULL;
366 : }
367 :
368 22 : nvme_ctrlr_lock(ctrlr);
369 22 : cc.raw = ctrlr->process_init_cc.raw;
370 :
371 22 : if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
372 2 : nvme_ctrlr_unlock(ctrlr);
373 2 : return NULL;
374 : }
375 :
376 : /*
377 : * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
378 : * default round robin arbitration method.
379 : */
380 20 : if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
381 3 : NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
382 3 : nvme_ctrlr_unlock(ctrlr);
383 3 : return NULL;
384 : }
385 :
386 17 : qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
387 17 : if (qid < 0) {
388 2 : nvme_ctrlr_unlock(ctrlr);
389 2 : return NULL;
390 : }
391 :
392 15 : qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
393 15 : if (qpair == NULL) {
394 0 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
395 0 : spdk_nvme_ctrlr_free_qid(ctrlr, qid);
396 0 : nvme_ctrlr_unlock(ctrlr);
397 0 : return NULL;
398 : }
399 :
400 15 : TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
401 :
402 15 : nvme_ctrlr_proc_add_io_qpair(qpair);
403 :
404 15 : nvme_ctrlr_unlock(ctrlr);
405 :
406 15 : return qpair;
407 : }
408 :
409 : int
410 15 : spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
411 : {
412 : int rc;
413 :
414 15 : if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
415 0 : return -EISCONN;
416 : }
417 :
418 15 : nvme_ctrlr_lock(ctrlr);
419 15 : rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
420 15 : nvme_ctrlr_unlock(ctrlr);
421 :
422 15 : if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
423 0 : spdk_delay_us(100);
424 : }
425 :
426 15 : return rc;
427 : }
428 :
429 : void
430 0 : spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
431 : {
432 0 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
433 :
434 0 : nvme_ctrlr_lock(ctrlr);
435 0 : nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
436 0 : nvme_ctrlr_unlock(ctrlr);
437 0 : }
438 :
439 : int
440 0 : spdk_nvme_ctrlr_get_admin_qp_fd(struct spdk_nvme_ctrlr *ctrlr,
441 : struct spdk_event_handler_opts *opts)
442 : {
443 0 : return spdk_nvme_qpair_get_fd(ctrlr->adminq, opts);
444 : }
445 :
446 : struct spdk_nvme_qpair *
447 23 : spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
448 : const struct spdk_nvme_io_qpair_opts *user_opts,
449 : size_t opts_size)
450 : {
451 :
452 23 : struct spdk_nvme_qpair *qpair = NULL;
453 23 : struct spdk_nvme_io_qpair_opts opts;
454 : int rc;
455 :
456 23 : nvme_ctrlr_lock(ctrlr);
457 :
458 23 : if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
459 : /* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
460 : * We can't create IO qpair in that case */
461 1 : goto unlock;
462 : }
463 :
464 : /*
465 : * Get the default options, then overwrite them with the user-provided options
466 : * up to opts_size.
467 : *
468 : * This allows for extensions of the opts structure without breaking
469 : * ABI compatibility.
470 : */
471 22 : spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
472 22 : if (user_opts) {
473 18 : nvme_ctrlr_io_qpair_opts_copy(&opts, user_opts, spdk_min(opts.opts_size, opts_size));
474 :
475 : /* If user passes buffers, make sure they're big enough for the requested queue size */
476 18 : if (opts.sq.vaddr) {
477 0 : if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
478 0 : NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
479 : opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
480 0 : goto unlock;
481 : }
482 : }
483 18 : if (opts.cq.vaddr) {
484 0 : if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
485 0 : NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
486 : opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
487 0 : goto unlock;
488 : }
489 : }
490 : }
491 :
492 22 : if (ctrlr->opts.enable_interrupts && opts.delay_cmd_submit) {
493 0 : NVME_CTRLR_ERRLOG(ctrlr, "delay command submit cannot work with interrupts\n");
494 0 : goto unlock;
495 : }
496 :
497 22 : qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
498 :
499 22 : if (qpair == NULL || opts.create_only == true) {
500 7 : goto unlock;
501 : }
502 :
503 15 : rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
504 15 : if (rc != 0) {
505 1 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
506 1 : nvme_ctrlr_proc_remove_io_qpair(qpair);
507 1 : TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
508 1 : spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
509 1 : nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
510 1 : qpair = NULL;
511 1 : goto unlock;
512 : }
513 :
514 23 : unlock:
515 23 : nvme_ctrlr_unlock(ctrlr);
516 :
517 23 : return qpair;
518 : }
519 :
520 : int
521 8 : spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
522 : {
523 : struct spdk_nvme_ctrlr *ctrlr;
524 : enum nvme_qpair_state qpair_state;
525 : int rc;
526 :
527 8 : assert(qpair != NULL);
528 8 : assert(nvme_qpair_is_admin_queue(qpair) == false);
529 8 : assert(qpair->ctrlr != NULL);
530 :
531 8 : ctrlr = qpair->ctrlr;
532 8 : nvme_ctrlr_lock(ctrlr);
533 8 : qpair_state = nvme_qpair_get_state(qpair);
534 :
535 8 : if (ctrlr->is_removed) {
536 2 : rc = -ENODEV;
537 2 : goto out;
538 : }
539 :
540 6 : if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
541 2 : rc = -EAGAIN;
542 2 : goto out;
543 : }
544 :
545 4 : if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
546 2 : rc = -ENXIO;
547 2 : goto out;
548 : }
549 :
550 2 : if (qpair_state != NVME_QPAIR_DISCONNECTED) {
551 1 : rc = 0;
552 1 : goto out;
553 : }
554 :
555 1 : rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
556 1 : if (rc) {
557 0 : rc = -EAGAIN;
558 0 : goto out;
559 : }
560 :
561 1 : out:
562 8 : nvme_ctrlr_unlock(ctrlr);
563 8 : return rc;
564 : }
565 :
566 : spdk_nvme_qp_failure_reason
567 0 : spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
568 : {
569 0 : return ctrlr->adminq->transport_failure_reason;
570 : }
571 :
572 : /*
573 : * This internal function will attempt to take the controller
574 : * lock before calling disconnect on a controller qpair.
575 : * Functions already holding the controller lock should
576 : * call nvme_transport_ctrlr_disconnect_qpair directly.
577 : */
578 : void
579 0 : nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
580 : {
581 0 : struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
582 :
583 0 : assert(ctrlr != NULL);
584 0 : nvme_ctrlr_lock(ctrlr);
585 0 : nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
586 0 : nvme_ctrlr_unlock(ctrlr);
587 0 : }
588 :
589 : int
590 14 : spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
591 : {
592 : struct spdk_nvme_ctrlr *ctrlr;
593 :
594 14 : if (qpair == NULL) {
595 0 : return 0;
596 : }
597 :
598 14 : ctrlr = qpair->ctrlr;
599 :
600 14 : if (qpair->in_completion_context) {
601 : /*
602 : * There are many cases where it is convenient to delete an io qpair in the context
603 : * of that qpair's completion routine. To handle this properly, set a flag here
604 : * so that the completion routine will perform an actual delete after the context
605 : * unwinds.
606 : */
607 0 : qpair->delete_after_completion_context = 1;
608 0 : return 0;
609 : }
610 :
611 14 : if (qpair->auth.cb_fn != NULL) {
612 0 : qpair->auth.cb_fn(qpair->auth.cb_ctx, -ECANCELED);
613 0 : qpair->auth.cb_fn = NULL;
614 : }
615 :
616 14 : qpair->destroy_in_progress = 1;
617 :
618 14 : nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
619 :
620 14 : if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
621 0 : spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
622 : }
623 :
624 : /* Do not retry. */
625 14 : nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
626 :
627 : /* In the multi-process case, a process may call this function on a foreign
628 : * I/O qpair (i.e. one that this process did not create) when that qpairs process
629 : * exits unexpectedly. In that case, we must not try to abort any reqs associated
630 : * with that qpair, since the callbacks will also be foreign to this process.
631 : */
632 14 : if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
633 14 : nvme_qpair_abort_all_queued_reqs(qpair);
634 : }
635 :
636 14 : nvme_ctrlr_lock(ctrlr);
637 :
638 14 : nvme_ctrlr_proc_remove_io_qpair(qpair);
639 :
640 14 : TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
641 14 : spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
642 :
643 14 : nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
644 14 : nvme_ctrlr_unlock(ctrlr);
645 14 : return 0;
646 : }
647 :
648 : static void
649 3 : nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
650 : struct spdk_nvme_intel_log_page_directory *log_page_directory)
651 : {
652 3 : if (log_page_directory == NULL) {
653 0 : return;
654 : }
655 :
656 3 : assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
657 :
658 3 : ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
659 :
660 3 : if (log_page_directory->read_latency_log_len ||
661 2 : (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
662 2 : ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
663 : }
664 3 : if (log_page_directory->write_latency_log_len ||
665 2 : (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
666 2 : ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
667 : }
668 3 : if (log_page_directory->temperature_statistics_log_len) {
669 2 : ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
670 : }
671 3 : if (log_page_directory->smart_log_len) {
672 1 : ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
673 : }
674 3 : if (log_page_directory->marketing_description_log_len) {
675 1 : ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
676 : }
677 : }
678 :
679 : struct intel_log_pages_ctx {
680 : struct spdk_nvme_intel_log_page_directory log_page_directory;
681 : struct spdk_nvme_ctrlr *ctrlr;
682 : };
683 :
684 : static void
685 1 : nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
686 : {
687 1 : struct intel_log_pages_ctx *ctx = arg;
688 1 : struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
689 :
690 1 : if (!spdk_nvme_cpl_is_error(cpl)) {
691 1 : nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
692 : }
693 :
694 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
695 1 : ctrlr->opts.admin_timeout_ms);
696 1 : free(ctx);
697 1 : }
698 :
699 : static int
700 1 : nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
701 : {
702 1 : int rc = 0;
703 : struct intel_log_pages_ctx *ctx;
704 :
705 1 : ctx = calloc(1, sizeof(*ctx));
706 1 : if (!ctx) {
707 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
708 0 : ctrlr->opts.admin_timeout_ms);
709 0 : return 0;
710 : }
711 :
712 1 : ctx->ctrlr = ctrlr;
713 :
714 1 : rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
715 1 : SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
716 : sizeof(struct spdk_nvme_intel_log_page_directory),
717 : 0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
718 1 : if (rc != 0) {
719 0 : free(ctx);
720 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
721 0 : ctrlr->opts.admin_timeout_ms);
722 0 : return 0;
723 : }
724 :
725 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
726 1 : ctrlr->opts.admin_timeout_ms);
727 :
728 1 : return 0;
729 : }
730 :
731 : static int
732 4 : nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
733 : {
734 : uint32_t ana_log_page_size;
735 :
736 4 : ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
737 4 : sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
738 : sizeof(uint32_t);
739 :
740 : /* Number of active namespaces may have changed.
741 : * Check if ANA log page fits into existing buffer.
742 : */
743 4 : if (ana_log_page_size > ctrlr->ana_log_page_size) {
744 : void *new_buffer;
745 :
746 4 : if (ctrlr->ana_log_page) {
747 1 : new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
748 : } else {
749 3 : new_buffer = calloc(1, ana_log_page_size);
750 : }
751 :
752 4 : if (!new_buffer) {
753 0 : NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
754 : ana_log_page_size);
755 0 : return -ENXIO;
756 : }
757 :
758 4 : ctrlr->ana_log_page = new_buffer;
759 4 : if (ctrlr->copied_ana_desc) {
760 1 : new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
761 : } else {
762 3 : new_buffer = calloc(1, ana_log_page_size);
763 : }
764 :
765 4 : if (!new_buffer) {
766 0 : NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
767 : ana_log_page_size);
768 0 : return -ENOMEM;
769 : }
770 :
771 4 : ctrlr->copied_ana_desc = new_buffer;
772 4 : ctrlr->ana_log_page_size = ana_log_page_size;
773 : }
774 :
775 4 : return 0;
776 : }
777 :
778 : static int
779 4 : nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
780 : {
781 : struct nvme_completion_poll_status *status;
782 : int rc;
783 :
784 4 : rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
785 4 : if (rc != 0) {
786 0 : return rc;
787 : }
788 :
789 4 : status = calloc(1, sizeof(*status));
790 4 : if (status == NULL) {
791 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
792 0 : return -ENOMEM;
793 : }
794 :
795 4 : rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
796 4 : SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
797 : ctrlr->ana_log_page_size, 0,
798 : nvme_completion_poll_cb, status);
799 4 : if (rc != 0) {
800 0 : free(status);
801 0 : return rc;
802 : }
803 :
804 4 : if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
805 4 : ctrlr->opts.admin_timeout_ms * 1000)) {
806 0 : if (!status->timed_out) {
807 0 : free(status);
808 : }
809 0 : return -EIO;
810 : }
811 :
812 4 : free(status);
813 4 : return 0;
814 : }
815 :
816 : static int
817 5 : nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
818 : void *cb_arg)
819 : {
820 5 : struct spdk_nvme_ctrlr *ctrlr = cb_arg;
821 : struct spdk_nvme_ns *ns;
822 : uint32_t i, nsid;
823 :
824 14 : for (i = 0; i < desc->num_of_nsid; i++) {
825 9 : nsid = desc->nsid[i];
826 9 : if (nsid == 0 || nsid > ctrlr->cdata.nn) {
827 0 : continue;
828 : }
829 :
830 9 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
831 9 : assert(ns != NULL);
832 :
833 9 : ns->ana_group_id = desc->ana_group_id;
834 9 : ns->ana_state = desc->ana_state;
835 : }
836 :
837 5 : return 0;
838 : }
839 :
840 : int
841 4 : nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
842 : spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
843 : {
844 : struct spdk_nvme_ana_group_descriptor *copied_desc;
845 : uint8_t *orig_desc;
846 : uint32_t i, desc_size, copy_len;
847 4 : int rc = 0;
848 :
849 4 : if (ctrlr->ana_log_page == NULL) {
850 0 : return -EINVAL;
851 : }
852 :
853 4 : copied_desc = ctrlr->copied_ana_desc;
854 :
855 4 : orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
856 4 : copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
857 :
858 9 : for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
859 5 : memcpy(copied_desc, orig_desc, copy_len);
860 :
861 5 : rc = cb_fn(copied_desc, cb_arg);
862 5 : if (rc != 0) {
863 0 : break;
864 : }
865 :
866 5 : desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
867 5 : copied_desc->num_of_nsid * sizeof(uint32_t);
868 5 : orig_desc += desc_size;
869 5 : copy_len -= desc_size;
870 : }
871 :
872 4 : return rc;
873 : }
874 :
875 : static int
876 16 : nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
877 : {
878 16 : int rc = 0;
879 :
880 16 : memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
881 : /* Mandatory pages */
882 16 : ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
883 16 : ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
884 16 : ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
885 16 : if (ctrlr->cdata.lpa.celp) {
886 1 : ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
887 : }
888 :
889 16 : if (ctrlr->cdata.cmic.ana_reporting) {
890 2 : ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
891 2 : if (!ctrlr->opts.disable_read_ana_log_page) {
892 2 : rc = nvme_ctrlr_update_ana_log_page(ctrlr);
893 2 : if (rc == 0) {
894 2 : nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
895 : ctrlr);
896 : }
897 : }
898 : }
899 :
900 16 : if (ctrlr->cdata.ctratt.bits.fdps) {
901 0 : ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
902 0 : ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
903 0 : ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
904 0 : ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
905 : }
906 :
907 16 : if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
908 1 : ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
909 1 : !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
910 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
911 1 : ctrlr->opts.admin_timeout_ms);
912 :
913 : } else {
914 15 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
915 15 : ctrlr->opts.admin_timeout_ms);
916 :
917 : }
918 :
919 16 : return rc;
920 : }
921 :
922 : static void
923 1 : nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
924 : {
925 1 : ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
926 1 : ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
927 1 : ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
928 1 : ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
929 1 : ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
930 1 : ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
931 1 : ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
932 1 : }
933 :
934 : static void
935 18 : nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
936 : {
937 : uint32_t cdw11;
938 : struct nvme_completion_poll_status *status;
939 :
940 18 : if (ctrlr->opts.arbitration_burst == 0) {
941 16 : return;
942 : }
943 :
944 2 : if (ctrlr->opts.arbitration_burst > 7) {
945 1 : NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
946 1 : return;
947 : }
948 :
949 1 : status = calloc(1, sizeof(*status));
950 1 : if (!status) {
951 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
952 0 : return;
953 : }
954 :
955 1 : cdw11 = ctrlr->opts.arbitration_burst;
956 :
957 1 : if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
958 1 : cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
959 1 : cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
960 1 : cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
961 : }
962 :
963 1 : if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
964 : cdw11, 0, NULL, 0,
965 : nvme_completion_poll_cb, status) < 0) {
966 0 : NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
967 0 : free(status);
968 0 : return;
969 : }
970 :
971 1 : if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
972 1 : ctrlr->opts.admin_timeout_ms * 1000)) {
973 0 : NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
974 : }
975 :
976 1 : if (!status->timed_out) {
977 1 : free(status);
978 : }
979 : }
980 :
981 : static void
982 16 : nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
983 : {
984 16 : memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
985 : /* Mandatory features */
986 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
987 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
988 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
989 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
990 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
991 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
992 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
993 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
994 16 : ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
995 : /* Optional features */
996 16 : if (ctrlr->cdata.vwc.present) {
997 0 : ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
998 : }
999 16 : if (ctrlr->cdata.apsta.supported) {
1000 0 : ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
1001 : }
1002 16 : if (ctrlr->cdata.hmpre) {
1003 0 : ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
1004 : }
1005 16 : if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
1006 1 : nvme_ctrlr_set_intel_supported_features(ctrlr);
1007 : }
1008 :
1009 16 : nvme_ctrlr_set_arbitration_feature(ctrlr);
1010 16 : }
1011 :
1012 : static void
1013 1 : nvme_ctrlr_set_host_feature_done(void *arg, const struct spdk_nvme_cpl *cpl)
1014 : {
1015 1 : struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1016 :
1017 1 : spdk_free(ctrlr->tmp_ptr);
1018 1 : ctrlr->tmp_ptr = NULL;
1019 :
1020 1 : if (spdk_nvme_cpl_is_error(cpl)) {
1021 0 : NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: SC %x SCT %x\n",
1022 : cpl->status.sc, cpl->status.sct);
1023 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1024 0 : return;
1025 : }
1026 :
1027 1 : ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT] = true;
1028 :
1029 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1030 1 : ctrlr->opts.admin_timeout_ms);
1031 : }
1032 :
1033 : /* We do not want to do add synchronous operation anymore.
1034 : * We set the Host Behavior Support feature asynchronousin in different states.
1035 : */
1036 : static int
1037 16 : nvme_ctrlr_set_host_feature(struct spdk_nvme_ctrlr *ctrlr)
1038 : {
1039 : struct spdk_nvme_host_behavior *host;
1040 : int rc;
1041 :
1042 16 : if (!ctrlr->cdata.ctratt.bits.elbas) {
1043 15 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1044 15 : ctrlr->opts.admin_timeout_ms);
1045 15 : return 0;
1046 : }
1047 :
1048 1 : ctrlr->tmp_ptr = spdk_dma_zmalloc(sizeof(struct spdk_nvme_host_behavior), 4096, NULL);
1049 1 : if (!ctrlr->tmp_ptr) {
1050 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate host behavior support data\n");
1051 0 : rc = -ENOMEM;
1052 0 : goto error;
1053 : }
1054 :
1055 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE,
1056 1 : ctrlr->opts.admin_timeout_ms);
1057 :
1058 1 : host = ctrlr->tmp_ptr;
1059 :
1060 1 : host->lbafee = 1;
1061 :
1062 1 : rc = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT,
1063 : 0, 0, host, sizeof(struct spdk_nvme_host_behavior),
1064 : nvme_ctrlr_set_host_feature_done, ctrlr);
1065 1 : if (rc != 0) {
1066 0 : NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: %d\n", rc);
1067 0 : goto error;
1068 : }
1069 :
1070 1 : return 0;
1071 :
1072 0 : error:
1073 0 : spdk_free(ctrlr->tmp_ptr);
1074 0 : ctrlr->tmp_ptr = NULL;
1075 :
1076 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1077 0 : return rc;
1078 : }
1079 :
1080 : bool
1081 0 : spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1082 : {
1083 0 : return ctrlr->is_failed;
1084 : }
1085 :
1086 : void
1087 1 : nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1088 : {
1089 : /*
1090 : * Set the flag here and leave the work failure of qpairs to
1091 : * spdk_nvme_qpair_process_completions().
1092 : */
1093 1 : if (hot_remove) {
1094 0 : ctrlr->is_removed = true;
1095 : }
1096 :
1097 1 : if (ctrlr->is_failed) {
1098 0 : NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1099 0 : return;
1100 : }
1101 :
1102 1 : if (ctrlr->is_disconnecting) {
1103 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1104 0 : return;
1105 : }
1106 :
1107 1 : ctrlr->is_failed = true;
1108 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1109 1 : nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1110 1 : NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1111 : }
1112 :
1113 : /**
1114 : * This public API function will try to take the controller lock.
1115 : * Any private functions being called from a thread already holding
1116 : * the ctrlr lock should call nvme_ctrlr_fail directly.
1117 : */
1118 : void
1119 0 : spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1120 : {
1121 0 : nvme_ctrlr_lock(ctrlr);
1122 0 : nvme_ctrlr_fail(ctrlr, false);
1123 0 : nvme_ctrlr_unlock(ctrlr);
1124 0 : }
1125 :
1126 : static void
1127 39 : nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1128 : {
1129 39 : struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1130 39 : struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1131 :
1132 39 : if (spdk_nvme_cpl_is_error(cpl)) {
1133 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1134 0 : ctx->shutdown_complete = true;
1135 0 : return;
1136 : }
1137 :
1138 39 : if (ctrlr->opts.no_shn_notification) {
1139 0 : ctx->shutdown_complete = true;
1140 0 : return;
1141 : }
1142 :
1143 : /*
1144 : * The NVMe specification defines RTD3E to be the time between
1145 : * setting SHN = 1 until the controller will set SHST = 10b.
1146 : * If the device doesn't report RTD3 entry latency, or if it
1147 : * reports RTD3 entry latency less than 10 seconds, pick
1148 : * 10 seconds as a reasonable amount of time to
1149 : * wait before proceeding.
1150 : */
1151 39 : NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1152 39 : ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1153 39 : ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1154 39 : NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1155 :
1156 39 : ctx->shutdown_start_tsc = spdk_get_ticks();
1157 39 : ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1158 : }
1159 :
1160 : static void
1161 39 : nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1162 : {
1163 39 : struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1164 39 : struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1165 : union spdk_nvme_cc_register cc;
1166 : int rc;
1167 :
1168 39 : if (spdk_nvme_cpl_is_error(cpl)) {
1169 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1170 0 : ctx->shutdown_complete = true;
1171 0 : return;
1172 : }
1173 :
1174 39 : assert(value <= UINT32_MAX);
1175 39 : cc.raw = (uint32_t)value;
1176 :
1177 39 : if (ctrlr->opts.no_shn_notification) {
1178 0 : NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1179 0 : if (cc.bits.en == 0) {
1180 0 : ctx->shutdown_complete = true;
1181 0 : return;
1182 : }
1183 :
1184 0 : cc.bits.en = 0;
1185 : } else {
1186 39 : cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1187 : }
1188 :
1189 39 : rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1190 39 : if (rc != 0) {
1191 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1192 0 : ctx->shutdown_complete = true;
1193 : }
1194 : }
1195 :
1196 : static void
1197 47 : nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1198 : struct nvme_ctrlr_detach_ctx *ctx)
1199 : {
1200 : int rc;
1201 :
1202 47 : if (ctrlr->is_removed) {
1203 0 : ctx->shutdown_complete = true;
1204 0 : return;
1205 : }
1206 :
1207 47 : if (ctrlr->adminq == NULL ||
1208 40 : ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1209 8 : NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1210 8 : ctx->shutdown_complete = true;
1211 8 : return;
1212 : }
1213 :
1214 39 : ctx->state = NVME_CTRLR_DETACH_SET_CC;
1215 39 : rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1216 39 : if (rc != 0) {
1217 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1218 0 : ctx->shutdown_complete = true;
1219 : }
1220 : }
1221 :
1222 : static void
1223 39 : nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1224 : {
1225 39 : struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1226 :
1227 39 : if (spdk_nvme_cpl_is_error(cpl)) {
1228 0 : NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1229 0 : ctx->shutdown_complete = true;
1230 0 : return;
1231 : }
1232 :
1233 39 : assert(value <= UINT32_MAX);
1234 39 : ctx->csts.raw = (uint32_t)value;
1235 39 : ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1236 : }
1237 :
1238 : static int
1239 78 : nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1240 : struct nvme_ctrlr_detach_ctx *ctx)
1241 : {
1242 : union spdk_nvme_csts_register csts;
1243 : uint32_t ms_waited;
1244 :
1245 78 : switch (ctx->state) {
1246 0 : case NVME_CTRLR_DETACH_SET_CC:
1247 : case NVME_CTRLR_DETACH_GET_CSTS:
1248 : /* We're still waiting for the register operation to complete */
1249 0 : spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1250 0 : return -EAGAIN;
1251 :
1252 39 : case NVME_CTRLR_DETACH_CHECK_CSTS:
1253 39 : ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1254 39 : if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1255 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1256 0 : return -EIO;
1257 : }
1258 39 : return -EAGAIN;
1259 :
1260 39 : case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1261 39 : ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1262 39 : break;
1263 :
1264 0 : default:
1265 0 : assert(0 && "Should never happen");
1266 : return -EINVAL;
1267 : }
1268 :
1269 39 : ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1270 39 : csts.raw = ctx->csts.raw;
1271 :
1272 39 : if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1273 39 : NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1274 39 : return 0;
1275 : }
1276 :
1277 0 : if (ms_waited < ctx->shutdown_timeout_ms) {
1278 0 : return -EAGAIN;
1279 : }
1280 :
1281 0 : NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1282 : ctx->shutdown_timeout_ms);
1283 0 : if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1284 0 : NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1285 : }
1286 :
1287 0 : return 0;
1288 : }
1289 :
1290 : static inline uint64_t
1291 509 : nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1292 : {
1293 509 : return ctrlr->cap.bits.to * 500;
1294 : }
1295 :
1296 : static void
1297 14 : nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1298 : {
1299 14 : struct spdk_nvme_ctrlr *ctrlr = ctx;
1300 :
1301 14 : if (spdk_nvme_cpl_is_error(cpl)) {
1302 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1303 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1304 0 : return;
1305 : }
1306 :
1307 14 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1308 : nvme_ctrlr_get_ready_timeout(ctrlr));
1309 : }
1310 :
1311 : static int
1312 21 : nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1313 : {
1314 : union spdk_nvme_cc_register cc;
1315 : int rc;
1316 :
1317 21 : rc = nvme_transport_ctrlr_enable(ctrlr);
1318 21 : if (rc != 0) {
1319 0 : NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1320 0 : return rc;
1321 : }
1322 :
1323 21 : cc.raw = ctrlr->process_init_cc.raw;
1324 21 : if (cc.bits.en != 0) {
1325 0 : NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1326 0 : return -EINVAL;
1327 : }
1328 :
1329 21 : cc.bits.en = 1;
1330 21 : cc.bits.css = 0;
1331 21 : cc.bits.shn = 0;
1332 21 : cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1333 21 : cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1334 :
1335 : /* Page size is 2 ^ (12 + mps). */
1336 21 : cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1337 :
1338 : /*
1339 : * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1340 : * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1341 : * Try to support such a controller regardless.
1342 : */
1343 21 : if (ctrlr->cap.bits.css == 0) {
1344 21 : NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1345 21 : ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1346 : }
1347 :
1348 : /*
1349 : * If the user did not explicitly request a command set, or supplied a value larger than
1350 : * what can be saved in CC.CSS, use the most reasonable default.
1351 : */
1352 21 : if (ctrlr->opts.command_set >= CHAR_BIT) {
1353 0 : if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1354 0 : ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1355 0 : } else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1356 0 : ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1357 0 : } else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1358 : /* Technically we should respond with CC_CSS_NOIO in
1359 : * this case, but we use NVM instead to work around
1360 : * buggy targets and to match Linux driver behavior.
1361 : */
1362 0 : ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1363 : } else {
1364 : /* Invalid supported bits detected, falling back to NVM. */
1365 0 : ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1366 : }
1367 : }
1368 :
1369 : /* Verify that the selected command set is supported by the controller. */
1370 21 : if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1371 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1372 : ctrlr->opts.command_set, ctrlr->cap.bits.css);
1373 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1374 0 : ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1375 : }
1376 :
1377 21 : cc.bits.css = ctrlr->opts.command_set;
1378 :
1379 21 : switch (ctrlr->opts.arb_mechanism) {
1380 10 : case SPDK_NVME_CC_AMS_RR:
1381 10 : break;
1382 4 : case SPDK_NVME_CC_AMS_WRR:
1383 4 : if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1384 2 : break;
1385 : }
1386 2 : return -EINVAL;
1387 4 : case SPDK_NVME_CC_AMS_VS:
1388 4 : if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1389 2 : break;
1390 : }
1391 2 : return -EINVAL;
1392 3 : default:
1393 3 : return -EINVAL;
1394 : }
1395 :
1396 14 : cc.bits.ams = ctrlr->opts.arb_mechanism;
1397 14 : ctrlr->process_init_cc.raw = cc.raw;
1398 :
1399 14 : if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1400 0 : NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1401 0 : return -EIO;
1402 : }
1403 :
1404 14 : return 0;
1405 : }
1406 :
1407 : static const char *
1408 1 : nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1409 : {
1410 1 : switch (state) {
1411 0 : case NVME_CTRLR_STATE_INIT_DELAY:
1412 0 : return "delay init";
1413 0 : case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1414 0 : return "connect adminq";
1415 0 : case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1416 0 : return "wait for connect adminq";
1417 0 : case NVME_CTRLR_STATE_READ_VS:
1418 0 : return "read vs";
1419 0 : case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1420 0 : return "read vs wait for vs";
1421 0 : case NVME_CTRLR_STATE_READ_CAP:
1422 0 : return "read cap";
1423 0 : case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1424 0 : return "read cap wait for cap";
1425 0 : case NVME_CTRLR_STATE_CHECK_EN:
1426 0 : return "check en";
1427 0 : case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1428 0 : return "check en wait for cc";
1429 0 : case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1430 0 : return "disable and wait for CSTS.RDY = 1";
1431 0 : case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1432 0 : return "disable and wait for CSTS.RDY = 1 reg";
1433 0 : case NVME_CTRLR_STATE_SET_EN_0:
1434 0 : return "set CC.EN = 0";
1435 0 : case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1436 0 : return "set CC.EN = 0 wait for cc";
1437 0 : case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1438 0 : return "disable and wait for CSTS.RDY = 0";
1439 0 : case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1440 0 : return "disable and wait for CSTS.RDY = 0 reg";
1441 0 : case NVME_CTRLR_STATE_DISABLED:
1442 0 : return "controller is disabled";
1443 0 : case NVME_CTRLR_STATE_ENABLE:
1444 0 : return "enable controller by writing CC.EN = 1";
1445 0 : case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1446 0 : return "enable controller by writing CC.EN = 1 reg";
1447 0 : case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1448 0 : return "wait for CSTS.RDY = 1";
1449 0 : case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1450 0 : return "wait for CSTS.RDY = 1 reg";
1451 0 : case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1452 0 : return "reset admin queue";
1453 0 : case NVME_CTRLR_STATE_IDENTIFY:
1454 0 : return "identify controller";
1455 0 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1456 0 : return "wait for identify controller";
1457 0 : case NVME_CTRLR_STATE_CONFIGURE_AER:
1458 0 : return "configure AER";
1459 0 : case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1460 0 : return "wait for configure aer";
1461 0 : case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1462 0 : return "set keep alive timeout";
1463 0 : case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1464 0 : return "wait for set keep alive timeout";
1465 0 : case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1466 0 : return "identify controller iocs specific";
1467 0 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1468 0 : return "wait for identify controller iocs specific";
1469 0 : case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1470 0 : return "get zns cmd and effects log page";
1471 0 : case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1472 0 : return "wait for get zns cmd and effects log page";
1473 0 : case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1474 0 : return "set number of queues";
1475 0 : case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1476 0 : return "wait for set number of queues";
1477 0 : case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1478 0 : return "identify active ns";
1479 0 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1480 0 : return "wait for identify active ns";
1481 0 : case NVME_CTRLR_STATE_IDENTIFY_NS:
1482 0 : return "identify ns";
1483 0 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1484 0 : return "wait for identify ns";
1485 0 : case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1486 0 : return "identify namespace id descriptors";
1487 0 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1488 0 : return "wait for identify namespace id descriptors";
1489 0 : case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1490 0 : return "identify ns iocs specific";
1491 0 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1492 0 : return "wait for identify ns iocs specific";
1493 0 : case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1494 0 : return "set supported log pages";
1495 0 : case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1496 0 : return "set supported INTEL log pages";
1497 0 : case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1498 0 : return "wait for supported INTEL log pages";
1499 0 : case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1500 0 : return "set supported features";
1501 0 : case NVME_CTRLR_STATE_SET_HOST_FEATURE:
1502 0 : return "set host behavior support feature";
1503 0 : case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
1504 0 : return "wait for set host behavior support feature";
1505 0 : case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1506 0 : return "set doorbell buffer config";
1507 0 : case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1508 0 : return "wait for doorbell buffer config";
1509 0 : case NVME_CTRLR_STATE_SET_HOST_ID:
1510 0 : return "set host ID";
1511 0 : case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1512 0 : return "wait for set host ID";
1513 0 : case NVME_CTRLR_STATE_TRANSPORT_READY:
1514 0 : return "transport ready";
1515 0 : case NVME_CTRLR_STATE_READY:
1516 0 : return "ready";
1517 1 : case NVME_CTRLR_STATE_ERROR:
1518 1 : return "error";
1519 0 : case NVME_CTRLR_STATE_DISCONNECTED:
1520 0 : return "disconnected";
1521 : }
1522 0 : return "unknown";
1523 : };
1524 :
1525 : static void
1526 732 : _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1527 : uint64_t timeout_in_ms, bool quiet)
1528 : {
1529 : uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1530 :
1531 732 : ctrlr->state = state;
1532 732 : if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1533 33 : if (!quiet) {
1534 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1535 : nvme_ctrlr_state_string(ctrlr->state));
1536 : }
1537 33 : return;
1538 : }
1539 :
1540 699 : if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1541 697 : goto inf;
1542 : }
1543 :
1544 2 : ticks_per_ms = spdk_get_ticks_hz() / 1000;
1545 2 : if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1546 0 : NVME_CTRLR_ERRLOG(ctrlr,
1547 : "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1548 0 : goto inf;
1549 : }
1550 :
1551 2 : now_ticks = spdk_get_ticks();
1552 2 : timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1553 2 : if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1554 1 : NVME_CTRLR_ERRLOG(ctrlr,
1555 : "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1556 1 : goto inf;
1557 : }
1558 :
1559 1 : ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1560 1 : if (!quiet) {
1561 1 : NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1562 : nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1563 : }
1564 1 : return;
1565 698 : inf:
1566 698 : if (!quiet) {
1567 698 : NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1568 : nvme_ctrlr_state_string(ctrlr->state));
1569 : }
1570 698 : ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1571 : }
1572 :
1573 : static void
1574 699 : nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1575 : uint64_t timeout_in_ms)
1576 : {
1577 699 : _nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1578 699 : }
1579 :
1580 : static void
1581 33 : nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1582 : uint64_t timeout_in_ms)
1583 : {
1584 33 : _nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1585 33 : }
1586 :
1587 : static void
1588 48 : nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1589 : {
1590 48 : spdk_free(ctrlr->cdata_zns);
1591 48 : ctrlr->cdata_zns = NULL;
1592 48 : }
1593 :
1594 : static void
1595 48 : nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1596 : {
1597 48 : nvme_ctrlr_free_zns_specific_data(ctrlr);
1598 48 : }
1599 :
1600 : static void
1601 49 : nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1602 : {
1603 49 : if (ctrlr->shadow_doorbell) {
1604 1 : spdk_free(ctrlr->shadow_doorbell);
1605 1 : ctrlr->shadow_doorbell = NULL;
1606 : }
1607 :
1608 49 : if (ctrlr->eventidx) {
1609 1 : spdk_free(ctrlr->eventidx);
1610 1 : ctrlr->eventidx = NULL;
1611 : }
1612 49 : }
1613 :
1614 : static void
1615 1 : nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1616 : {
1617 1 : struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1618 :
1619 1 : if (spdk_nvme_cpl_is_error(cpl)) {
1620 0 : NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1621 : } else {
1622 1 : NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1623 : }
1624 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1625 1 : ctrlr->opts.admin_timeout_ms);
1626 1 : }
1627 :
1628 : static int
1629 15 : nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1630 : {
1631 15 : int rc = 0;
1632 15 : uint64_t prp1, prp2, len;
1633 :
1634 15 : if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1635 14 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1636 14 : ctrlr->opts.admin_timeout_ms);
1637 14 : return 0;
1638 : }
1639 :
1640 1 : if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1641 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1642 0 : ctrlr->opts.admin_timeout_ms);
1643 0 : return 0;
1644 : }
1645 :
1646 : /* only 1 page size for doorbell buffer */
1647 1 : ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1648 : NULL, SPDK_ENV_LCORE_ID_ANY,
1649 : SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1650 1 : if (ctrlr->shadow_doorbell == NULL) {
1651 0 : rc = -ENOMEM;
1652 0 : goto error;
1653 : }
1654 :
1655 1 : len = ctrlr->page_size;
1656 1 : prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1657 1 : if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1658 0 : rc = -EFAULT;
1659 0 : goto error;
1660 : }
1661 :
1662 1 : ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1663 : NULL, SPDK_ENV_LCORE_ID_ANY,
1664 : SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1665 1 : if (ctrlr->eventidx == NULL) {
1666 0 : rc = -ENOMEM;
1667 0 : goto error;
1668 : }
1669 :
1670 1 : len = ctrlr->page_size;
1671 1 : prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1672 1 : if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1673 0 : rc = -EFAULT;
1674 0 : goto error;
1675 : }
1676 :
1677 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1678 1 : ctrlr->opts.admin_timeout_ms);
1679 :
1680 1 : rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1681 : nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1682 1 : if (rc != 0) {
1683 0 : goto error;
1684 : }
1685 :
1686 1 : return 0;
1687 :
1688 0 : error:
1689 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1690 0 : nvme_ctrlr_free_doorbell_buffer(ctrlr);
1691 0 : return rc;
1692 : }
1693 :
1694 : void
1695 48 : nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1696 : {
1697 : struct nvme_request *req, *tmp;
1698 48 : struct spdk_nvme_cpl cpl = {};
1699 :
1700 48 : cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1701 48 : cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1702 :
1703 48 : STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1704 0 : STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1705 0 : ctrlr->outstanding_aborts++;
1706 :
1707 0 : nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1708 : }
1709 48 : }
1710 :
1711 : static int
1712 2 : nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1713 : {
1714 2 : if (ctrlr->is_resetting || ctrlr->is_removed) {
1715 : /*
1716 : * Controller is already resetting or has been removed. Return
1717 : * immediately since there is no need to kick off another
1718 : * reset in these cases.
1719 : */
1720 1 : return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1721 : }
1722 :
1723 1 : ctrlr->is_resetting = true;
1724 1 : ctrlr->is_failed = false;
1725 1 : ctrlr->is_disconnecting = true;
1726 1 : ctrlr->prepare_for_reset = true;
1727 :
1728 1 : NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1729 :
1730 : /* Disable keep-alive, it'll be re-enabled as part of the init process */
1731 1 : ctrlr->keep_alive_interval_ticks = 0;
1732 :
1733 : /* Abort all of the queued abort requests */
1734 1 : nvme_ctrlr_abort_queued_aborts(ctrlr);
1735 :
1736 1 : nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1737 :
1738 1 : ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1739 1 : nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1740 :
1741 1 : return 0;
1742 : }
1743 :
1744 : static void
1745 1 : nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1746 : {
1747 1 : assert(ctrlr->is_failed == false);
1748 1 : ctrlr->is_disconnecting = false;
1749 :
1750 : /* Doorbell buffer config is invalid during reset */
1751 1 : nvme_ctrlr_free_doorbell_buffer(ctrlr);
1752 :
1753 : /* I/O Command Set Specific Identify Controller data is invalidated during reset */
1754 1 : nvme_ctrlr_free_iocs_specific_data(ctrlr);
1755 :
1756 1 : spdk_bit_array_free(&ctrlr->free_io_qids);
1757 :
1758 : /* Set the state back to DISCONNECTED to cause a full hardware reset. */
1759 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1760 1 : }
1761 :
1762 : int
1763 0 : spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1764 : {
1765 : int rc;
1766 :
1767 0 : nvme_ctrlr_lock(ctrlr);
1768 0 : rc = nvme_ctrlr_disconnect(ctrlr);
1769 0 : nvme_ctrlr_unlock(ctrlr);
1770 :
1771 0 : return rc;
1772 : }
1773 :
1774 : void
1775 1 : spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1776 : {
1777 1 : nvme_ctrlr_lock(ctrlr);
1778 :
1779 1 : ctrlr->prepare_for_reset = false;
1780 :
1781 : /* Set the state back to INIT to cause a full hardware reset. */
1782 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1783 :
1784 : /* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1785 : * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1786 : */
1787 1 : }
1788 :
1789 : int
1790 0 : nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1791 : {
1792 : bool async;
1793 : int rc;
1794 :
1795 0 : if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc ||
1796 0 : spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) {
1797 0 : assert(false);
1798 : return -EINVAL;
1799 : }
1800 :
1801 : /* Force a synchronous connect. */
1802 0 : async = qpair->async;
1803 0 : qpair->async = false;
1804 0 : rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1805 0 : qpair->async = async;
1806 :
1807 0 : if (rc != 0) {
1808 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1809 : }
1810 :
1811 0 : return rc;
1812 : }
1813 :
1814 : /**
1815 : * This function will be called when the controller is being reinitialized.
1816 : * Note: the ctrlr_lock must be held when calling this function.
1817 : */
1818 : int
1819 25 : spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1820 : {
1821 : struct spdk_nvme_ns *ns, *tmp_ns;
1822 : struct spdk_nvme_qpair *qpair;
1823 25 : int rc = 0, rc_tmp = 0;
1824 :
1825 25 : if (nvme_ctrlr_process_init(ctrlr) != 0) {
1826 0 : NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1827 0 : rc = -1;
1828 : }
1829 25 : if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1830 24 : return -EAGAIN;
1831 : }
1832 :
1833 : /*
1834 : * For non-fabrics controllers, the memory locations of the transport qpair
1835 : * don't change when the controller is reset. They simply need to be
1836 : * re-enabled with admin commands to the controller. For fabric
1837 : * controllers we need to disconnect and reconnect the qpair on its
1838 : * own thread outside of the context of the reset.
1839 : */
1840 1 : if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1841 : /* Reinitialize qpairs */
1842 1 : TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1843 : /* Always clear the qid bit here, even for a foreign qpair. We need
1844 : * to make sure another process doesn't get the chance to grab that
1845 : * qid.
1846 : */
1847 0 : assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1848 0 : spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1849 0 : if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) {
1850 : /*
1851 : * We cannot reinitialize a foreign qpair. The qpair's owning
1852 : * process will take care of it. Set failure reason to FAILURE_RESET
1853 : * to ensure that happens.
1854 : */
1855 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET;
1856 0 : continue;
1857 : }
1858 0 : rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair);
1859 0 : if (rc_tmp != 0) {
1860 0 : rc = rc_tmp;
1861 : }
1862 : }
1863 : }
1864 :
1865 : /*
1866 : * Take this opportunity to remove inactive namespaces. During a reset namespace
1867 : * handles can be invalidated.
1868 : */
1869 5 : RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1870 4 : if (!ns->active) {
1871 1 : RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1872 1 : spdk_free(ns);
1873 : }
1874 : }
1875 :
1876 1 : if (rc) {
1877 0 : nvme_ctrlr_fail(ctrlr, false);
1878 : }
1879 1 : ctrlr->is_resetting = false;
1880 :
1881 1 : nvme_ctrlr_unlock(ctrlr);
1882 :
1883 1 : if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1884 : /*
1885 : * If controller doesn't support ns_attribute_notices and
1886 : * namespace attributes change (e.g. number of namespaces)
1887 : * we need to update system handling device reset.
1888 : */
1889 1 : nvme_io_msg_ctrlr_update(ctrlr);
1890 : }
1891 :
1892 1 : return rc;
1893 : }
1894 :
1895 : /*
1896 : * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1897 : * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1898 : * The following two functions are added to do a Controller Level Reset. They have
1899 : * to be called under the nvme controller's lock.
1900 : */
1901 : void
1902 1 : nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1903 : {
1904 1 : assert(ctrlr->is_disconnecting == true);
1905 :
1906 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1907 1 : }
1908 :
1909 : int
1910 2 : nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1911 : {
1912 2 : int rc = 0;
1913 :
1914 2 : if (nvme_ctrlr_process_init(ctrlr) != 0) {
1915 0 : NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1916 0 : rc = -1;
1917 : }
1918 :
1919 2 : if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1920 1 : return -EAGAIN;
1921 : }
1922 :
1923 1 : return rc;
1924 : }
1925 :
1926 : static void
1927 1 : nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1928 : {
1929 : struct spdk_nvme_qpair *qpair;
1930 :
1931 1 : TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1932 0 : qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1933 : }
1934 1 : }
1935 :
1936 : int
1937 2 : spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1938 : {
1939 : int rc;
1940 :
1941 2 : nvme_ctrlr_lock(ctrlr);
1942 :
1943 2 : rc = nvme_ctrlr_disconnect(ctrlr);
1944 2 : if (rc == 0) {
1945 1 : nvme_ctrlr_fail_io_qpairs(ctrlr);
1946 : }
1947 :
1948 2 : nvme_ctrlr_unlock(ctrlr);
1949 :
1950 2 : if (rc != 0) {
1951 1 : if (rc == -EBUSY) {
1952 1 : rc = 0;
1953 : }
1954 1 : return rc;
1955 : }
1956 :
1957 : while (1) {
1958 1 : rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1959 1 : if (rc == -ENXIO) {
1960 1 : break;
1961 : }
1962 : }
1963 :
1964 1 : spdk_nvme_ctrlr_reconnect_async(ctrlr);
1965 :
1966 : while (true) {
1967 25 : rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1968 25 : if (rc != -EAGAIN) {
1969 1 : break;
1970 : }
1971 : }
1972 :
1973 1 : return rc;
1974 : }
1975 :
1976 : int
1977 0 : spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1978 : {
1979 : union spdk_nvme_cap_register cap;
1980 0 : int rc = 0;
1981 :
1982 0 : cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1983 0 : if (cap.bits.nssrs == 0) {
1984 0 : NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1985 0 : return -ENOTSUP;
1986 : }
1987 :
1988 0 : NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1989 0 : nvme_ctrlr_lock(ctrlr);
1990 0 : ctrlr->is_resetting = true;
1991 0 : rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1992 0 : ctrlr->is_resetting = false;
1993 :
1994 0 : nvme_ctrlr_unlock(ctrlr);
1995 : /*
1996 : * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1997 : * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1998 : */
1999 0 : return rc;
2000 : }
2001 :
2002 : int
2003 4 : spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
2004 : {
2005 4 : int rc = 0;
2006 :
2007 4 : nvme_ctrlr_lock(ctrlr);
2008 :
2009 4 : if (ctrlr->is_failed == false) {
2010 1 : rc = -EPERM;
2011 1 : goto out;
2012 : }
2013 :
2014 3 : if (trid->trtype != ctrlr->trid.trtype) {
2015 1 : rc = -EINVAL;
2016 1 : goto out;
2017 : }
2018 :
2019 2 : if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
2020 1 : rc = -EINVAL;
2021 1 : goto out;
2022 : }
2023 :
2024 1 : ctrlr->trid = *trid;
2025 :
2026 4 : out:
2027 4 : nvme_ctrlr_unlock(ctrlr);
2028 4 : return rc;
2029 : }
2030 :
2031 : void
2032 0 : spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
2033 : spdk_nvme_remove_cb remove_cb, void *remove_ctx)
2034 : {
2035 0 : if (!spdk_process_is_primary()) {
2036 0 : return;
2037 : }
2038 :
2039 0 : nvme_ctrlr_lock(ctrlr);
2040 0 : ctrlr->remove_cb = remove_cb;
2041 0 : ctrlr->cb_ctx = remove_ctx;
2042 0 : nvme_ctrlr_unlock(ctrlr);
2043 : }
2044 :
2045 : int
2046 0 : spdk_nvme_ctrlr_set_keys(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ctrlr_key_opts *opts)
2047 : {
2048 0 : nvme_ctrlr_lock(ctrlr);
2049 0 : if (SPDK_GET_FIELD(opts, dhchap_key, ctrlr->opts.dhchap_key) == NULL &&
2050 0 : SPDK_GET_FIELD(opts, dhchap_ctrlr_key, ctrlr->opts.dhchap_ctrlr_key) != NULL) {
2051 0 : NVME_CTRLR_ERRLOG(ctrlr, "DH-HMAC-CHAP controller key requires host key to be set\n");
2052 0 : nvme_ctrlr_unlock(ctrlr);
2053 0 : return -EINVAL;
2054 : }
2055 :
2056 0 : ctrlr->opts.dhchap_key =
2057 0 : SPDK_GET_FIELD(opts, dhchap_key, ctrlr->opts.dhchap_key);
2058 0 : ctrlr->opts.dhchap_ctrlr_key =
2059 0 : SPDK_GET_FIELD(opts, dhchap_ctrlr_key, ctrlr->opts.dhchap_ctrlr_key);
2060 0 : nvme_ctrlr_unlock(ctrlr);
2061 :
2062 0 : return 0;
2063 : }
2064 :
2065 : static void
2066 16 : nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
2067 : {
2068 16 : struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2069 :
2070 16 : if (spdk_nvme_cpl_is_error(cpl)) {
2071 0 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
2072 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2073 0 : return;
2074 : }
2075 :
2076 : /*
2077 : * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
2078 : * controller supports.
2079 : */
2080 16 : ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
2081 16 : NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
2082 16 : if (ctrlr->cdata.mdts > 0) {
2083 0 : ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
2084 : ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
2085 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
2086 : }
2087 :
2088 16 : NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
2089 16 : if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2090 1 : ctrlr->cntlid = ctrlr->cdata.cntlid;
2091 : } else {
2092 : /*
2093 : * Fabrics controllers should already have CNTLID from the Connect command.
2094 : *
2095 : * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
2096 : * trust the one from Connect.
2097 : */
2098 15 : if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
2099 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
2100 : ctrlr->cdata.cntlid, ctrlr->cntlid);
2101 : }
2102 : }
2103 :
2104 16 : if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2105 0 : assert(ctrlr->cdata.sgls.supported != 0x3);
2106 0 : ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
2107 0 : if (ctrlr->cdata.sgls.supported == 0x2) {
2108 0 : ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
2109 : }
2110 :
2111 0 : ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
2112 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
2113 : }
2114 :
2115 16 : if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2116 0 : ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
2117 : }
2118 :
2119 16 : if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
2120 0 : ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
2121 : }
2122 :
2123 16 : if (ctrlr->cdata.oacs.directives) {
2124 0 : ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
2125 : }
2126 :
2127 16 : NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
2128 : ctrlr->cdata.fuses.compare_and_write);
2129 16 : if (ctrlr->cdata.fuses.compare_and_write) {
2130 0 : ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
2131 : }
2132 :
2133 16 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2134 16 : ctrlr->opts.admin_timeout_ms);
2135 : }
2136 :
2137 : static int
2138 16 : nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2139 : {
2140 : int rc;
2141 :
2142 16 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2143 16 : ctrlr->opts.admin_timeout_ms);
2144 :
2145 16 : rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2146 16 : &ctrlr->cdata, sizeof(ctrlr->cdata),
2147 : nvme_ctrlr_identify_done, ctrlr);
2148 16 : if (rc != 0) {
2149 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2150 0 : return rc;
2151 : }
2152 :
2153 16 : return 0;
2154 : }
2155 :
2156 : static void
2157 0 : nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2158 : {
2159 : struct spdk_nvme_cmds_and_effect_log_page *log_page;
2160 0 : struct spdk_nvme_ctrlr *ctrlr = arg;
2161 :
2162 0 : if (spdk_nvme_cpl_is_error(cpl)) {
2163 0 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2164 0 : spdk_free(ctrlr->tmp_ptr);
2165 0 : ctrlr->tmp_ptr = NULL;
2166 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2167 0 : return;
2168 : }
2169 :
2170 0 : log_page = ctrlr->tmp_ptr;
2171 :
2172 0 : if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2173 0 : ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2174 : }
2175 0 : spdk_free(ctrlr->tmp_ptr);
2176 0 : ctrlr->tmp_ptr = NULL;
2177 :
2178 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2179 : }
2180 :
2181 : static int
2182 0 : nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2183 : {
2184 : int rc;
2185 :
2186 0 : assert(!ctrlr->tmp_ptr);
2187 0 : ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2188 : SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2189 0 : if (!ctrlr->tmp_ptr) {
2190 0 : rc = -ENOMEM;
2191 0 : goto error;
2192 : }
2193 :
2194 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2195 0 : ctrlr->opts.admin_timeout_ms);
2196 :
2197 0 : rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2198 : 0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2199 : 0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2200 : nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2201 0 : if (rc != 0) {
2202 0 : goto error;
2203 : }
2204 :
2205 0 : return 0;
2206 :
2207 0 : error:
2208 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2209 0 : spdk_free(ctrlr->tmp_ptr);
2210 0 : ctrlr->tmp_ptr = NULL;
2211 0 : return rc;
2212 : }
2213 :
2214 : static void
2215 0 : nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2216 : {
2217 0 : struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2218 :
2219 0 : if (spdk_nvme_cpl_is_error(cpl)) {
2220 : /* no need to print an error, the controller simply does not support ZNS */
2221 0 : nvme_ctrlr_free_zns_specific_data(ctrlr);
2222 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2223 0 : ctrlr->opts.admin_timeout_ms);
2224 0 : return;
2225 : }
2226 :
2227 : /* A zero zasl value means use mdts */
2228 0 : if (ctrlr->cdata_zns->zasl) {
2229 0 : uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2230 0 : ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2231 : } else {
2232 0 : ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2233 : }
2234 :
2235 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2236 0 : ctrlr->opts.admin_timeout_ms);
2237 : }
2238 :
2239 : /**
2240 : * This function will try to fetch the I/O Command Specific Controller data structure for
2241 : * each I/O Command Set supported by SPDK.
2242 : *
2243 : * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2244 : * will be returned. Since we are fetching in a exploratively way, getting an error back
2245 : * from the controller should not be treated as fatal.
2246 : *
2247 : * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2248 : *
2249 : * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2250 : * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2251 : */
2252 : static int
2253 19 : nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2254 : {
2255 : int rc;
2256 :
2257 19 : if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2258 19 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2259 19 : ctrlr->opts.admin_timeout_ms);
2260 19 : return 0;
2261 : }
2262 :
2263 : /*
2264 : * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2265 : * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2266 : * which would require additional functions and complexity for no good reason.
2267 : */
2268 0 : assert(!ctrlr->cdata_zns);
2269 0 : ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2270 : SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2271 0 : if (!ctrlr->cdata_zns) {
2272 0 : rc = -ENOMEM;
2273 0 : goto error;
2274 : }
2275 :
2276 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2277 0 : ctrlr->opts.admin_timeout_ms);
2278 :
2279 0 : rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2280 0 : ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2281 : nvme_ctrlr_identify_zns_specific_done, ctrlr);
2282 0 : if (rc != 0) {
2283 0 : goto error;
2284 : }
2285 :
2286 0 : return 0;
2287 :
2288 0 : error:
2289 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2290 0 : nvme_ctrlr_free_zns_specific_data(ctrlr);
2291 0 : return rc;
2292 : }
2293 :
2294 : enum nvme_active_ns_state {
2295 : NVME_ACTIVE_NS_STATE_IDLE,
2296 : NVME_ACTIVE_NS_STATE_PROCESSING,
2297 : NVME_ACTIVE_NS_STATE_DONE,
2298 : NVME_ACTIVE_NS_STATE_ERROR
2299 : };
2300 :
2301 : typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2302 :
2303 : struct nvme_active_ns_ctx {
2304 : struct spdk_nvme_ctrlr *ctrlr;
2305 : uint32_t page_count;
2306 : uint32_t next_nsid;
2307 : uint32_t *new_ns_list;
2308 : nvme_active_ns_ctx_deleter deleter;
2309 :
2310 : enum nvme_active_ns_state state;
2311 : };
2312 :
2313 : static struct nvme_active_ns_ctx *
2314 45 : nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2315 : {
2316 : struct nvme_active_ns_ctx *ctx;
2317 45 : uint32_t *new_ns_list = NULL;
2318 :
2319 45 : ctx = calloc(1, sizeof(*ctx));
2320 45 : if (!ctx) {
2321 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2322 0 : return NULL;
2323 : }
2324 :
2325 45 : new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2326 : NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2327 45 : if (!new_ns_list) {
2328 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2329 0 : free(ctx);
2330 0 : return NULL;
2331 : }
2332 :
2333 45 : ctx->page_count = 1;
2334 45 : ctx->new_ns_list = new_ns_list;
2335 45 : ctx->ctrlr = ctrlr;
2336 45 : ctx->deleter = deleter;
2337 :
2338 45 : return ctx;
2339 : }
2340 :
2341 : static void
2342 45 : nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2343 : {
2344 45 : spdk_free(ctx->new_ns_list);
2345 45 : free(ctx);
2346 45 : }
2347 :
2348 : static int
2349 18403 : nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2350 : {
2351 18403 : struct spdk_nvme_ns tmp, *ns;
2352 :
2353 18403 : assert(ctrlr != NULL);
2354 :
2355 18403 : tmp.id = nsid;
2356 18403 : ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2357 18403 : if (ns == NULL) {
2358 0 : return -EINVAL;
2359 : }
2360 :
2361 18403 : nvme_ns_destruct(ns);
2362 18403 : ns->active = false;
2363 :
2364 18403 : return 0;
2365 : }
2366 :
2367 : static int
2368 12311 : nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2369 : {
2370 : struct spdk_nvme_ns *ns;
2371 :
2372 12311 : if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2373 0 : return -EINVAL;
2374 : }
2375 :
2376 : /* Namespaces are constructed on demand, so simply request it. */
2377 12311 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2378 12311 : if (ns == NULL) {
2379 0 : return -ENOMEM;
2380 : }
2381 :
2382 12311 : ns->active = true;
2383 :
2384 12311 : return 0;
2385 : }
2386 :
2387 : static void
2388 44 : nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2389 : size_t max_entries)
2390 : {
2391 44 : uint32_t active_ns_count = 0;
2392 : size_t i;
2393 : uint32_t nsid;
2394 : struct spdk_nvme_ns *ns, *tmp_ns;
2395 : int rc;
2396 :
2397 : /* First, remove namespaces that no longer exist */
2398 15387 : RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2399 15343 : nsid = new_ns_list[0];
2400 15343 : active_ns_count = 0;
2401 3547429 : while (nsid != 0) {
2402 3536712 : if (nsid == ns->id) {
2403 4626 : break;
2404 : }
2405 :
2406 3532086 : nsid = new_ns_list[active_ns_count++];
2407 : }
2408 :
2409 15343 : if (nsid != ns->id) {
2410 : /* Did not find this namespace id in the new list. */
2411 10717 : NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2412 10717 : nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2413 : }
2414 : }
2415 :
2416 : /* Next, add new namespaces */
2417 44 : active_ns_count = 0;
2418 12355 : for (i = 0; i < max_entries; i++) {
2419 12355 : nsid = new_ns_list[active_ns_count];
2420 :
2421 12355 : if (nsid == 0) {
2422 44 : break;
2423 : }
2424 :
2425 : /* If the namespace already exists, this will not construct it a second time. */
2426 12311 : rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2427 12311 : if (rc != 0) {
2428 : /* We can't easily handle a failure here. But just move on. */
2429 0 : assert(false);
2430 : NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2431 : continue;
2432 : }
2433 :
2434 12311 : active_ns_count++;
2435 : }
2436 :
2437 44 : ctrlr->active_ns_count = active_ns_count;
2438 44 : }
2439 :
2440 : static void
2441 30 : nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2442 : {
2443 30 : struct nvme_active_ns_ctx *ctx = arg;
2444 30 : uint32_t *new_ns_list = NULL;
2445 :
2446 30 : if (spdk_nvme_cpl_is_error(cpl)) {
2447 1 : ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2448 1 : goto out;
2449 : }
2450 :
2451 29 : ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2452 29 : if (ctx->next_nsid == 0) {
2453 24 : ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2454 24 : goto out;
2455 : }
2456 :
2457 5 : ctx->page_count++;
2458 5 : new_ns_list = spdk_realloc(ctx->new_ns_list,
2459 5 : ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2460 5 : ctx->ctrlr->page_size);
2461 5 : if (!new_ns_list) {
2462 0 : SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2463 0 : ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2464 0 : goto out;
2465 : }
2466 :
2467 5 : ctx->new_ns_list = new_ns_list;
2468 5 : nvme_ctrlr_identify_active_ns_async(ctx);
2469 5 : return;
2470 :
2471 25 : out:
2472 25 : if (ctx->deleter) {
2473 9 : ctx->deleter(ctx);
2474 : }
2475 : }
2476 :
2477 : static void
2478 50 : nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2479 : {
2480 50 : struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2481 : uint32_t i;
2482 : int rc;
2483 :
2484 50 : if (ctrlr->cdata.nn == 0) {
2485 16 : ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2486 16 : goto out;
2487 : }
2488 :
2489 34 : assert(ctx->new_ns_list != NULL);
2490 :
2491 : /*
2492 : * If controller doesn't support active ns list CNS 0x02 dummy up
2493 : * an active ns list, i.e. all namespaces report as active
2494 : */
2495 34 : if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2496 : uint32_t *new_ns_list;
2497 :
2498 : /*
2499 : * Active NS list must always end with zero element.
2500 : * So, we allocate for cdata.nn+1.
2501 : */
2502 4 : ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2503 : sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2504 4 : new_ns_list = spdk_realloc(ctx->new_ns_list,
2505 4 : ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2506 4 : ctx->ctrlr->page_size);
2507 4 : if (!new_ns_list) {
2508 0 : SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2509 0 : ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2510 0 : goto out;
2511 : }
2512 :
2513 4 : ctx->new_ns_list = new_ns_list;
2514 4 : ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2515 4091 : for (i = 0; i < ctrlr->cdata.nn; i++) {
2516 4087 : ctx->new_ns_list[i] = i + 1;
2517 : }
2518 :
2519 4 : ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2520 4 : goto out;
2521 : }
2522 :
2523 30 : ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2524 30 : rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2525 30 : &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2526 : nvme_ctrlr_identify_active_ns_async_done, ctx);
2527 30 : if (rc != 0) {
2528 0 : ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2529 0 : goto out;
2530 : }
2531 :
2532 30 : return;
2533 :
2534 20 : out:
2535 20 : if (ctx->deleter) {
2536 15 : ctx->deleter(ctx);
2537 : }
2538 : }
2539 :
2540 : static void
2541 24 : _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2542 : {
2543 24 : struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2544 : struct spdk_nvme_ns *ns;
2545 :
2546 24 : if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2547 0 : nvme_active_ns_ctx_destroy(ctx);
2548 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2549 0 : return;
2550 : }
2551 :
2552 24 : assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2553 :
2554 28 : RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2555 4 : nvme_ns_free_iocs_specific_data(ns);
2556 : }
2557 :
2558 24 : nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2559 24 : nvme_active_ns_ctx_destroy(ctx);
2560 24 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2561 : }
2562 :
2563 : static void
2564 24 : _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2565 : {
2566 : struct nvme_active_ns_ctx *ctx;
2567 :
2568 24 : ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2569 24 : if (!ctx) {
2570 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2571 0 : return;
2572 : }
2573 :
2574 24 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2575 24 : ctrlr->opts.admin_timeout_ms);
2576 24 : nvme_ctrlr_identify_active_ns_async(ctx);
2577 : }
2578 :
2579 : int
2580 21 : nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2581 : {
2582 : struct nvme_active_ns_ctx *ctx;
2583 : int rc;
2584 :
2585 21 : ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2586 21 : if (!ctx) {
2587 0 : return -ENOMEM;
2588 : }
2589 :
2590 21 : nvme_ctrlr_identify_active_ns_async(ctx);
2591 21 : while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2592 0 : rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2593 0 : if (rc < 0) {
2594 0 : ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2595 0 : break;
2596 : }
2597 : }
2598 :
2599 21 : if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2600 1 : nvme_active_ns_ctx_destroy(ctx);
2601 1 : return -ENXIO;
2602 : }
2603 :
2604 20 : assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2605 20 : nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2606 20 : nvme_active_ns_ctx_destroy(ctx);
2607 :
2608 20 : return 0;
2609 : }
2610 :
2611 : static void
2612 21 : nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2613 : {
2614 21 : struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2615 21 : struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2616 : uint32_t nsid;
2617 : int rc;
2618 :
2619 21 : if (spdk_nvme_cpl_is_error(cpl)) {
2620 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2621 0 : return;
2622 : }
2623 :
2624 21 : nvme_ns_set_identify_data(ns);
2625 :
2626 : /* move on to the next active NS */
2627 21 : nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2628 21 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2629 21 : if (ns == NULL) {
2630 6 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2631 6 : ctrlr->opts.admin_timeout_ms);
2632 6 : return;
2633 : }
2634 15 : ns->ctrlr = ctrlr;
2635 15 : ns->id = nsid;
2636 :
2637 15 : rc = nvme_ctrlr_identify_ns_async(ns);
2638 15 : if (rc) {
2639 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2640 : }
2641 : }
2642 :
2643 : static int
2644 21 : nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2645 : {
2646 21 : struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2647 : struct spdk_nvme_ns_data *nsdata;
2648 :
2649 21 : nsdata = &ns->nsdata;
2650 :
2651 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2652 21 : ctrlr->opts.admin_timeout_ms);
2653 21 : return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2654 : nsdata, sizeof(*nsdata),
2655 : nvme_ctrlr_identify_ns_async_done, ns);
2656 : }
2657 :
2658 : static int
2659 14 : nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2660 : {
2661 : uint32_t nsid;
2662 : struct spdk_nvme_ns *ns;
2663 : int rc;
2664 :
2665 14 : nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2666 14 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2667 14 : if (ns == NULL) {
2668 : /* No active NS, move on to the next state */
2669 8 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2670 8 : ctrlr->opts.admin_timeout_ms);
2671 8 : return 0;
2672 : }
2673 :
2674 6 : ns->ctrlr = ctrlr;
2675 6 : ns->id = nsid;
2676 :
2677 6 : rc = nvme_ctrlr_identify_ns_async(ns);
2678 6 : if (rc) {
2679 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2680 : }
2681 :
2682 6 : return rc;
2683 : }
2684 :
2685 : static int
2686 4 : nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2687 : {
2688 : uint32_t nsid;
2689 : struct spdk_nvme_ns *ns;
2690 : int rc;
2691 :
2692 4 : if (!prev_nsid) {
2693 2 : nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2694 : } else {
2695 : /* move on to the next active NS */
2696 2 : nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2697 : }
2698 :
2699 4 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2700 4 : if (ns == NULL) {
2701 : /* No first/next active NS, move on to the next state */
2702 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2703 1 : ctrlr->opts.admin_timeout_ms);
2704 1 : return 0;
2705 : }
2706 :
2707 : /* loop until we find a ns which has (supported) iocs specific data */
2708 10 : while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2709 8 : nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2710 8 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2711 8 : if (ns == NULL) {
2712 : /* no namespace with (supported) iocs specific data found */
2713 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2714 1 : ctrlr->opts.admin_timeout_ms);
2715 1 : return 0;
2716 : }
2717 : }
2718 :
2719 2 : rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2720 2 : if (rc) {
2721 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2722 : }
2723 :
2724 2 : return rc;
2725 : }
2726 :
2727 : static void
2728 0 : nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2729 : {
2730 0 : struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2731 0 : struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2732 :
2733 0 : if (spdk_nvme_cpl_is_error(cpl)) {
2734 0 : nvme_ns_free_zns_specific_data(ns);
2735 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2736 0 : return;
2737 : }
2738 :
2739 0 : nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2740 : }
2741 :
2742 : static int
2743 2 : nvme_ctrlr_identify_ns_zns_specific_async(struct spdk_nvme_ns *ns)
2744 : {
2745 2 : struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2746 : int rc;
2747 :
2748 2 : assert(!ns->nsdata_zns);
2749 2 : ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2750 : SPDK_MALLOC_SHARE);
2751 2 : if (!ns->nsdata_zns) {
2752 0 : return -ENOMEM;
2753 : }
2754 :
2755 2 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2756 2 : ctrlr->opts.admin_timeout_ms);
2757 2 : rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2758 2 : ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2759 : nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2760 2 : if (rc) {
2761 1 : nvme_ns_free_zns_specific_data(ns);
2762 : }
2763 :
2764 2 : return rc;
2765 : }
2766 :
2767 : static void
2768 0 : nvme_ctrlr_identify_ns_nvm_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2769 : {
2770 0 : struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2771 0 : struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2772 :
2773 0 : if (spdk_nvme_cpl_is_error(cpl)) {
2774 0 : nvme_ns_free_nvm_specific_data(ns);
2775 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2776 0 : return;
2777 : }
2778 :
2779 0 : nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2780 : }
2781 :
2782 : static int
2783 0 : nvme_ctrlr_identify_ns_nvm_specific_async(struct spdk_nvme_ns *ns)
2784 : {
2785 0 : struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2786 : int rc;
2787 :
2788 0 : assert(!ns->nsdata_nvm);
2789 0 : ns->nsdata_nvm = spdk_zmalloc(sizeof(*ns->nsdata_nvm), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2790 : SPDK_MALLOC_SHARE);
2791 0 : if (!ns->nsdata_nvm) {
2792 0 : return -ENOMEM;
2793 : }
2794 :
2795 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2796 0 : ctrlr->opts.admin_timeout_ms);
2797 0 : rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2798 0 : ns->nsdata_nvm, sizeof(*ns->nsdata_nvm),
2799 : nvme_ctrlr_identify_ns_nvm_specific_async_done, ns);
2800 0 : if (rc) {
2801 0 : nvme_ns_free_nvm_specific_data(ns);
2802 : }
2803 :
2804 0 : return rc;
2805 : }
2806 :
2807 : static int
2808 2 : nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2809 : {
2810 2 : switch (ns->csi) {
2811 2 : case SPDK_NVME_CSI_ZNS:
2812 2 : return nvme_ctrlr_identify_ns_zns_specific_async(ns);
2813 0 : case SPDK_NVME_CSI_NVM:
2814 0 : if (ns->ctrlr->cdata.ctratt.bits.elbas) {
2815 0 : return nvme_ctrlr_identify_ns_nvm_specific_async(ns);
2816 : }
2817 : /* fallthrough */
2818 : default:
2819 : /*
2820 : * This switch must handle all cases for which
2821 : * nvme_ns_has_supported_iocs_specific_data() returns true,
2822 : * other cases should never happen.
2823 : */
2824 0 : assert(0);
2825 : }
2826 :
2827 : return -EINVAL;
2828 : }
2829 :
2830 : static int
2831 14 : nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2832 : {
2833 14 : if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2834 : /* Multi IOCS not supported/enabled, move on to the next state */
2835 14 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2836 14 : ctrlr->opts.admin_timeout_ms);
2837 14 : return 0;
2838 : }
2839 :
2840 0 : return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2841 : }
2842 :
2843 : static void
2844 6 : nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2845 : {
2846 6 : struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2847 6 : struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2848 : uint32_t nsid;
2849 : int rc;
2850 :
2851 6 : if (spdk_nvme_cpl_is_error(cpl)) {
2852 : /*
2853 : * Many controllers claim to be compatible with NVMe 1.3, however,
2854 : * they do not implement NS ID Desc List. Therefore, instead of setting
2855 : * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2856 : * error and move on to the next state.
2857 : *
2858 : * The proper way is to create a new quirk for controllers that violate
2859 : * the NVMe 1.3 spec by not supporting NS ID Desc List.
2860 : * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2861 : * it is too generic and was added in order to handle controllers that
2862 : * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2863 : */
2864 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2865 0 : ctrlr->opts.admin_timeout_ms);
2866 0 : return;
2867 : }
2868 :
2869 6 : nvme_ns_set_id_desc_list_data(ns);
2870 :
2871 : /* move on to the next active NS */
2872 6 : nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2873 6 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2874 6 : if (ns == NULL) {
2875 2 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2876 2 : ctrlr->opts.admin_timeout_ms);
2877 2 : return;
2878 : }
2879 :
2880 4 : rc = nvme_ctrlr_identify_id_desc_async(ns);
2881 4 : if (rc) {
2882 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2883 : }
2884 : }
2885 :
2886 : static int
2887 6 : nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2888 : {
2889 6 : struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2890 :
2891 6 : memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2892 :
2893 6 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2894 6 : ctrlr->opts.admin_timeout_ms);
2895 12 : return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2896 6 : 0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2897 : nvme_ctrlr_identify_id_desc_async_done, ns);
2898 : }
2899 :
2900 : static int
2901 14 : nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2902 : {
2903 : uint32_t nsid;
2904 : struct spdk_nvme_ns *ns;
2905 : int rc;
2906 :
2907 14 : if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2908 12 : !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2909 2 : (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2910 12 : NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2911 : /* NS ID Desc List not supported, move on to the next state */
2912 12 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2913 12 : ctrlr->opts.admin_timeout_ms);
2914 12 : return 0;
2915 : }
2916 :
2917 2 : nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2918 2 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2919 2 : if (ns == NULL) {
2920 : /* No active NS, move on to the next state */
2921 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2922 0 : ctrlr->opts.admin_timeout_ms);
2923 0 : return 0;
2924 : }
2925 :
2926 2 : rc = nvme_ctrlr_identify_id_desc_async(ns);
2927 2 : if (rc) {
2928 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2929 : }
2930 :
2931 2 : return rc;
2932 : }
2933 :
2934 : static void
2935 19 : nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2936 : {
2937 19 : if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2938 4 : if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2939 0 : NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2940 : ctrlr->cdata.nvmf_specific.ioccsz);
2941 0 : ctrlr->cdata.nvmf_specific.ioccsz = 4;
2942 0 : assert(0);
2943 : }
2944 4 : ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2945 4 : ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2946 : }
2947 19 : }
2948 :
2949 : static void
2950 19 : nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2951 : {
2952 : uint32_t cq_allocated, sq_allocated, min_allocated, i;
2953 19 : struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2954 :
2955 19 : if (spdk_nvme_cpl_is_error(cpl)) {
2956 0 : NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2957 0 : ctrlr->opts.num_io_queues = 0;
2958 : } else {
2959 : /*
2960 : * Data in cdw0 is 0-based.
2961 : * Lower 16-bits indicate number of submission queues allocated.
2962 : * Upper 16-bits indicate number of completion queues allocated.
2963 : */
2964 19 : sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2965 19 : cq_allocated = (cpl->cdw0 >> 16) + 1;
2966 :
2967 : /*
2968 : * For 1:1 queue mapping, set number of allocated queues to be minimum of
2969 : * submission and completion queues.
2970 : */
2971 19 : min_allocated = spdk_min(sq_allocated, cq_allocated);
2972 :
2973 : /* Set number of queues to be minimum of requested and actually allocated. */
2974 19 : ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2975 :
2976 19 : if (ctrlr->opts.enable_interrupts) {
2977 0 : ctrlr->opts.num_io_queues = spdk_min(MAX_IO_QUEUES_WITH_INTERRUPTS,
2978 : ctrlr->opts.num_io_queues);
2979 0 : if (nvme_transport_ctrlr_enable_interrupts(ctrlr) < 0) {
2980 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to enable interrupts!\n");
2981 0 : ctrlr->opts.enable_interrupts = false;
2982 : }
2983 : }
2984 : }
2985 :
2986 19 : ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2987 19 : if (ctrlr->free_io_qids == NULL) {
2988 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2989 0 : return;
2990 : }
2991 :
2992 : /* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2993 69 : for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2994 50 : spdk_nvme_ctrlr_free_qid(ctrlr, i);
2995 : }
2996 :
2997 19 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2998 19 : ctrlr->opts.admin_timeout_ms);
2999 : }
3000 :
3001 : static int
3002 19 : nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
3003 : {
3004 : int rc;
3005 :
3006 19 : if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
3007 0 : NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
3008 : ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
3009 0 : ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
3010 19 : } else if (ctrlr->opts.num_io_queues < 1) {
3011 13 : NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
3012 13 : ctrlr->opts.num_io_queues = 1;
3013 : }
3014 :
3015 19 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
3016 19 : ctrlr->opts.admin_timeout_ms);
3017 :
3018 19 : rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
3019 : nvme_ctrlr_set_num_queues_done, ctrlr);
3020 19 : if (rc != 0) {
3021 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3022 0 : return rc;
3023 : }
3024 :
3025 19 : return 0;
3026 : }
3027 :
3028 : static void
3029 3 : nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
3030 : {
3031 : uint32_t keep_alive_interval_us;
3032 3 : struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3033 :
3034 3 : if (spdk_nvme_cpl_is_error(cpl)) {
3035 2 : if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
3036 2 : (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
3037 1 : NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
3038 : } else {
3039 1 : NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
3040 : cpl->status.sc, cpl->status.sct);
3041 1 : ctrlr->opts.keep_alive_timeout_ms = 0;
3042 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3043 1 : return;
3044 : }
3045 : } else {
3046 1 : if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
3047 1 : NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
3048 : cpl->cdw0);
3049 : }
3050 :
3051 1 : ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
3052 : }
3053 :
3054 2 : if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3055 0 : ctrlr->keep_alive_interval_ticks = 0;
3056 : } else {
3057 2 : keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
3058 :
3059 2 : NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
3060 :
3061 2 : ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
3062 : UINT64_C(1000000);
3063 :
3064 : /* Schedule the first Keep Alive to be sent as soon as possible. */
3065 2 : ctrlr->next_keep_alive_tick = spdk_get_ticks();
3066 : }
3067 :
3068 2 : if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3069 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3070 : } else {
3071 2 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3072 2 : ctrlr->opts.admin_timeout_ms);
3073 : }
3074 : }
3075 :
3076 : static int
3077 22 : nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
3078 : {
3079 : int rc;
3080 :
3081 22 : if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3082 19 : if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3083 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3084 : } else {
3085 19 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3086 19 : ctrlr->opts.admin_timeout_ms);
3087 : }
3088 19 : return 0;
3089 : }
3090 :
3091 : /* Note: Discovery controller identify data does not populate KAS according to spec. */
3092 3 : if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
3093 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
3094 0 : ctrlr->opts.keep_alive_timeout_ms = 0;
3095 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3096 0 : ctrlr->opts.admin_timeout_ms);
3097 0 : return 0;
3098 : }
3099 :
3100 3 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
3101 3 : ctrlr->opts.admin_timeout_ms);
3102 :
3103 : /* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
3104 3 : rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
3105 : nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
3106 3 : if (rc != 0) {
3107 0 : NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
3108 0 : ctrlr->opts.keep_alive_timeout_ms = 0;
3109 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3110 0 : return rc;
3111 : }
3112 :
3113 3 : return 0;
3114 : }
3115 :
3116 : static void
3117 0 : nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
3118 : {
3119 0 : struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3120 :
3121 0 : if (spdk_nvme_cpl_is_error(cpl)) {
3122 : /*
3123 : * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
3124 : * is optional.
3125 : */
3126 0 : NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
3127 : cpl->status.sc, cpl->status.sct);
3128 : } else {
3129 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
3130 : }
3131 :
3132 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3133 0 : }
3134 :
3135 : static int
3136 14 : nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
3137 : {
3138 : uint8_t *host_id;
3139 : uint32_t host_id_size;
3140 : int rc;
3141 :
3142 14 : if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
3143 : /*
3144 : * NVMe-oF sends the host ID during Connect and doesn't allow
3145 : * Set Features - Host Identifier after Connect, so we don't need to do anything here.
3146 : */
3147 14 : NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
3148 14 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3149 14 : return 0;
3150 : }
3151 :
3152 0 : if (ctrlr->cdata.ctratt.bits.host_id_exhid_supported) {
3153 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
3154 0 : host_id = ctrlr->opts.extended_host_id;
3155 0 : host_id_size = sizeof(ctrlr->opts.extended_host_id);
3156 : } else {
3157 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
3158 0 : host_id = ctrlr->opts.host_id;
3159 0 : host_id_size = sizeof(ctrlr->opts.host_id);
3160 : }
3161 :
3162 : /* If the user specified an all-zeroes host identifier, don't send the command. */
3163 0 : if (spdk_mem_all_zero(host_id, host_id_size)) {
3164 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
3165 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3166 0 : return 0;
3167 : }
3168 :
3169 0 : SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
3170 :
3171 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
3172 0 : ctrlr->opts.admin_timeout_ms);
3173 :
3174 0 : rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
3175 0 : if (rc != 0) {
3176 0 : NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
3177 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3178 0 : return rc;
3179 : }
3180 :
3181 0 : return 0;
3182 : }
3183 :
3184 : void
3185 4 : nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
3186 : {
3187 : uint32_t nsid;
3188 : struct spdk_nvme_ns *ns;
3189 :
3190 4 : for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3191 19 : nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3192 15 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
3193 15 : nvme_ns_construct(ns, nsid, ctrlr);
3194 : }
3195 4 : }
3196 :
3197 : static int
3198 4 : nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3199 : {
3200 : struct nvme_completion_poll_status *status;
3201 4 : int rc = -ENOMEM;
3202 4 : char *buffer = NULL;
3203 : uint32_t nsid;
3204 4 : size_t buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3205 :
3206 4 : if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3207 0 : return 0;
3208 : }
3209 :
3210 4 : buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3211 4 : if (!buffer) {
3212 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3213 : "changed ns log.\n");
3214 0 : return rc;
3215 : }
3216 :
3217 4 : status = calloc(1, sizeof(*status));
3218 4 : if (!status) {
3219 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3220 0 : goto free_buffer;
3221 : }
3222 :
3223 4 : rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3224 : SPDK_NVME_LOG_CHANGED_NS_LIST,
3225 : SPDK_NVME_GLOBAL_NS_TAG,
3226 : buffer, buf_size, 0,
3227 : nvme_completion_poll_cb, status);
3228 :
3229 4 : if (rc) {
3230 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3231 0 : free(status);
3232 0 : goto free_buffer;
3233 : }
3234 :
3235 4 : rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3236 4 : ctrlr->opts.admin_timeout_ms * 1000);
3237 4 : if (!status->timed_out) {
3238 4 : free(status);
3239 : }
3240 :
3241 4 : if (rc) {
3242 0 : NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3243 0 : goto free_buffer;
3244 : }
3245 :
3246 : /* only check the case of overflow. */
3247 4 : nsid = from_le32(buffer);
3248 4 : if (nsid == 0xffffffffu) {
3249 0 : NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3250 : }
3251 :
3252 4 : free_buffer:
3253 4 : spdk_dma_free(buffer);
3254 4 : return rc;
3255 : }
3256 :
3257 : static void
3258 5 : nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3259 : const struct spdk_nvme_cpl *cpl)
3260 : {
3261 : union spdk_nvme_async_event_completion event;
3262 : struct spdk_nvme_ctrlr_process *active_proc;
3263 : int rc;
3264 :
3265 5 : event.raw = cpl->cdw0;
3266 :
3267 5 : if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3268 5 : (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3269 4 : nvme_ctrlr_clear_changed_ns_log(ctrlr);
3270 :
3271 4 : rc = nvme_ctrlr_identify_active_ns(ctrlr);
3272 4 : if (rc) {
3273 0 : return;
3274 : }
3275 4 : nvme_ctrlr_update_namespaces(ctrlr);
3276 4 : nvme_io_msg_ctrlr_update(ctrlr);
3277 : }
3278 :
3279 5 : if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3280 5 : (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3281 1 : if (!ctrlr->opts.disable_read_ana_log_page) {
3282 1 : rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3283 1 : if (rc) {
3284 0 : return;
3285 : }
3286 1 : nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3287 : ctrlr);
3288 : }
3289 : }
3290 :
3291 5 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
3292 5 : if (active_proc && active_proc->aer_cb_fn) {
3293 3 : active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3294 : }
3295 : }
3296 :
3297 : static void
3298 5 : nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3299 : const struct spdk_nvme_cpl *cpl)
3300 : {
3301 : struct spdk_nvme_ctrlr_aer_completion *nvme_event;
3302 : struct spdk_nvme_ctrlr_process *proc;
3303 :
3304 : /* Add async event to each process objects event list */
3305 10 : TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3306 : /* Must be shared memory so other processes can access */
3307 5 : nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
3308 5 : if (!nvme_event) {
3309 0 : NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3310 0 : return;
3311 : }
3312 5 : nvme_event->cpl = *cpl;
3313 :
3314 5 : STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3315 : }
3316 : }
3317 :
3318 : static void
3319 5 : nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3320 : {
3321 : struct spdk_nvme_ctrlr_aer_completion *nvme_event, *nvme_event_tmp;
3322 : struct spdk_nvme_ctrlr_process *active_proc;
3323 :
3324 5 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
3325 :
3326 10 : STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3327 5 : STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3328 : spdk_nvme_ctrlr_aer_completion, link);
3329 5 : nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3330 5 : spdk_free(nvme_event);
3331 :
3332 : }
3333 5 : }
3334 :
3335 : static void
3336 5 : nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3337 : {
3338 5 : struct nvme_async_event_request *aer = arg;
3339 5 : struct spdk_nvme_ctrlr *ctrlr = aer->ctrlr;
3340 :
3341 5 : if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3342 5 : cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3343 : /*
3344 : * This is simulated when controller is being shut down, to
3345 : * effectively abort outstanding asynchronous event requests
3346 : * and make sure all memory is freed. Do not repost the
3347 : * request in this case.
3348 : */
3349 0 : return;
3350 : }
3351 :
3352 5 : if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3353 0 : cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3354 : /*
3355 : * SPDK will only send as many AERs as the device says it supports,
3356 : * so this status code indicates an out-of-spec device. Do not repost
3357 : * the request in this case.
3358 : */
3359 0 : NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3360 : "handling. Do not repost this AER.\n");
3361 0 : return;
3362 : }
3363 :
3364 : /* Add the events to the list */
3365 5 : nvme_ctrlr_queue_async_event(ctrlr, cpl);
3366 :
3367 : /* If the ctrlr was removed or in the destruct state, we should not send aer again */
3368 5 : if (ctrlr->is_removed || ctrlr->is_destructed) {
3369 0 : return;
3370 : }
3371 :
3372 : /*
3373 : * Repost another asynchronous event request to replace the one
3374 : * that just completed.
3375 : */
3376 5 : if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3377 : /*
3378 : * We can't do anything to recover from a failure here,
3379 : * so just print a warning message and leave the AER unsubmitted.
3380 : */
3381 0 : NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3382 : }
3383 : }
3384 :
3385 : static int
3386 24 : nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3387 : struct nvme_async_event_request *aer)
3388 : {
3389 : struct nvme_request *req;
3390 :
3391 24 : aer->ctrlr = ctrlr;
3392 24 : req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3393 24 : aer->req = req;
3394 24 : if (req == NULL) {
3395 0 : return -1;
3396 : }
3397 :
3398 24 : req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3399 24 : return nvme_ctrlr_submit_admin_request(ctrlr, req);
3400 : }
3401 :
3402 : static void
3403 19 : nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3404 : {
3405 : struct nvme_async_event_request *aer;
3406 : int rc;
3407 : uint32_t i;
3408 19 : struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3409 :
3410 19 : if (spdk_nvme_cpl_is_error(cpl)) {
3411 0 : NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3412 0 : ctrlr->num_aers = 0;
3413 : } else {
3414 : /* aerl is a zero-based value, so we need to add 1 here. */
3415 19 : ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3416 : }
3417 :
3418 38 : for (i = 0; i < ctrlr->num_aers; i++) {
3419 19 : aer = &ctrlr->aer[i];
3420 19 : rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3421 19 : if (rc) {
3422 0 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3423 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3424 0 : return;
3425 : }
3426 : }
3427 19 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3428 : }
3429 :
3430 : static int
3431 19 : nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3432 : {
3433 : union spdk_nvme_feat_async_event_configuration config;
3434 : int rc;
3435 :
3436 19 : config.raw = 0;
3437 :
3438 19 : if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3439 0 : config.bits.discovery_log_change_notice = 1;
3440 : } else {
3441 19 : config.bits.crit_warn.bits.available_spare = 1;
3442 19 : config.bits.crit_warn.bits.temperature = 1;
3443 19 : config.bits.crit_warn.bits.device_reliability = 1;
3444 19 : config.bits.crit_warn.bits.read_only = 1;
3445 19 : config.bits.crit_warn.bits.volatile_memory_backup = 1;
3446 :
3447 19 : if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3448 4 : if (ctrlr->cdata.oaes.ns_attribute_notices) {
3449 0 : config.bits.ns_attr_notice = 1;
3450 : }
3451 4 : if (ctrlr->cdata.oaes.fw_activation_notices) {
3452 0 : config.bits.fw_activation_notice = 1;
3453 : }
3454 4 : if (ctrlr->cdata.oaes.ana_change_notices) {
3455 0 : config.bits.ana_change_notice = 1;
3456 : }
3457 : }
3458 19 : if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3459 0 : config.bits.telemetry_log_notice = 1;
3460 : }
3461 : }
3462 :
3463 19 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3464 19 : ctrlr->opts.admin_timeout_ms);
3465 :
3466 19 : rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3467 : nvme_ctrlr_configure_aer_done,
3468 : ctrlr);
3469 19 : if (rc != 0) {
3470 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3471 0 : return rc;
3472 : }
3473 :
3474 19 : return 0;
3475 : }
3476 :
3477 : struct spdk_nvme_ctrlr_process *
3478 61 : nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3479 : {
3480 : struct spdk_nvme_ctrlr_process *active_proc;
3481 :
3482 61 : TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3483 12 : if (active_proc->pid == pid) {
3484 12 : return active_proc;
3485 : }
3486 : }
3487 :
3488 49 : return NULL;
3489 : }
3490 :
3491 : struct spdk_nvme_ctrlr_process *
3492 57 : nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3493 : {
3494 57 : return nvme_ctrlr_get_process(ctrlr, getpid());
3495 : }
3496 :
3497 : /**
3498 : * This function will be called when a process is using the controller.
3499 : * 1. For the primary process, it is called when constructing the controller.
3500 : * 2. For the secondary process, it is called at probing the controller.
3501 : * Note: will check whether the process is already added for the same process.
3502 : */
3503 : int
3504 4 : nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3505 : {
3506 : struct spdk_nvme_ctrlr_process *ctrlr_proc;
3507 4 : pid_t pid = getpid();
3508 :
3509 : /* Check whether the process is already added or not */
3510 4 : if (nvme_ctrlr_get_process(ctrlr, pid)) {
3511 0 : return 0;
3512 : }
3513 :
3514 : /* Initialize the per process properties for this ctrlr */
3515 4 : ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3516 : 64, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
3517 4 : if (ctrlr_proc == NULL) {
3518 0 : NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3519 :
3520 0 : return -1;
3521 : }
3522 :
3523 4 : ctrlr_proc->is_primary = spdk_process_is_primary();
3524 4 : ctrlr_proc->pid = pid;
3525 4 : STAILQ_INIT(&ctrlr_proc->active_reqs);
3526 4 : ctrlr_proc->devhandle = devhandle;
3527 4 : ctrlr_proc->ref = 0;
3528 4 : TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3529 4 : STAILQ_INIT(&ctrlr_proc->async_events);
3530 :
3531 4 : TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3532 :
3533 4 : return 0;
3534 : }
3535 :
3536 : /**
3537 : * This function will be called when the process detaches the controller.
3538 : * Note: the ctrlr_lock must be held when calling this function.
3539 : */
3540 : static void
3541 1 : nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3542 : struct spdk_nvme_ctrlr_process *proc)
3543 : {
3544 : struct spdk_nvme_qpair *qpair, *tmp_qpair;
3545 :
3546 1 : assert(STAILQ_EMPTY(&proc->active_reqs));
3547 :
3548 1 : TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3549 0 : spdk_nvme_ctrlr_free_io_qpair(qpair);
3550 : }
3551 :
3552 1 : TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3553 :
3554 1 : if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3555 1 : spdk_pci_device_detach(proc->devhandle);
3556 : }
3557 :
3558 1 : spdk_free(proc);
3559 1 : }
3560 :
3561 : /**
3562 : * This function will be called when the process exited unexpectedly
3563 : * in order to free any incomplete nvme request, allocated IO qpairs
3564 : * and allocated memory.
3565 : * Note: the ctrlr_lock must be held when calling this function.
3566 : */
3567 : static void
3568 0 : nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3569 : {
3570 : struct nvme_request *req, *tmp_req;
3571 : struct spdk_nvme_qpair *qpair, *tmp_qpair;
3572 : struct spdk_nvme_ctrlr_aer_completion *event;
3573 :
3574 0 : STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3575 0 : STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3576 :
3577 0 : assert(req->pid == proc->pid);
3578 0 : nvme_cleanup_user_req(req);
3579 0 : nvme_free_request(req);
3580 : }
3581 :
3582 : /* Remove async event from each process objects event list */
3583 0 : while (!STAILQ_EMPTY(&proc->async_events)) {
3584 0 : event = STAILQ_FIRST(&proc->async_events);
3585 0 : STAILQ_REMOVE_HEAD(&proc->async_events, link);
3586 0 : spdk_free(event);
3587 : }
3588 :
3589 0 : TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3590 0 : TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3591 :
3592 : /*
3593 : * The process may have been killed while some qpairs were in their
3594 : * completion context. Clear that flag here to allow these IO
3595 : * qpairs to be deleted.
3596 : */
3597 0 : qpair->in_completion_context = 0;
3598 :
3599 0 : qpair->no_deletion_notification_needed = 1;
3600 :
3601 0 : spdk_nvme_ctrlr_free_io_qpair(qpair);
3602 : }
3603 :
3604 0 : spdk_free(proc);
3605 0 : }
3606 :
3607 : /**
3608 : * This function will be called when destructing the controller.
3609 : * 1. There is no more admin request on this controller.
3610 : * 2. Clean up any left resource allocation when its associated process is gone.
3611 : */
3612 : void
3613 50 : nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3614 : {
3615 : struct spdk_nvme_ctrlr_process *active_proc, *tmp;
3616 :
3617 : /* Free all the processes' properties and make sure no pending admin IOs */
3618 53 : TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3619 3 : TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3620 :
3621 3 : assert(STAILQ_EMPTY(&active_proc->active_reqs));
3622 :
3623 3 : spdk_free(active_proc);
3624 : }
3625 50 : }
3626 :
3627 : /**
3628 : * This function will be called when any other process attaches or
3629 : * detaches the controller in order to cleanup those unexpectedly
3630 : * terminated processes.
3631 : * Note: the ctrlr_lock must be held when calling this function.
3632 : */
3633 : static int
3634 0 : nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3635 : {
3636 : struct spdk_nvme_ctrlr_process *active_proc, *tmp;
3637 0 : int active_proc_count = 0;
3638 :
3639 0 : TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3640 0 : if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3641 0 : NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3642 :
3643 0 : TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3644 :
3645 0 : nvme_ctrlr_cleanup_process(active_proc);
3646 : } else {
3647 0 : active_proc_count++;
3648 : }
3649 : }
3650 :
3651 0 : return active_proc_count;
3652 : }
3653 :
3654 : void
3655 0 : nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3656 : {
3657 : struct spdk_nvme_ctrlr_process *active_proc;
3658 :
3659 0 : nvme_ctrlr_lock(ctrlr);
3660 :
3661 0 : nvme_ctrlr_remove_inactive_proc(ctrlr);
3662 :
3663 0 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
3664 0 : if (active_proc) {
3665 0 : active_proc->ref++;
3666 : }
3667 :
3668 0 : nvme_ctrlr_unlock(ctrlr);
3669 0 : }
3670 :
3671 : void
3672 0 : nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3673 : {
3674 : struct spdk_nvme_ctrlr_process *active_proc;
3675 : int proc_count;
3676 :
3677 0 : nvme_ctrlr_lock(ctrlr);
3678 :
3679 0 : proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3680 :
3681 0 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
3682 0 : if (active_proc) {
3683 0 : active_proc->ref--;
3684 0 : assert(active_proc->ref >= 0);
3685 :
3686 : /*
3687 : * The last active process will be removed at the end of
3688 : * the destruction of the controller.
3689 : */
3690 0 : if (active_proc->ref == 0 && proc_count != 1) {
3691 0 : nvme_ctrlr_remove_process(ctrlr, active_proc);
3692 : }
3693 : }
3694 :
3695 0 : nvme_ctrlr_unlock(ctrlr);
3696 0 : }
3697 :
3698 : int
3699 0 : nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3700 : {
3701 : struct spdk_nvme_ctrlr_process *active_proc;
3702 0 : int ref = 0;
3703 :
3704 0 : nvme_ctrlr_lock(ctrlr);
3705 :
3706 0 : nvme_ctrlr_remove_inactive_proc(ctrlr);
3707 :
3708 0 : TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3709 0 : ref += active_proc->ref;
3710 : }
3711 :
3712 0 : nvme_ctrlr_unlock(ctrlr);
3713 :
3714 0 : return ref;
3715 : }
3716 :
3717 : /**
3718 : * Get the PCI device handle which is only visible to its associated process.
3719 : */
3720 : struct spdk_pci_device *
3721 0 : nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3722 : {
3723 : struct spdk_nvme_ctrlr_process *active_proc;
3724 0 : struct spdk_pci_device *devhandle = NULL;
3725 :
3726 0 : nvme_ctrlr_lock(ctrlr);
3727 :
3728 0 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
3729 0 : if (active_proc) {
3730 0 : devhandle = active_proc->devhandle;
3731 : }
3732 :
3733 0 : nvme_ctrlr_unlock(ctrlr);
3734 :
3735 0 : return devhandle;
3736 : }
3737 :
3738 : static void
3739 21 : nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3740 : {
3741 21 : struct spdk_nvme_ctrlr *ctrlr = ctx;
3742 :
3743 21 : if (spdk_nvme_cpl_is_error(cpl)) {
3744 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3745 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3746 0 : return;
3747 : }
3748 :
3749 21 : assert(value <= UINT32_MAX);
3750 21 : ctrlr->vs.raw = (uint32_t)value;
3751 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3752 : }
3753 :
3754 : static void
3755 21 : nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3756 : {
3757 21 : struct spdk_nvme_ctrlr *ctrlr = ctx;
3758 :
3759 21 : if (spdk_nvme_cpl_is_error(cpl)) {
3760 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3761 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3762 0 : return;
3763 : }
3764 :
3765 21 : ctrlr->cap.raw = value;
3766 21 : nvme_ctrlr_init_cap(ctrlr);
3767 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3768 : }
3769 :
3770 : static void
3771 22 : nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3772 : {
3773 22 : struct spdk_nvme_ctrlr *ctrlr = ctx;
3774 : enum nvme_ctrlr_state state;
3775 :
3776 22 : if (spdk_nvme_cpl_is_error(cpl)) {
3777 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3778 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3779 0 : return;
3780 : }
3781 :
3782 22 : assert(value <= UINT32_MAX);
3783 22 : ctrlr->process_init_cc.raw = (uint32_t)value;
3784 :
3785 22 : if (ctrlr->process_init_cc.bits.en) {
3786 2 : NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3787 2 : state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3788 : } else {
3789 20 : state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3790 : }
3791 :
3792 22 : nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3793 : }
3794 :
3795 : static void
3796 2 : nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3797 : {
3798 2 : struct spdk_nvme_ctrlr *ctrlr = ctx;
3799 :
3800 2 : if (spdk_nvme_cpl_is_error(cpl)) {
3801 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3802 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3803 0 : return;
3804 : }
3805 :
3806 : /*
3807 : * Wait 2.5 seconds before accessing PCI registers.
3808 : * Not using sleep() to avoid blocking other controller's initialization.
3809 : */
3810 2 : if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3811 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3812 0 : ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3813 : }
3814 :
3815 2 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3816 : nvme_ctrlr_get_ready_timeout(ctrlr));
3817 : }
3818 :
3819 : static void
3820 2 : nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3821 : {
3822 2 : struct spdk_nvme_ctrlr *ctrlr = ctx;
3823 : union spdk_nvme_cc_register cc;
3824 : int rc;
3825 :
3826 2 : if (spdk_nvme_cpl_is_error(cpl)) {
3827 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3828 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3829 0 : return;
3830 : }
3831 :
3832 2 : assert(value <= UINT32_MAX);
3833 2 : cc.raw = (uint32_t)value;
3834 2 : cc.bits.en = 0;
3835 2 : ctrlr->process_init_cc.raw = cc.raw;
3836 :
3837 2 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3838 : nvme_ctrlr_get_ready_timeout(ctrlr));
3839 :
3840 2 : rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3841 2 : if (rc != 0) {
3842 0 : NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3843 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3844 : }
3845 : }
3846 :
3847 : static void
3848 2 : nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3849 : {
3850 2 : struct spdk_nvme_ctrlr *ctrlr = ctx;
3851 : union spdk_nvme_csts_register csts;
3852 :
3853 2 : if (spdk_nvme_cpl_is_error(cpl)) {
3854 : /* While a device is resetting, it may be unable to service MMIO reads
3855 : * temporarily. Allow for this case.
3856 : */
3857 0 : if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3858 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3859 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3860 : NVME_TIMEOUT_KEEP_EXISTING);
3861 : } else {
3862 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3863 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3864 : }
3865 :
3866 0 : return;
3867 : }
3868 :
3869 2 : assert(value <= UINT32_MAX);
3870 2 : csts.raw = (uint32_t)value;
3871 2 : if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3872 2 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3873 : nvme_ctrlr_get_ready_timeout(ctrlr));
3874 : } else {
3875 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3876 0 : nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3877 : NVME_TIMEOUT_KEEP_EXISTING);
3878 : }
3879 : }
3880 :
3881 : static void
3882 22 : nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3883 : {
3884 22 : struct spdk_nvme_ctrlr *ctrlr = ctx;
3885 : union spdk_nvme_csts_register csts;
3886 :
3887 22 : if (spdk_nvme_cpl_is_error(cpl)) {
3888 : /* While a device is resetting, it may be unable to service MMIO reads
3889 : * temporarily. Allow for this case.
3890 : */
3891 0 : if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3892 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3893 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3894 : NVME_TIMEOUT_KEEP_EXISTING);
3895 : } else {
3896 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3897 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3898 : }
3899 :
3900 0 : return;
3901 : }
3902 :
3903 22 : assert(value <= UINT32_MAX);
3904 22 : csts.raw = (uint32_t)value;
3905 22 : if (csts.bits.rdy == 0) {
3906 22 : NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3907 22 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3908 : nvme_ctrlr_get_ready_timeout(ctrlr));
3909 : } else {
3910 0 : nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3911 : NVME_TIMEOUT_KEEP_EXISTING);
3912 : }
3913 : }
3914 :
3915 : static void
3916 9 : nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3917 : const struct spdk_nvme_cpl *cpl)
3918 : {
3919 9 : struct spdk_nvme_ctrlr *ctrlr = ctx;
3920 : union spdk_nvme_csts_register csts;
3921 :
3922 9 : if (spdk_nvme_cpl_is_error(cpl)) {
3923 : /* While a device is resetting, it may be unable to service MMIO reads
3924 : * temporarily. Allow for this case.
3925 : */
3926 0 : if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3927 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3928 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3929 : NVME_TIMEOUT_KEEP_EXISTING);
3930 : } else {
3931 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3932 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3933 : }
3934 :
3935 0 : return;
3936 : }
3937 :
3938 9 : assert(value <= UINT32_MAX);
3939 9 : csts.raw = value;
3940 9 : if (csts.bits.rdy == 1) {
3941 9 : NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3942 : /*
3943 : * The controller has been enabled.
3944 : * Perform the rest of initialization serially.
3945 : */
3946 9 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3947 9 : ctrlr->opts.admin_timeout_ms);
3948 : } else {
3949 0 : nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3950 : NVME_TIMEOUT_KEEP_EXISTING);
3951 : }
3952 : }
3953 :
3954 : /**
3955 : * This function will be called repeatedly during initialization until the controller is ready.
3956 : */
3957 : int
3958 446 : nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3959 : {
3960 : uint32_t ready_timeout_in_ms;
3961 : uint64_t ticks;
3962 446 : int rc = 0;
3963 :
3964 446 : ticks = spdk_get_ticks();
3965 :
3966 : /*
3967 : * May need to avoid accessing any register on the target controller
3968 : * for a while. Return early without touching the FSM.
3969 : * Check sleep_timeout_tsc > 0 for unit test.
3970 : */
3971 446 : if ((ctrlr->sleep_timeout_tsc > 0) &&
3972 2 : (ticks <= ctrlr->sleep_timeout_tsc)) {
3973 1 : return 0;
3974 : }
3975 445 : ctrlr->sleep_timeout_tsc = 0;
3976 :
3977 445 : ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3978 :
3979 : /*
3980 : * Check if the current initialization step is done or has timed out.
3981 : */
3982 445 : switch (ctrlr->state) {
3983 1 : case NVME_CTRLR_STATE_INIT_DELAY:
3984 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3985 1 : if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3986 : /*
3987 : * Controller may need some delay before it's enabled.
3988 : *
3989 : * This is a workaround for an issue where the PCIe-attached NVMe controller
3990 : * is not ready after VFIO reset. We delay the initialization rather than the
3991 : * enabling itself, because this is required only for the very first enabling
3992 : * - directly after a VFIO reset.
3993 : */
3994 1 : NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3995 1 : ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3996 : }
3997 1 : break;
3998 :
3999 0 : case NVME_CTRLR_STATE_DISCONNECTED:
4000 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4001 0 : break;
4002 :
4003 21 : case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
4004 21 : rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
4005 21 : if (rc == 0) {
4006 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
4007 : NVME_TIMEOUT_INFINITE);
4008 : } else {
4009 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4010 : }
4011 21 : break;
4012 :
4013 21 : case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
4014 21 : spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4015 :
4016 21 : switch (nvme_qpair_get_state(ctrlr->adminq)) {
4017 0 : case NVME_QPAIR_CONNECTING:
4018 0 : if (ctrlr->is_failed) {
4019 0 : nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4020 0 : break;
4021 : }
4022 :
4023 0 : break;
4024 21 : case NVME_QPAIR_CONNECTED:
4025 21 : nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
4026 : /* Fall through */
4027 21 : case NVME_QPAIR_ENABLED:
4028 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
4029 : NVME_TIMEOUT_INFINITE);
4030 : /* Abort any queued requests that were sent while the adminq was connecting
4031 : * to avoid stalling the init process during a reset, as requests don't get
4032 : * resubmitted while the controller is resetting and subsequent commands
4033 : * would get queued too.
4034 : */
4035 21 : nvme_qpair_abort_queued_reqs(ctrlr->adminq);
4036 21 : break;
4037 0 : case NVME_QPAIR_DISCONNECTING:
4038 0 : assert(ctrlr->adminq->async == true);
4039 0 : break;
4040 0 : case NVME_QPAIR_DISCONNECTED:
4041 : /* fallthrough */
4042 : default:
4043 0 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4044 0 : break;
4045 : }
4046 :
4047 21 : break;
4048 :
4049 21 : case NVME_CTRLR_STATE_READ_VS:
4050 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
4051 21 : rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
4052 21 : break;
4053 :
4054 21 : case NVME_CTRLR_STATE_READ_CAP:
4055 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
4056 21 : rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
4057 21 : break;
4058 :
4059 22 : case NVME_CTRLR_STATE_CHECK_EN:
4060 : /* Begin the hardware initialization by making sure the controller is disabled. */
4061 22 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
4062 22 : rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
4063 22 : break;
4064 :
4065 2 : case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
4066 : /*
4067 : * Controller is currently enabled. We need to disable it to cause a reset.
4068 : *
4069 : * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
4070 : * Wait for the ready bit to be 1 before disabling the controller.
4071 : */
4072 2 : nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4073 : NVME_TIMEOUT_KEEP_EXISTING);
4074 2 : rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
4075 2 : break;
4076 :
4077 2 : case NVME_CTRLR_STATE_SET_EN_0:
4078 2 : NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
4079 2 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
4080 2 : rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
4081 2 : break;
4082 :
4083 22 : case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
4084 22 : nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
4085 : NVME_TIMEOUT_KEEP_EXISTING);
4086 22 : rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
4087 22 : break;
4088 :
4089 21 : case NVME_CTRLR_STATE_DISABLED:
4090 21 : if (ctrlr->is_disconnecting) {
4091 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
4092 : } else {
4093 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
4094 :
4095 : /*
4096 : * Delay 100us before setting CC.EN = 1. Some NVMe SSDs miss CC.EN getting
4097 : * set to 1 if it is too soon after CSTS.RDY is reported as 0.
4098 : */
4099 21 : spdk_delay_us(100);
4100 : }
4101 21 : break;
4102 :
4103 21 : case NVME_CTRLR_STATE_ENABLE:
4104 21 : NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
4105 21 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
4106 21 : rc = nvme_ctrlr_enable(ctrlr);
4107 21 : if (rc) {
4108 7 : NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
4109 : }
4110 21 : return rc;
4111 :
4112 9 : case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
4113 9 : nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4114 : NVME_TIMEOUT_KEEP_EXISTING);
4115 9 : rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
4116 : ctrlr);
4117 9 : break;
4118 :
4119 9 : case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
4120 9 : nvme_transport_qpair_reset(ctrlr->adminq);
4121 9 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
4122 9 : break;
4123 :
4124 16 : case NVME_CTRLR_STATE_IDENTIFY:
4125 16 : rc = nvme_ctrlr_identify(ctrlr);
4126 16 : break;
4127 :
4128 19 : case NVME_CTRLR_STATE_CONFIGURE_AER:
4129 19 : rc = nvme_ctrlr_configure_aer(ctrlr);
4130 19 : break;
4131 :
4132 22 : case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
4133 22 : rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
4134 22 : break;
4135 :
4136 19 : case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
4137 19 : rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
4138 19 : break;
4139 :
4140 0 : case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
4141 0 : rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
4142 0 : break;
4143 :
4144 19 : case NVME_CTRLR_STATE_SET_NUM_QUEUES:
4145 19 : nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
4146 19 : rc = nvme_ctrlr_set_num_queues(ctrlr);
4147 19 : break;
4148 :
4149 24 : case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
4150 24 : _nvme_ctrlr_identify_active_ns(ctrlr);
4151 24 : break;
4152 :
4153 14 : case NVME_CTRLR_STATE_IDENTIFY_NS:
4154 14 : rc = nvme_ctrlr_identify_namespaces(ctrlr);
4155 14 : break;
4156 :
4157 14 : case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
4158 14 : rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
4159 14 : break;
4160 :
4161 14 : case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
4162 14 : rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
4163 14 : break;
4164 :
4165 15 : case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
4166 15 : rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
4167 15 : break;
4168 :
4169 1 : case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
4170 1 : rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
4171 1 : break;
4172 :
4173 14 : case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
4174 14 : nvme_ctrlr_set_supported_features(ctrlr);
4175 14 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_FEATURE,
4176 14 : ctrlr->opts.admin_timeout_ms);
4177 14 : break;
4178 :
4179 16 : case NVME_CTRLR_STATE_SET_HOST_FEATURE:
4180 16 : rc = nvme_ctrlr_set_host_feature(ctrlr);
4181 16 : break;
4182 :
4183 14 : case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
4184 14 : rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
4185 14 : break;
4186 :
4187 14 : case NVME_CTRLR_STATE_SET_HOST_ID:
4188 14 : rc = nvme_ctrlr_set_host_id(ctrlr);
4189 14 : break;
4190 :
4191 17 : case NVME_CTRLR_STATE_TRANSPORT_READY:
4192 17 : rc = nvme_transport_ctrlr_ready(ctrlr);
4193 17 : if (rc) {
4194 1 : NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
4195 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4196 : } else {
4197 16 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
4198 : }
4199 17 : break;
4200 :
4201 0 : case NVME_CTRLR_STATE_READY:
4202 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4203 0 : return 0;
4204 :
4205 0 : case NVME_CTRLR_STATE_ERROR:
4206 0 : NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4207 0 : return -1;
4208 :
4209 0 : case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4210 : case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4211 : case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4212 : case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4213 : case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4214 : case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4215 : case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4216 : case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4217 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4218 : case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4219 : case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4220 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4221 : case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4222 : case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4223 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4224 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4225 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4226 : case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4227 : case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4228 : case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
4229 : case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4230 : case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4231 : /*
4232 : * nvme_ctrlr_process_init() may be called from the completion context
4233 : * for the admin qpair. Avoid recursive calls for this case.
4234 : */
4235 0 : if (!ctrlr->adminq->in_completion_context) {
4236 0 : spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4237 : }
4238 0 : break;
4239 :
4240 0 : default:
4241 0 : assert(0);
4242 : return -1;
4243 : }
4244 :
4245 424 : if (rc) {
4246 1 : NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4247 : rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4248 : }
4249 :
4250 : /* Note: we use the ticks captured when we entered this function.
4251 : * This covers environments where the SPDK process gets swapped out after
4252 : * we tried to advance the state but before we check the timeout here.
4253 : * It is not normal for this to happen, but harmless to handle it in this
4254 : * way.
4255 : */
4256 424 : if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4257 0 : ticks > ctrlr->state_timeout_tsc) {
4258 0 : NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4259 : ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4260 0 : return -1;
4261 : }
4262 :
4263 424 : return rc;
4264 : }
4265 :
4266 : int
4267 47 : nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4268 : {
4269 47 : pthread_mutexattr_t attr;
4270 47 : int rc = 0;
4271 :
4272 47 : if (pthread_mutexattr_init(&attr)) {
4273 0 : return -1;
4274 : }
4275 94 : if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4276 : #ifndef __FreeBSD__
4277 94 : pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4278 94 : pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4279 : #endif
4280 47 : pthread_mutex_init(mtx, &attr)) {
4281 0 : rc = -1;
4282 : }
4283 47 : pthread_mutexattr_destroy(&attr);
4284 47 : return rc;
4285 : }
4286 :
4287 : int
4288 47 : nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4289 : {
4290 : int rc;
4291 :
4292 47 : if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4293 1 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4294 : } else {
4295 46 : nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4296 : }
4297 :
4298 47 : if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4299 0 : NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4300 : ctrlr->opts.admin_queue_size);
4301 0 : ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4302 : }
4303 :
4304 47 : if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4305 0 : (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4306 0 : NVME_CTRLR_ERRLOG(ctrlr,
4307 : "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4308 : ctrlr->opts.admin_queue_size);
4309 0 : ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4310 : SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4311 : }
4312 :
4313 47 : if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4314 26 : NVME_CTRLR_ERRLOG(ctrlr,
4315 : "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4316 : ctrlr->opts.admin_queue_size);
4317 26 : ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4318 : }
4319 :
4320 47 : ctrlr->flags = 0;
4321 47 : ctrlr->free_io_qids = NULL;
4322 47 : ctrlr->is_resetting = false;
4323 47 : ctrlr->is_failed = false;
4324 47 : ctrlr->is_destructed = false;
4325 :
4326 47 : TAILQ_INIT(&ctrlr->active_io_qpairs);
4327 47 : STAILQ_INIT(&ctrlr->queued_aborts);
4328 47 : ctrlr->outstanding_aborts = 0;
4329 :
4330 47 : ctrlr->ana_log_page = NULL;
4331 47 : ctrlr->ana_log_page_size = 0;
4332 :
4333 47 : rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4334 47 : if (rc != 0) {
4335 0 : return rc;
4336 : }
4337 :
4338 47 : TAILQ_INIT(&ctrlr->active_procs);
4339 47 : STAILQ_INIT(&ctrlr->register_operations);
4340 :
4341 47 : RB_INIT(&ctrlr->ns);
4342 :
4343 47 : return rc;
4344 : }
4345 :
4346 : static void
4347 21 : nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4348 : {
4349 21 : if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4350 5 : ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4351 : }
4352 :
4353 21 : ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4354 :
4355 : /* For now, always select page_size == min_page_size. */
4356 21 : ctrlr->page_size = ctrlr->min_page_size;
4357 :
4358 21 : ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4359 21 : ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4360 21 : if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4361 0 : ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4362 : /* If the user specifically set an IO queue size different than the
4363 : * default, use that value. Otherwise overwrite with the quirked value.
4364 : * This allows this quirk to be overridden when necessary.
4365 : * However, cap.mqes still needs to be respected.
4366 : */
4367 0 : ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4368 : }
4369 21 : ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4370 :
4371 21 : ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4372 21 : }
4373 :
4374 : void
4375 47 : nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4376 : {
4377 : int rc;
4378 :
4379 47 : if (ctrlr->lock_depth > 0) {
4380 0 : SPDK_ERRLOG("lock currently held (depth=%d)!\n", ctrlr->lock_depth);
4381 0 : assert(false);
4382 : }
4383 :
4384 47 : rc = pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4385 47 : if (rc) {
4386 0 : SPDK_ERRLOG("could not destroy ctrlr_lock: %s\n", spdk_strerror(rc));
4387 0 : assert(false);
4388 : }
4389 :
4390 47 : nvme_ctrlr_free_processes(ctrlr);
4391 47 : }
4392 :
4393 : void
4394 47 : nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4395 : struct nvme_ctrlr_detach_ctx *ctx)
4396 : {
4397 : struct spdk_nvme_qpair *qpair, *tmp;
4398 :
4399 47 : NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4400 :
4401 47 : ctrlr->prepare_for_reset = false;
4402 47 : ctrlr->is_destructed = true;
4403 :
4404 47 : spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4405 :
4406 47 : nvme_ctrlr_abort_queued_aborts(ctrlr);
4407 47 : nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4408 :
4409 47 : TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4410 0 : spdk_nvme_ctrlr_free_io_qpair(qpair);
4411 : }
4412 :
4413 47 : nvme_ctrlr_free_doorbell_buffer(ctrlr);
4414 47 : nvme_ctrlr_free_iocs_specific_data(ctrlr);
4415 :
4416 47 : nvme_ctrlr_shutdown_async(ctrlr, ctx);
4417 47 : }
4418 :
4419 : int
4420 86 : nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4421 : struct nvme_ctrlr_detach_ctx *ctx)
4422 : {
4423 : struct spdk_nvme_ns *ns, *tmp_ns;
4424 86 : int rc = 0;
4425 :
4426 86 : if (!ctx->shutdown_complete) {
4427 78 : rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4428 78 : if (rc == -EAGAIN) {
4429 39 : return -EAGAIN;
4430 : }
4431 : /* Destruct ctrlr forcefully for any other error. */
4432 : }
4433 :
4434 47 : if (ctx->cb_fn) {
4435 0 : ctx->cb_fn(ctrlr);
4436 : }
4437 :
4438 47 : nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4439 :
4440 7733 : RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4441 7686 : nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4442 7686 : RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4443 7686 : spdk_free(ns);
4444 : }
4445 :
4446 47 : ctrlr->active_ns_count = 0;
4447 :
4448 47 : spdk_bit_array_free(&ctrlr->free_io_qids);
4449 :
4450 47 : free(ctrlr->ana_log_page);
4451 47 : free(ctrlr->copied_ana_desc);
4452 47 : ctrlr->ana_log_page = NULL;
4453 47 : ctrlr->copied_ana_desc = NULL;
4454 47 : ctrlr->ana_log_page_size = 0;
4455 :
4456 47 : nvme_transport_ctrlr_destruct(ctrlr);
4457 :
4458 47 : return rc;
4459 : }
4460 :
4461 : void
4462 47 : nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4463 : {
4464 47 : struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4465 : int rc;
4466 :
4467 47 : nvme_ctrlr_destruct_async(ctrlr, &ctx);
4468 :
4469 : while (1) {
4470 86 : rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4471 86 : if (rc != -EAGAIN) {
4472 47 : break;
4473 : }
4474 39 : nvme_delay(1000);
4475 : }
4476 47 : }
4477 :
4478 : int
4479 24 : nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4480 : struct nvme_request *req)
4481 : {
4482 24 : return nvme_qpair_submit_request(ctrlr->adminq, req);
4483 : }
4484 :
4485 : static void
4486 0 : nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4487 : {
4488 : /* Do nothing */
4489 0 : }
4490 :
4491 : /*
4492 : * Check if we need to send a Keep Alive command.
4493 : * Caller must hold ctrlr->ctrlr_lock.
4494 : */
4495 : static int
4496 0 : nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4497 : {
4498 : uint64_t now;
4499 : struct nvme_request *req;
4500 : struct spdk_nvme_cmd *cmd;
4501 0 : int rc = 0;
4502 :
4503 0 : now = spdk_get_ticks();
4504 0 : if (now < ctrlr->next_keep_alive_tick) {
4505 0 : return rc;
4506 : }
4507 :
4508 0 : req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4509 0 : if (req == NULL) {
4510 0 : return rc;
4511 : }
4512 :
4513 0 : cmd = &req->cmd;
4514 0 : cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4515 :
4516 0 : rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4517 0 : if (rc != 0) {
4518 0 : NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4519 0 : rc = -ENXIO;
4520 : }
4521 :
4522 0 : ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4523 0 : return rc;
4524 : }
4525 :
4526 : int32_t
4527 1 : spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4528 : {
4529 : int32_t num_completions;
4530 : int32_t rc;
4531 : struct spdk_nvme_ctrlr_process *active_proc;
4532 :
4533 1 : nvme_ctrlr_lock(ctrlr);
4534 :
4535 1 : if (ctrlr->keep_alive_interval_ticks) {
4536 0 : rc = nvme_ctrlr_keep_alive(ctrlr);
4537 0 : if (rc) {
4538 0 : nvme_ctrlr_unlock(ctrlr);
4539 0 : return rc;
4540 : }
4541 : }
4542 :
4543 1 : rc = nvme_io_msg_process(ctrlr);
4544 1 : if (rc < 0) {
4545 0 : nvme_ctrlr_unlock(ctrlr);
4546 0 : return rc;
4547 : }
4548 1 : num_completions = rc;
4549 :
4550 1 : rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4551 :
4552 : /* Each process has an async list, complete the ones for this process object */
4553 1 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
4554 1 : if (active_proc) {
4555 0 : nvme_ctrlr_complete_queued_async_events(ctrlr);
4556 : }
4557 :
4558 1 : if (rc == -ENXIO && ctrlr->is_disconnecting) {
4559 1 : nvme_ctrlr_disconnect_done(ctrlr);
4560 : }
4561 :
4562 1 : nvme_ctrlr_unlock(ctrlr);
4563 :
4564 1 : if (rc < 0) {
4565 1 : num_completions = rc;
4566 : } else {
4567 0 : num_completions += rc;
4568 : }
4569 :
4570 1 : return num_completions;
4571 : }
4572 :
4573 : const struct spdk_nvme_ctrlr_data *
4574 0 : spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4575 : {
4576 0 : return &ctrlr->cdata;
4577 : }
4578 :
4579 0 : union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4580 : {
4581 0 : union spdk_nvme_csts_register csts;
4582 :
4583 0 : if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4584 0 : csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4585 : }
4586 0 : return csts;
4587 : }
4588 :
4589 0 : union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4590 : {
4591 0 : union spdk_nvme_cc_register cc;
4592 :
4593 0 : if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4594 0 : cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4595 : }
4596 0 : return cc;
4597 : }
4598 :
4599 0 : union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4600 : {
4601 0 : return ctrlr->cap;
4602 : }
4603 :
4604 0 : union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4605 : {
4606 0 : return ctrlr->vs;
4607 : }
4608 :
4609 0 : union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4610 : {
4611 0 : union spdk_nvme_cmbsz_register cmbsz;
4612 :
4613 0 : if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4614 0 : cmbsz.raw = 0;
4615 : }
4616 :
4617 0 : return cmbsz;
4618 : }
4619 :
4620 0 : union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4621 : {
4622 0 : union spdk_nvme_pmrcap_register pmrcap;
4623 :
4624 0 : if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4625 0 : pmrcap.raw = 0;
4626 : }
4627 :
4628 0 : return pmrcap;
4629 : }
4630 :
4631 0 : union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4632 : {
4633 0 : union spdk_nvme_bpinfo_register bpinfo;
4634 :
4635 0 : if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4636 0 : bpinfo.raw = 0;
4637 : }
4638 :
4639 0 : return bpinfo;
4640 : }
4641 :
4642 : uint64_t
4643 0 : spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4644 : {
4645 0 : return ctrlr->pmr_size;
4646 : }
4647 :
4648 : uint32_t
4649 2 : spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4650 : {
4651 2 : return ctrlr->cdata.nn;
4652 : }
4653 :
4654 : bool
4655 9301 : spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4656 : {
4657 9301 : struct spdk_nvme_ns tmp, *ns;
4658 :
4659 9301 : tmp.id = nsid;
4660 9301 : ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4661 :
4662 9301 : if (ns != NULL) {
4663 9209 : return ns->active;
4664 : }
4665 :
4666 92 : return false;
4667 : }
4668 :
4669 : uint32_t
4670 35 : spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4671 : {
4672 : struct spdk_nvme_ns *ns;
4673 :
4674 35 : ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4675 35 : if (ns == NULL) {
4676 10 : return 0;
4677 : }
4678 :
4679 4618 : while (ns != NULL) {
4680 4615 : if (ns->active) {
4681 22 : return ns->id;
4682 : }
4683 :
4684 4593 : ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4685 : }
4686 :
4687 3 : return 0;
4688 : }
4689 :
4690 : uint32_t
4691 4657 : spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4692 : {
4693 4657 : struct spdk_nvme_ns tmp, *ns;
4694 :
4695 4657 : tmp.id = prev_nsid;
4696 4657 : ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4697 4657 : if (ns == NULL) {
4698 5 : return 0;
4699 : }
4700 :
4701 4652 : ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4702 6184 : while (ns != NULL) {
4703 6164 : if (ns->active) {
4704 4632 : return ns->id;
4705 : }
4706 :
4707 1532 : ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4708 : }
4709 :
4710 20 : return 0;
4711 : }
4712 :
4713 : struct spdk_nvme_ns *
4714 12403 : spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4715 : {
4716 12403 : struct spdk_nvme_ns tmp;
4717 : struct spdk_nvme_ns *ns;
4718 :
4719 12403 : if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4720 18 : return NULL;
4721 : }
4722 :
4723 12385 : nvme_ctrlr_lock(ctrlr);
4724 :
4725 12385 : tmp.id = nsid;
4726 12385 : ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4727 :
4728 12385 : if (ns == NULL) {
4729 7687 : ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
4730 7687 : if (ns == NULL) {
4731 0 : nvme_ctrlr_unlock(ctrlr);
4732 0 : return NULL;
4733 : }
4734 :
4735 7687 : NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4736 7687 : ns->id = nsid;
4737 7687 : RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4738 : }
4739 :
4740 12385 : nvme_ctrlr_unlock(ctrlr);
4741 :
4742 12385 : return ns;
4743 : }
4744 :
4745 : struct spdk_pci_device *
4746 0 : spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4747 : {
4748 0 : if (ctrlr == NULL) {
4749 0 : return NULL;
4750 : }
4751 :
4752 0 : if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4753 0 : return NULL;
4754 : }
4755 :
4756 0 : return nvme_ctrlr_proc_get_devhandle(ctrlr);
4757 : }
4758 :
4759 : int32_t
4760 3 : spdk_nvme_ctrlr_get_numa_id(struct spdk_nvme_ctrlr *ctrlr)
4761 : {
4762 3 : if (ctrlr->numa.id_valid) {
4763 2 : return ctrlr->numa.id;
4764 : } else {
4765 1 : return SPDK_ENV_NUMA_ID_ANY;
4766 : }
4767 : }
4768 :
4769 : uint16_t
4770 0 : spdk_nvme_ctrlr_get_id(struct spdk_nvme_ctrlr *ctrlr)
4771 : {
4772 0 : return ctrlr->cntlid;
4773 : }
4774 :
4775 : uint32_t
4776 0 : spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4777 : {
4778 0 : return ctrlr->max_xfer_size;
4779 : }
4780 :
4781 : uint16_t
4782 0 : spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr)
4783 : {
4784 0 : if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4785 0 : return ctrlr->max_sges;
4786 : } else {
4787 0 : return UINT16_MAX;
4788 : }
4789 : }
4790 :
4791 : void
4792 2 : spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4793 : spdk_nvme_aer_cb aer_cb_fn,
4794 : void *aer_cb_arg)
4795 : {
4796 : struct spdk_nvme_ctrlr_process *active_proc;
4797 :
4798 2 : nvme_ctrlr_lock(ctrlr);
4799 :
4800 2 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
4801 2 : if (active_proc) {
4802 2 : active_proc->aer_cb_fn = aer_cb_fn;
4803 2 : active_proc->aer_cb_arg = aer_cb_arg;
4804 : }
4805 :
4806 2 : nvme_ctrlr_unlock(ctrlr);
4807 2 : }
4808 :
4809 : void
4810 0 : spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4811 : {
4812 0 : ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4813 0 : }
4814 :
4815 : void
4816 0 : spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4817 : uint64_t timeout_io_us, uint64_t timeout_admin_us,
4818 : spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4819 : {
4820 : struct spdk_nvme_ctrlr_process *active_proc;
4821 :
4822 0 : nvme_ctrlr_lock(ctrlr);
4823 :
4824 0 : active_proc = nvme_ctrlr_get_current_process(ctrlr);
4825 0 : if (active_proc) {
4826 0 : active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4827 0 : active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4828 0 : active_proc->timeout_cb_fn = cb_fn;
4829 0 : active_proc->timeout_cb_arg = cb_arg;
4830 : }
4831 :
4832 0 : ctrlr->timeout_enabled = true;
4833 :
4834 0 : nvme_ctrlr_unlock(ctrlr);
4835 0 : }
4836 :
4837 : bool
4838 8 : spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4839 : {
4840 : /* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4841 : SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4842 8 : return ctrlr->log_page_supported[log_page];
4843 : }
4844 :
4845 : bool
4846 4 : spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4847 : {
4848 : /* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4849 : SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4850 4 : return ctrlr->feature_supported[feature_code];
4851 : }
4852 :
4853 : int
4854 1 : spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4855 : struct spdk_nvme_ctrlr_list *payload)
4856 : {
4857 : struct nvme_completion_poll_status *status;
4858 : struct spdk_nvme_ns *ns;
4859 : int res;
4860 :
4861 1 : if (nsid == 0) {
4862 0 : return -EINVAL;
4863 : }
4864 :
4865 1 : status = calloc(1, sizeof(*status));
4866 1 : if (!status) {
4867 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4868 0 : return -ENOMEM;
4869 : }
4870 :
4871 1 : res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4872 : nvme_completion_poll_cb, status);
4873 1 : if (res) {
4874 0 : free(status);
4875 0 : return res;
4876 : }
4877 1 : if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4878 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4879 0 : if (!status->timed_out) {
4880 0 : free(status);
4881 : }
4882 0 : return -ENXIO;
4883 : }
4884 1 : free(status);
4885 :
4886 1 : res = nvme_ctrlr_identify_active_ns(ctrlr);
4887 1 : if (res) {
4888 0 : return res;
4889 : }
4890 :
4891 1 : ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4892 1 : if (ns == NULL) {
4893 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4894 0 : return -ENXIO;
4895 : }
4896 :
4897 1 : return nvme_ns_construct(ns, nsid, ctrlr);
4898 : }
4899 :
4900 : int
4901 1 : spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4902 : struct spdk_nvme_ctrlr_list *payload)
4903 : {
4904 : struct nvme_completion_poll_status *status;
4905 : int res;
4906 :
4907 1 : if (nsid == 0) {
4908 0 : return -EINVAL;
4909 : }
4910 :
4911 1 : status = calloc(1, sizeof(*status));
4912 1 : if (!status) {
4913 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4914 0 : return -ENOMEM;
4915 : }
4916 :
4917 1 : res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4918 : nvme_completion_poll_cb, status);
4919 1 : if (res) {
4920 0 : free(status);
4921 0 : return res;
4922 : }
4923 1 : if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4924 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4925 0 : if (!status->timed_out) {
4926 0 : free(status);
4927 : }
4928 0 : return -ENXIO;
4929 : }
4930 1 : free(status);
4931 :
4932 1 : return nvme_ctrlr_identify_active_ns(ctrlr);
4933 : }
4934 :
4935 : uint32_t
4936 1 : spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4937 : {
4938 : struct nvme_completion_poll_status *status;
4939 : int res;
4940 : uint32_t nsid;
4941 :
4942 1 : status = calloc(1, sizeof(*status));
4943 1 : if (!status) {
4944 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4945 0 : return 0;
4946 : }
4947 :
4948 1 : res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4949 1 : if (res) {
4950 0 : free(status);
4951 0 : return 0;
4952 : }
4953 1 : if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4954 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4955 0 : if (!status->timed_out) {
4956 0 : free(status);
4957 : }
4958 0 : return 0;
4959 : }
4960 :
4961 1 : nsid = status->cpl.cdw0;
4962 1 : free(status);
4963 :
4964 1 : assert(nsid > 0);
4965 :
4966 : /* Return the namespace ID that was created */
4967 1 : return nsid;
4968 : }
4969 :
4970 : int
4971 1 : spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4972 : {
4973 : struct nvme_completion_poll_status *status;
4974 : int res;
4975 :
4976 1 : if (nsid == 0) {
4977 0 : return -EINVAL;
4978 : }
4979 :
4980 1 : status = calloc(1, sizeof(*status));
4981 1 : if (!status) {
4982 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4983 0 : return -ENOMEM;
4984 : }
4985 :
4986 1 : res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4987 1 : if (res) {
4988 0 : free(status);
4989 0 : return res;
4990 : }
4991 1 : if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4992 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4993 0 : if (!status->timed_out) {
4994 0 : free(status);
4995 : }
4996 0 : return -ENXIO;
4997 : }
4998 1 : free(status);
4999 :
5000 1 : return nvme_ctrlr_identify_active_ns(ctrlr);
5001 : }
5002 :
5003 : int
5004 0 : spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
5005 : struct spdk_nvme_format *format)
5006 : {
5007 : struct nvme_completion_poll_status *status;
5008 : int res;
5009 :
5010 0 : status = calloc(1, sizeof(*status));
5011 0 : if (!status) {
5012 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5013 0 : return -ENOMEM;
5014 : }
5015 :
5016 0 : res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
5017 : status);
5018 0 : if (res) {
5019 0 : free(status);
5020 0 : return res;
5021 : }
5022 0 : if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5023 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
5024 0 : if (!status->timed_out) {
5025 0 : free(status);
5026 : }
5027 0 : return -ENXIO;
5028 : }
5029 0 : free(status);
5030 :
5031 0 : return spdk_nvme_ctrlr_reset(ctrlr);
5032 : }
5033 :
5034 : int
5035 8 : spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
5036 : int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
5037 : {
5038 8 : struct spdk_nvme_fw_commit fw_commit;
5039 : struct nvme_completion_poll_status *status;
5040 : int res;
5041 : unsigned int size_remaining;
5042 : unsigned int offset;
5043 : unsigned int transfer;
5044 : uint8_t *p;
5045 :
5046 8 : if (!completion_status) {
5047 0 : return -EINVAL;
5048 : }
5049 8 : memset(completion_status, 0, sizeof(struct spdk_nvme_status));
5050 8 : if (size % 4) {
5051 1 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
5052 1 : return -1;
5053 : }
5054 :
5055 : /* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
5056 : * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
5057 : */
5058 7 : if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
5059 : (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
5060 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
5061 0 : return -1;
5062 : }
5063 :
5064 7 : status = calloc(1, sizeof(*status));
5065 7 : if (!status) {
5066 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5067 0 : return -ENOMEM;
5068 : }
5069 :
5070 : /* Firmware download */
5071 7 : size_remaining = size;
5072 7 : offset = 0;
5073 7 : p = payload;
5074 :
5075 10 : while (size_remaining > 0) {
5076 7 : transfer = spdk_min(size_remaining, ctrlr->min_page_size);
5077 :
5078 7 : memset(status, 0, sizeof(*status));
5079 7 : res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
5080 : nvme_completion_poll_cb,
5081 : status);
5082 7 : if (res) {
5083 2 : free(status);
5084 2 : return res;
5085 : }
5086 :
5087 5 : if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5088 2 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
5089 2 : if (!status->timed_out) {
5090 1 : free(status);
5091 : }
5092 2 : return -ENXIO;
5093 : }
5094 3 : p += transfer;
5095 3 : offset += transfer;
5096 3 : size_remaining -= transfer;
5097 : }
5098 :
5099 : /* Firmware commit */
5100 3 : memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5101 3 : fw_commit.fs = slot;
5102 3 : fw_commit.ca = commit_action;
5103 :
5104 3 : memset(status, 0, sizeof(*status));
5105 3 : res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
5106 : status);
5107 3 : if (res) {
5108 1 : free(status);
5109 1 : return res;
5110 : }
5111 :
5112 2 : res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
5113 :
5114 2 : memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
5115 :
5116 2 : if (!status->timed_out) {
5117 2 : free(status);
5118 : }
5119 :
5120 2 : if (res) {
5121 1 : if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
5122 0 : completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
5123 1 : if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
5124 0 : completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
5125 0 : NVME_CTRLR_NOTICELOG(ctrlr,
5126 : "firmware activation requires conventional reset to be performed. !\n");
5127 : } else {
5128 1 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5129 : }
5130 1 : return -ENXIO;
5131 : }
5132 : }
5133 :
5134 1 : return spdk_nvme_ctrlr_reset(ctrlr);
5135 : }
5136 :
5137 : int
5138 0 : spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
5139 : {
5140 : int rc, size;
5141 : union spdk_nvme_cmbsz_register cmbsz;
5142 :
5143 0 : cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
5144 :
5145 0 : if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
5146 0 : return -ENOTSUP;
5147 : }
5148 :
5149 0 : size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
5150 :
5151 0 : nvme_ctrlr_lock(ctrlr);
5152 0 : rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
5153 0 : nvme_ctrlr_unlock(ctrlr);
5154 :
5155 0 : if (rc < 0) {
5156 0 : return rc;
5157 : }
5158 :
5159 0 : return size;
5160 : }
5161 :
5162 : void *
5163 0 : spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5164 : {
5165 : void *buf;
5166 :
5167 0 : nvme_ctrlr_lock(ctrlr);
5168 0 : buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
5169 0 : nvme_ctrlr_unlock(ctrlr);
5170 :
5171 0 : return buf;
5172 : }
5173 :
5174 : void
5175 0 : spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
5176 : {
5177 0 : nvme_ctrlr_lock(ctrlr);
5178 0 : nvme_transport_ctrlr_unmap_cmb(ctrlr);
5179 0 : nvme_ctrlr_unlock(ctrlr);
5180 0 : }
5181 :
5182 : int
5183 0 : spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5184 : {
5185 : int rc;
5186 :
5187 0 : nvme_ctrlr_lock(ctrlr);
5188 0 : rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
5189 0 : nvme_ctrlr_unlock(ctrlr);
5190 :
5191 0 : return rc;
5192 : }
5193 :
5194 : int
5195 0 : spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5196 : {
5197 : int rc;
5198 :
5199 0 : nvme_ctrlr_lock(ctrlr);
5200 0 : rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
5201 0 : nvme_ctrlr_unlock(ctrlr);
5202 :
5203 0 : return rc;
5204 : }
5205 :
5206 : void *
5207 0 : spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5208 : {
5209 : void *buf;
5210 :
5211 0 : nvme_ctrlr_lock(ctrlr);
5212 0 : buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
5213 0 : nvme_ctrlr_unlock(ctrlr);
5214 :
5215 0 : return buf;
5216 : }
5217 :
5218 : int
5219 0 : spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
5220 : {
5221 : int rc;
5222 :
5223 0 : nvme_ctrlr_lock(ctrlr);
5224 0 : rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
5225 0 : nvme_ctrlr_unlock(ctrlr);
5226 :
5227 0 : return rc;
5228 : }
5229 :
5230 : int
5231 0 : spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
5232 : uint32_t bprsz, uint32_t bprof, uint32_t bpid)
5233 : {
5234 0 : union spdk_nvme_bprsel_register bprsel;
5235 0 : union spdk_nvme_bpinfo_register bpinfo;
5236 0 : uint64_t bpmbl, bpmb_size;
5237 :
5238 0 : if (ctrlr->cap.bits.bps == 0) {
5239 0 : return -ENOTSUP;
5240 : }
5241 :
5242 0 : if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5243 0 : NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5244 0 : return -EIO;
5245 : }
5246 :
5247 0 : if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5248 0 : NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5249 0 : return -EALREADY;
5250 : }
5251 :
5252 0 : nvme_ctrlr_lock(ctrlr);
5253 :
5254 0 : bpmb_size = bprsz * 4096;
5255 0 : bpmbl = spdk_vtophys(payload, &bpmb_size);
5256 0 : if (bpmbl == SPDK_VTOPHYS_ERROR) {
5257 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5258 0 : nvme_ctrlr_unlock(ctrlr);
5259 0 : return -EFAULT;
5260 : }
5261 :
5262 0 : if (bpmb_size != bprsz * 4096) {
5263 0 : NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5264 0 : nvme_ctrlr_unlock(ctrlr);
5265 0 : return -EFAULT;
5266 : }
5267 :
5268 0 : if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5269 0 : NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5270 0 : nvme_ctrlr_unlock(ctrlr);
5271 0 : return -EIO;
5272 : }
5273 :
5274 0 : bprsel.bits.bpid = bpid;
5275 0 : bprsel.bits.bprof = bprof;
5276 0 : bprsel.bits.bprsz = bprsz;
5277 :
5278 0 : if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5279 0 : NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5280 0 : nvme_ctrlr_unlock(ctrlr);
5281 0 : return -EIO;
5282 : }
5283 :
5284 0 : nvme_ctrlr_unlock(ctrlr);
5285 0 : return 0;
5286 : }
5287 :
5288 : int
5289 0 : spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5290 : {
5291 0 : int rc = 0;
5292 0 : union spdk_nvme_bpinfo_register bpinfo;
5293 :
5294 0 : if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5295 0 : NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5296 0 : return -EIO;
5297 : }
5298 :
5299 0 : switch (bpinfo.bits.brs) {
5300 0 : case SPDK_NVME_BRS_NO_READ:
5301 0 : NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5302 0 : rc = -EINVAL;
5303 0 : break;
5304 0 : case SPDK_NVME_BRS_READ_IN_PROGRESS:
5305 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5306 0 : rc = -EAGAIN;
5307 0 : break;
5308 0 : case SPDK_NVME_BRS_READ_ERROR:
5309 0 : NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5310 0 : rc = -EIO;
5311 0 : break;
5312 0 : case SPDK_NVME_BRS_READ_SUCCESS:
5313 0 : NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5314 0 : break;
5315 0 : default:
5316 0 : NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5317 0 : rc = -EINVAL;
5318 : }
5319 :
5320 0 : return rc;
5321 : }
5322 :
5323 : static void
5324 0 : nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5325 : {
5326 : int res;
5327 0 : struct spdk_nvme_ctrlr *ctrlr = arg;
5328 0 : struct spdk_nvme_fw_commit fw_commit;
5329 0 : struct spdk_nvme_cpl err_cpl =
5330 : {.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5331 :
5332 0 : if (spdk_nvme_cpl_is_error(cpl)) {
5333 0 : NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5334 0 : ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5335 0 : return;
5336 : }
5337 :
5338 0 : if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5339 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5340 0 : ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5341 0 : ctrlr->fw_offset += ctrlr->fw_transfer_size;
5342 0 : ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5343 0 : ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5344 0 : res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5345 : ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5346 0 : if (res) {
5347 0 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5348 0 : ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5349 0 : return;
5350 : }
5351 :
5352 0 : if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5353 0 : ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5354 : }
5355 0 : } else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5356 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5357 0 : memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5358 0 : fw_commit.bpid = ctrlr->bpid;
5359 0 : fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5360 0 : res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5361 : nvme_write_boot_partition_cb, ctrlr);
5362 0 : if (res) {
5363 0 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5364 0 : NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5365 0 : ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5366 0 : return;
5367 : }
5368 :
5369 0 : ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5370 0 : } else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5371 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5372 0 : memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5373 0 : fw_commit.bpid = ctrlr->bpid;
5374 0 : fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5375 0 : res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5376 : nvme_write_boot_partition_cb, ctrlr);
5377 0 : if (res) {
5378 0 : NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5379 0 : NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5380 0 : ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5381 0 : return;
5382 : }
5383 :
5384 0 : ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5385 0 : } else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5386 0 : NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5387 0 : ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5388 : } else {
5389 0 : NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5390 0 : ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5391 0 : return;
5392 : }
5393 : }
5394 :
5395 : int
5396 0 : spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5397 : void *payload, uint32_t size, uint32_t bpid,
5398 : spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5399 : {
5400 : int res;
5401 :
5402 0 : if (ctrlr->cap.bits.bps == 0) {
5403 0 : return -ENOTSUP;
5404 : }
5405 :
5406 0 : ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5407 0 : ctrlr->bpid = bpid;
5408 0 : ctrlr->bp_write_cb_fn = cb_fn;
5409 0 : ctrlr->bp_write_cb_arg = cb_arg;
5410 0 : ctrlr->fw_offset = 0;
5411 0 : ctrlr->fw_size_remaining = size;
5412 0 : ctrlr->fw_payload = payload;
5413 0 : ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5414 :
5415 0 : res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5416 : ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5417 :
5418 0 : return res;
5419 : }
5420 :
5421 : bool
5422 43 : spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5423 : {
5424 43 : assert(ctrlr);
5425 :
5426 43 : return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5427 : strlen(SPDK_NVMF_DISCOVERY_NQN));
5428 : }
5429 :
5430 : bool
5431 20 : spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5432 : {
5433 20 : assert(ctrlr);
5434 :
5435 20 : return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5436 : }
5437 :
5438 : int
5439 0 : spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5440 : uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5441 : {
5442 : struct nvme_completion_poll_status *status;
5443 : int res;
5444 :
5445 0 : status = calloc(1, sizeof(*status));
5446 0 : if (!status) {
5447 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5448 0 : return -ENOMEM;
5449 : }
5450 :
5451 0 : res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5452 : nvme_completion_poll_cb, status);
5453 0 : if (res) {
5454 0 : free(status);
5455 0 : return res;
5456 : }
5457 0 : if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5458 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5459 0 : if (!status->timed_out) {
5460 0 : free(status);
5461 : }
5462 0 : return -ENXIO;
5463 : }
5464 0 : free(status);
5465 :
5466 0 : return 0;
5467 : }
5468 :
5469 : int
5470 0 : spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5471 : uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5472 : {
5473 : struct nvme_completion_poll_status *status;
5474 : int res;
5475 :
5476 0 : status = calloc(1, sizeof(*status));
5477 0 : if (!status) {
5478 0 : NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5479 0 : return -ENOMEM;
5480 : }
5481 :
5482 0 : res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5483 : nvme_completion_poll_cb,
5484 : status);
5485 0 : if (res) {
5486 0 : free(status);
5487 0 : return res;
5488 : }
5489 0 : if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5490 0 : NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5491 0 : if (!status->timed_out) {
5492 0 : free(status);
5493 : }
5494 0 : return -ENXIO;
5495 : }
5496 :
5497 0 : free(status);
5498 :
5499 0 : return 0;
5500 : }
5501 :
5502 : uint64_t
5503 1 : spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5504 : {
5505 1 : return ctrlr->flags;
5506 : }
5507 :
5508 : const struct spdk_nvme_transport_id *
5509 0 : spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5510 : {
5511 0 : return &ctrlr->trid;
5512 : }
5513 :
5514 : int32_t
5515 17 : spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5516 : {
5517 : uint32_t qid;
5518 :
5519 17 : assert(ctrlr->free_io_qids);
5520 17 : nvme_ctrlr_lock(ctrlr);
5521 17 : qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5522 17 : if (qid > ctrlr->opts.num_io_queues) {
5523 2 : NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5524 2 : nvme_ctrlr_unlock(ctrlr);
5525 2 : return -1;
5526 : }
5527 :
5528 15 : spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5529 15 : nvme_ctrlr_unlock(ctrlr);
5530 15 : return qid;
5531 : }
5532 :
5533 : void
5534 64 : spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5535 : {
5536 64 : assert(qid <= ctrlr->opts.num_io_queues);
5537 :
5538 64 : nvme_ctrlr_lock(ctrlr);
5539 :
5540 64 : if (spdk_likely(ctrlr->free_io_qids)) {
5541 64 : spdk_bit_array_set(ctrlr->free_io_qids, qid);
5542 : }
5543 :
5544 64 : nvme_ctrlr_unlock(ctrlr);
5545 64 : }
5546 :
5547 : int
5548 2 : spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5549 : struct spdk_memory_domain **domains, int array_size)
5550 : {
5551 2 : return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5552 : }
5553 :
5554 : int
5555 0 : spdk_nvme_ctrlr_authenticate(struct spdk_nvme_ctrlr *ctrlr,
5556 : spdk_nvme_authenticate_cb cb_fn, void *cb_ctx)
5557 : {
5558 0 : return spdk_nvme_qpair_authenticate(ctrlr->adminq, cb_fn, cb_ctx);
5559 : }
|