Line data Source code
1 : /* SPDX-License-Identifier: BSD-3-Clause
2 : * Copyright (C) 2017 Intel Corporation.
3 : * All rights reserved.
4 : */
5 :
6 : #include "spdk/stdinc.h"
7 :
8 : #include "env_internal.h"
9 : #include "pci_dpdk.h"
10 :
11 : #include <rte_config.h>
12 : #include <rte_memory.h>
13 : #include <rte_eal_memconfig.h>
14 : #include <rte_dev.h>
15 : #include <rte_pci.h>
16 :
17 : #include "spdk_internal/assert.h"
18 :
19 : #include "spdk/assert.h"
20 : #include "spdk/likely.h"
21 : #include "spdk/queue.h"
22 : #include "spdk/util.h"
23 : #include "spdk/memory.h"
24 : #include "spdk/env_dpdk.h"
25 : #include "spdk/log.h"
26 :
27 : #ifdef __linux__
28 : #include <linux/version.h>
29 : #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)
30 : #include <linux/vfio.h>
31 : #include <rte_vfio.h>
32 :
33 : struct spdk_vfio_dma_map {
34 : struct vfio_iommu_type1_dma_map map;
35 : TAILQ_ENTRY(spdk_vfio_dma_map) tailq;
36 : };
37 :
38 : struct vfio_cfg {
39 : int fd;
40 : bool enabled;
41 : bool noiommu_enabled;
42 : unsigned device_ref;
43 : TAILQ_HEAD(, spdk_vfio_dma_map) maps;
44 : pthread_mutex_t mutex;
45 : };
46 :
47 : static struct vfio_cfg g_vfio = {
48 : .fd = -1,
49 : .enabled = false,
50 : .noiommu_enabled = false,
51 : .device_ref = 0,
52 : .maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps),
53 : .mutex = PTHREAD_MUTEX_INITIALIZER
54 : };
55 : #endif
56 : #endif
57 :
58 : #if DEBUG
59 : #define DEBUG_PRINT(...) SPDK_ERRLOG(__VA_ARGS__)
60 : #else
61 : #define DEBUG_PRINT(...)
62 : #endif
63 :
64 : struct map_page_cfg {
65 : uint64_t shift;
66 : uint64_t size;
67 : uint64_t mask;
68 : uint64_t num_pages_per_gb;
69 : };
70 :
71 : /**
72 : * g_map_page_cfg can not be static because it is used in the inline function
73 : * spdk_mem_map_translate.
74 : */
75 : struct map_page_cfg g_map_page_cfg = {
76 : .shift = SHIFT_2MB,
77 : .size = VALUE_2MB,
78 : .mask = MASK_2MB,
79 : .num_pages_per_gb = 1UL << (SHIFT_1GB - SHIFT_2MB),
80 : };
81 :
82 : #define MAP_PAGE_SHIFT (g_map_page_cfg.shift)
83 : #define MAP_PAGE_SIZE (g_map_page_cfg.size)
84 : #define MAP_PAGE_MASK (g_map_page_cfg.mask)
85 : #define MAP_NUM_PAGES_PER_GB (g_map_page_cfg.num_pages_per_gb)
86 :
87 : #define MAP_256TB_IDX(vfn_page) ((vfn_page) >> (SHIFT_1GB - MAP_PAGE_SHIFT))
88 : #define MAP_1GB_IDX(vfn_page) ((vfn_page) & ((1ULL << (SHIFT_1GB - MAP_PAGE_SHIFT)) - 1))
89 : #define MAP_PAGE_OFFSET(ptr) (((uintptr_t)(ptr)) & MAP_PAGE_MASK)
90 :
91 : /* Page is registered */
92 : #define REG_MAP_REGISTERED (1ULL << 62)
93 :
94 : /* A notification region barrier. The page translation entry that's marked
95 : * with this flag must be unregistered separately. This allows contiguous
96 : * regions to be unregistered in the same chunks they were registered.
97 : */
98 : #define REG_MAP_NOTIFY_START (1ULL << 63)
99 :
100 : /* Translation of a single page. */
101 : struct map_page {
102 : uint64_t translation;
103 : };
104 :
105 : /* Second-level map table indexed by bits [page_shift..29] of the virtual address.
106 : * Each entry contains the address translation or error for entries that haven't
107 : * been retrieved yet.
108 : */
109 : struct map_1gb {
110 : struct map_page map[0];
111 : /**
112 : * Page table space.
113 : * Do not put any fields after this!
114 : */
115 : };
116 :
117 : #define MAP_SIZE_OF_MAP_1GB (sizeof(struct map_1gb) + MAP_NUM_PAGES_PER_GB * sizeof(struct map_page))
118 :
119 : /* Top-level map table indexed by bits [30..47] of the virtual address.
120 : * Each entry points to a second-level map table or NULL.
121 : */
122 : struct map_256tb {
123 : struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)];
124 : };
125 :
126 : /* Page-granularity memory address translation */
127 : struct spdk_mem_map {
128 : struct map_256tb map_256tb;
129 : pthread_mutex_t mutex;
130 : uint64_t default_translation;
131 : struct spdk_mem_map_ops ops;
132 : void *cb_ctx;
133 : TAILQ_ENTRY(spdk_mem_map) tailq;
134 : };
135 :
136 : /* Registrations map. The 64 bit translations are bit fields with the
137 : * following layout (starting with the low bits):
138 : * 0 - 61 : reserved
139 : * 62 - 63 : flags
140 : */
141 : static struct spdk_mem_map *g_mem_reg_map;
142 : static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps =
143 : TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
144 : static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
145 :
146 : static bool g_legacy_mem;
147 : static bool g_huge_pages = true;
148 :
149 : /*
150 : * Walk the currently registered memory via the main memory registration map
151 : * and call the new map's notify callback for each virtually contiguous region.
152 : */
153 : static int
154 0 : mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
155 : {
156 : size_t idx_256tb;
157 : uint64_t idx_1gb;
158 0 : uint64_t contig_start = UINT64_MAX;
159 0 : uint64_t contig_end = UINT64_MAX;
160 : struct map_1gb *map_1gb;
161 : int rc;
162 :
163 0 : if (!g_mem_reg_map) {
164 0 : return -EINVAL;
165 : }
166 :
167 : /* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
168 0 : pthread_mutex_lock(&g_mem_reg_map->mutex);
169 :
170 0 : for (idx_256tb = 0;
171 0 : idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]);
172 0 : idx_256tb++) {
173 0 : map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
174 :
175 0 : if (!map_1gb) {
176 0 : if (contig_start != UINT64_MAX) {
177 : /* End of of a virtually contiguous range */
178 0 : rc = map->ops.notify_cb(map->cb_ctx, map, action,
179 0 : (void *)contig_start,
180 0 : contig_end - contig_start + MAP_PAGE_SIZE);
181 : /* Don't bother handling unregister failures. It can't be any worse */
182 0 : if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
183 0 : goto err_unregister;
184 : }
185 0 : }
186 0 : contig_start = UINT64_MAX;
187 0 : continue;
188 : }
189 :
190 0 : for (idx_1gb = 0; idx_1gb < MAP_NUM_PAGES_PER_GB; idx_1gb++) {
191 0 : if ((map_1gb->map[idx_1gb].translation & REG_MAP_REGISTERED) &&
192 0 : (contig_start == UINT64_MAX ||
193 0 : (map_1gb->map[idx_1gb].translation & REG_MAP_NOTIFY_START) == 0)) {
194 : /* Rebuild the virtual address from the indexes */
195 0 : uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << MAP_PAGE_SHIFT);
196 :
197 0 : if (contig_start == UINT64_MAX) {
198 0 : contig_start = vaddr;
199 0 : }
200 :
201 0 : contig_end = vaddr;
202 0 : } else {
203 0 : if (contig_start != UINT64_MAX) {
204 : /* End of of a virtually contiguous range */
205 0 : rc = map->ops.notify_cb(map->cb_ctx, map, action,
206 0 : (void *)contig_start,
207 0 : contig_end - contig_start + MAP_PAGE_SIZE);
208 : /* Don't bother handling unregister failures. It can't be any worse */
209 0 : if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
210 0 : goto err_unregister;
211 : }
212 :
213 : /* This page might be a part of a neighbour region, so process
214 : * it again. The idx_1gb will be incremented immediately.
215 : */
216 0 : idx_1gb--;
217 0 : }
218 0 : contig_start = UINT64_MAX;
219 : }
220 0 : }
221 0 : }
222 :
223 0 : pthread_mutex_unlock(&g_mem_reg_map->mutex);
224 0 : return 0;
225 :
226 : err_unregister:
227 : /* Unwind to the first empty translation so we don't unregister
228 : * a region that just failed to register.
229 : */
230 0 : idx_256tb = MAP_256TB_IDX((contig_start >> MAP_PAGE_SHIFT) - 1);
231 0 : idx_1gb = MAP_1GB_IDX((contig_start >> MAP_PAGE_SHIFT) - 1);
232 0 : contig_start = UINT64_MAX;
233 0 : contig_end = UINT64_MAX;
234 :
235 : /* Unregister any memory we managed to register before the failure */
236 0 : for (; idx_256tb < SIZE_MAX; idx_256tb--) {
237 0 : map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
238 :
239 0 : if (!map_1gb) {
240 0 : if (contig_end != UINT64_MAX) {
241 : /* End of of a virtually contiguous range */
242 0 : map->ops.notify_cb(map->cb_ctx, map,
243 : SPDK_MEM_MAP_NOTIFY_UNREGISTER,
244 0 : (void *)contig_start,
245 0 : contig_end - contig_start + MAP_PAGE_SIZE);
246 0 : }
247 0 : contig_end = UINT64_MAX;
248 0 : continue;
249 : }
250 :
251 0 : for (; idx_1gb < UINT64_MAX; idx_1gb--) {
252 : /* Rebuild the virtual address from the indexes */
253 0 : uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << MAP_PAGE_SHIFT);
254 0 : if ((map_1gb->map[idx_1gb].translation & REG_MAP_REGISTERED) &&
255 0 : (contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation & REG_MAP_NOTIFY_START) == 0)) {
256 :
257 0 : if (contig_end == UINT64_MAX) {
258 0 : contig_end = vaddr;
259 0 : }
260 0 : contig_start = vaddr;
261 0 : } else {
262 0 : if (contig_end != UINT64_MAX) {
263 0 : if (map_1gb->map[idx_1gb].translation & REG_MAP_NOTIFY_START) {
264 0 : contig_start = vaddr;
265 0 : }
266 : /* End of of a virtually contiguous range */
267 0 : map->ops.notify_cb(map->cb_ctx, map,
268 : SPDK_MEM_MAP_NOTIFY_UNREGISTER,
269 0 : (void *)contig_start,
270 0 : contig_end - contig_start + MAP_PAGE_SIZE);
271 0 : }
272 0 : contig_end = UINT64_MAX;
273 : }
274 0 : }
275 0 : idx_1gb = MAP_NUM_PAGES_PER_GB - 1;
276 0 : }
277 :
278 0 : pthread_mutex_unlock(&g_mem_reg_map->mutex);
279 0 : return rc;
280 0 : }
281 :
282 : struct spdk_mem_map *
283 0 : spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx)
284 : {
285 : struct spdk_mem_map *map;
286 : int rc;
287 : size_t i;
288 :
289 0 : map = calloc(1, sizeof(*map));
290 0 : if (map == NULL) {
291 0 : return NULL;
292 : }
293 :
294 0 : if (pthread_mutex_init(&map->mutex, NULL)) {
295 0 : free(map);
296 0 : return NULL;
297 : }
298 :
299 0 : map->default_translation = default_translation;
300 0 : map->cb_ctx = cb_ctx;
301 0 : if (ops) {
302 0 : map->ops = *ops;
303 0 : }
304 :
305 0 : if (ops && ops->notify_cb) {
306 0 : pthread_mutex_lock(&g_spdk_mem_map_mutex);
307 0 : rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
308 0 : if (rc != 0) {
309 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
310 0 : DEBUG_PRINT("Initial mem_map notify failed\n");
311 0 : pthread_mutex_destroy(&map->mutex);
312 0 : for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
313 0 : free(map->map_256tb.map[i]);
314 0 : }
315 0 : free(map);
316 0 : return NULL;
317 : }
318 0 : TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
319 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
320 0 : }
321 :
322 0 : return map;
323 0 : }
324 :
325 : void
326 0 : spdk_mem_map_free(struct spdk_mem_map **pmap)
327 : {
328 : struct spdk_mem_map *map;
329 : size_t i;
330 :
331 0 : if (!pmap) {
332 0 : return;
333 : }
334 :
335 0 : map = *pmap;
336 :
337 0 : if (!map) {
338 0 : return;
339 : }
340 :
341 0 : if (map->ops.notify_cb) {
342 0 : pthread_mutex_lock(&g_spdk_mem_map_mutex);
343 0 : mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
344 0 : TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
345 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
346 0 : }
347 :
348 0 : for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
349 0 : free(map->map_256tb.map[i]);
350 0 : }
351 :
352 0 : pthread_mutex_destroy(&map->mutex);
353 :
354 0 : free(map);
355 0 : *pmap = NULL;
356 0 : }
357 :
358 : uint64_t
359 0 : spdk_mem_map_get_page_size(void)
360 : {
361 0 : return g_map_page_cfg.size;
362 : }
363 :
364 : int
365 0 : spdk_mem_register(void *_vaddr, size_t len)
366 : {
367 : struct spdk_mem_map *map;
368 : int rc;
369 0 : uint64_t vaddr = (uintptr_t)_vaddr;
370 : uint64_t seg_vaddr;
371 : size_t seg_len;
372 : uint64_t reg;
373 :
374 0 : if ((uintptr_t)vaddr & ~MASK_256TB) {
375 0 : DEBUG_PRINT("invalid usermode virtual address %jx\n", vaddr);
376 0 : return -EINVAL;
377 : }
378 :
379 0 : if (((uintptr_t)vaddr & MAP_PAGE_MASK) || (len & MAP_PAGE_MASK)) {
380 0 : DEBUG_PRINT("invalid %s parameters, vaddr=%jx len=%ju\n",
381 : __func__, vaddr, len);
382 0 : return -EINVAL;
383 : }
384 :
385 0 : if (len == 0) {
386 0 : return 0;
387 : }
388 :
389 0 : pthread_mutex_lock(&g_spdk_mem_map_mutex);
390 :
391 0 : seg_vaddr = vaddr;
392 0 : seg_len = len;
393 0 : while (seg_len > 0) {
394 0 : reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
395 0 : if (reg & REG_MAP_REGISTERED) {
396 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
397 0 : return -EBUSY;
398 : }
399 0 : seg_vaddr += MAP_PAGE_SIZE;
400 0 : seg_len -= MAP_PAGE_SIZE;
401 : }
402 :
403 0 : seg_vaddr = vaddr;
404 0 : seg_len = 0;
405 0 : while (len > 0) {
406 0 : spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, MAP_PAGE_SIZE,
407 0 : seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED);
408 0 : seg_len += MAP_PAGE_SIZE;
409 0 : vaddr += MAP_PAGE_SIZE;
410 0 : len -= MAP_PAGE_SIZE;
411 : }
412 :
413 0 : TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
414 0 : rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER,
415 0 : (void *)seg_vaddr, seg_len);
416 0 : if (rc != 0) {
417 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
418 0 : return rc;
419 : }
420 0 : }
421 :
422 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
423 0 : return 0;
424 0 : }
425 :
426 : int
427 0 : spdk_mem_unregister(void *_vaddr, size_t len)
428 : {
429 : struct spdk_mem_map *map;
430 : int rc;
431 0 : uint64_t vaddr = (uintptr_t)_vaddr;
432 : uint64_t seg_vaddr;
433 : size_t seg_len;
434 : uint64_t reg, newreg;
435 :
436 0 : if ((uintptr_t)vaddr & ~MASK_256TB) {
437 0 : DEBUG_PRINT("invalid usermode virtual address %jx\n", vaddr);
438 0 : return -EINVAL;
439 : }
440 :
441 0 : if (((uintptr_t)vaddr & MAP_PAGE_MASK) || (len & MAP_PAGE_MASK)) {
442 0 : DEBUG_PRINT("invalid %s parameters, vaddr=%jx len=%ju\n",
443 : __func__, vaddr, len);
444 0 : return -EINVAL;
445 : }
446 :
447 0 : pthread_mutex_lock(&g_spdk_mem_map_mutex);
448 :
449 : /* The first page must be a start of a region. Also check if it's
450 : * registered to make sure we don't return -ERANGE for non-registered
451 : * regions.
452 : */
453 0 : reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
454 0 : if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) {
455 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
456 0 : return -ERANGE;
457 : }
458 :
459 0 : seg_vaddr = vaddr;
460 0 : seg_len = len;
461 0 : while (seg_len > 0) {
462 0 : reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
463 0 : if ((reg & REG_MAP_REGISTERED) == 0) {
464 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
465 0 : return -EINVAL;
466 : }
467 0 : seg_vaddr += MAP_PAGE_SIZE;
468 0 : seg_len -= MAP_PAGE_SIZE;
469 : }
470 :
471 0 : newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
472 : /* If the next page is registered, it must be a start of a region as well,
473 : * otherwise we'd be unregistering only a part of a region.
474 : */
475 0 : if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) {
476 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
477 0 : return -ERANGE;
478 : }
479 0 : seg_vaddr = vaddr;
480 0 : seg_len = 0;
481 :
482 0 : while (len > 0) {
483 0 : reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
484 0 : spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, MAP_PAGE_SIZE, 0);
485 :
486 0 : if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) {
487 0 : TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) {
488 0 : rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER,
489 0 : (void *)seg_vaddr, seg_len);
490 0 : if (rc != 0) {
491 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
492 0 : return rc;
493 : }
494 0 : }
495 :
496 0 : seg_vaddr = vaddr;
497 0 : seg_len = MAP_PAGE_SIZE;
498 0 : } else {
499 0 : seg_len += MAP_PAGE_SIZE;
500 : }
501 :
502 0 : vaddr += MAP_PAGE_SIZE;
503 0 : len -= MAP_PAGE_SIZE;
504 : }
505 :
506 0 : if (seg_len > 0) {
507 0 : TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) {
508 0 : rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER,
509 0 : (void *)seg_vaddr, seg_len);
510 0 : if (rc != 0) {
511 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
512 0 : return rc;
513 : }
514 0 : }
515 0 : }
516 :
517 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
518 0 : return 0;
519 0 : }
520 :
521 : int
522 0 : spdk_mem_reserve(void *vaddr, size_t len)
523 : {
524 : struct spdk_mem_map *map;
525 : void *seg_vaddr;
526 : size_t seg_len;
527 : uint64_t reg;
528 :
529 0 : if ((uintptr_t)vaddr & ~MASK_256TB) {
530 0 : DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
531 0 : return -EINVAL;
532 : }
533 :
534 0 : if (((uintptr_t)vaddr & MAP_PAGE_MASK) || (len & MAP_PAGE_MASK)) {
535 0 : DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
536 : __func__, vaddr, len);
537 0 : return -EINVAL;
538 : }
539 :
540 0 : if (len == 0) {
541 0 : return 0;
542 : }
543 :
544 0 : pthread_mutex_lock(&g_spdk_mem_map_mutex);
545 :
546 : /* Check if any part of this range is already registered */
547 0 : seg_vaddr = vaddr;
548 0 : seg_len = len;
549 0 : while (seg_len > 0) {
550 0 : reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
551 0 : if (reg & REG_MAP_REGISTERED) {
552 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
553 0 : return -EBUSY;
554 : }
555 0 : seg_vaddr += MAP_PAGE_SIZE;
556 0 : seg_len -= MAP_PAGE_SIZE;
557 : }
558 :
559 : /* Simply set the translation to the memory map's default. This allocates the space in the
560 : * map but does not provide a valid translation. */
561 0 : spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len,
562 0 : g_mem_reg_map->default_translation);
563 :
564 0 : TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
565 0 : spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation);
566 0 : }
567 :
568 0 : pthread_mutex_unlock(&g_spdk_mem_map_mutex);
569 0 : return 0;
570 0 : }
571 :
572 : static struct map_1gb *
573 0 : mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_page)
574 : {
575 : struct map_1gb *map_1gb;
576 0 : uint64_t idx_256tb = MAP_256TB_IDX(vfn_page);
577 : size_t i;
578 :
579 0 : if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) {
580 0 : return NULL;
581 : }
582 :
583 0 : map_1gb = map->map_256tb.map[idx_256tb];
584 :
585 0 : if (!map_1gb) {
586 0 : pthread_mutex_lock(&map->mutex);
587 :
588 : /* Recheck to make sure nobody else got the mutex first. */
589 0 : map_1gb = map->map_256tb.map[idx_256tb];
590 0 : if (!map_1gb) {
591 0 : map_1gb = malloc(MAP_SIZE_OF_MAP_1GB);
592 0 : if (map_1gb) {
593 : /* initialize all entries to default translation */
594 0 : for (i = 0; i < MAP_NUM_PAGES_PER_GB; i++) {
595 0 : map_1gb->map[i].translation = map->default_translation;
596 0 : }
597 0 : map->map_256tb.map[idx_256tb] = map_1gb;
598 0 : }
599 0 : }
600 :
601 0 : pthread_mutex_unlock(&map->mutex);
602 :
603 0 : if (!map_1gb) {
604 0 : DEBUG_PRINT("allocation failed\n");
605 0 : return NULL;
606 : }
607 0 : }
608 :
609 0 : return map_1gb;
610 0 : }
611 :
612 : int
613 0 : spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
614 : uint64_t translation)
615 : {
616 : uint64_t vfn_page;
617 : struct map_1gb *map_1gb;
618 : uint64_t idx_1gb;
619 : struct map_page *map_page;
620 :
621 0 : if ((uintptr_t)vaddr & ~MASK_256TB) {
622 0 : DEBUG_PRINT("invalid usermode virtual address %" PRIu64 "\n", vaddr);
623 0 : return -EINVAL;
624 : }
625 :
626 : /* Only page-aligned registrations are supported */
627 0 : if (((uintptr_t)vaddr & MAP_PAGE_MASK) || (size & MAP_PAGE_MASK)) {
628 0 : DEBUG_PRINT("invalid %s parameters, vaddr=%" PRIu64 " len=%" PRIu64 "\n",
629 : __func__, vaddr, size);
630 0 : return -EINVAL;
631 : }
632 :
633 0 : vfn_page = vaddr >> MAP_PAGE_SHIFT;
634 :
635 0 : while (size) {
636 0 : map_1gb = mem_map_get_map_1gb(map, vfn_page);
637 0 : if (!map_1gb) {
638 0 : DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
639 0 : return -ENOMEM;
640 : }
641 :
642 0 : idx_1gb = MAP_1GB_IDX(vfn_page);
643 0 : map_page = &map_1gb->map[idx_1gb];
644 0 : map_page->translation = translation;
645 :
646 0 : size -= MAP_PAGE_SIZE;
647 0 : vfn_page++;
648 : }
649 :
650 0 : return 0;
651 0 : }
652 :
653 : int
654 0 : spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
655 : {
656 0 : return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation);
657 : }
658 :
659 : inline uint64_t
660 0 : spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
661 : {
662 : const struct map_1gb *map_1gb;
663 : const struct map_page *map_page;
664 : uint64_t idx_256tb;
665 : uint64_t idx_1gb;
666 : uint64_t vfn_page;
667 : uint64_t cur_size;
668 : uint64_t prev_translation;
669 : uint64_t orig_translation;
670 :
671 0 : if (spdk_unlikely(vaddr & ~MASK_256TB)) {
672 0 : DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
673 0 : return map->default_translation;
674 : }
675 :
676 0 : vfn_page = vaddr >> MAP_PAGE_SHIFT;
677 0 : idx_256tb = MAP_256TB_IDX(vfn_page);
678 0 : idx_1gb = MAP_1GB_IDX(vfn_page);
679 :
680 0 : map_1gb = map->map_256tb.map[idx_256tb];
681 0 : if (spdk_unlikely(!map_1gb)) {
682 0 : return map->default_translation;
683 : }
684 :
685 0 : cur_size = MAP_PAGE_SIZE - MAP_PAGE_OFFSET(vaddr);
686 0 : map_page = &map_1gb->map[idx_1gb];
687 0 : if (size == NULL || map->ops.are_contiguous == NULL ||
688 0 : map_page->translation == map->default_translation) {
689 0 : if (size != NULL) {
690 0 : *size = spdk_min(*size, cur_size);
691 0 : }
692 0 : return map_page->translation;
693 : }
694 :
695 0 : orig_translation = map_page->translation;
696 0 : prev_translation = orig_translation;
697 0 : while (cur_size < *size) {
698 0 : vfn_page++;
699 0 : idx_256tb = MAP_256TB_IDX(vfn_page);
700 0 : idx_1gb = MAP_1GB_IDX(vfn_page);
701 :
702 0 : map_1gb = map->map_256tb.map[idx_256tb];
703 0 : if (spdk_unlikely(!map_1gb)) {
704 0 : break;
705 : }
706 :
707 0 : map_page = &map_1gb->map[idx_1gb];
708 0 : if (!map->ops.are_contiguous(prev_translation, map_page->translation)) {
709 0 : break;
710 : }
711 :
712 0 : cur_size += MAP_PAGE_SIZE;
713 0 : prev_translation = map_page->translation;
714 : }
715 :
716 0 : *size = spdk_min(*size, cur_size);
717 0 : return orig_translation;
718 0 : }
719 :
720 : static void
721 0 : memory_hotplug_cb(enum rte_mem_event event_type,
722 : const void *addr, size_t len, void *arg)
723 : {
724 0 : if (event_type == RTE_MEM_EVENT_ALLOC) {
725 0 : spdk_mem_register((void *)addr, len);
726 :
727 0 : if (!spdk_env_dpdk_external_init()) {
728 0 : return;
729 : }
730 :
731 : /* When the user initialized DPDK separately, we can't
732 : * be sure that --match-allocations RTE flag was specified.
733 : * Without this flag, DPDK can free memory in different units
734 : * than it was allocated. It doesn't work with things like RDMA MRs.
735 : *
736 : * For such cases, we mark segments so they aren't freed.
737 : */
738 0 : while (len > 0) {
739 : struct rte_memseg *seg;
740 :
741 0 : seg = rte_mem_virt2memseg(addr, NULL);
742 0 : assert(seg != NULL);
743 0 : seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
744 0 : addr = (void *)((uintptr_t)addr + seg->hugepage_sz);
745 0 : len -= seg->hugepage_sz;
746 : }
747 0 : } else if (event_type == RTE_MEM_EVENT_FREE) {
748 0 : spdk_mem_unregister((void *)addr, len);
749 0 : }
750 0 : }
751 :
752 : static int
753 0 : memory_iter_cb(const struct rte_memseg_list *msl,
754 : const struct rte_memseg *ms, size_t len, void *arg)
755 : {
756 0 : return spdk_mem_register(ms->addr, len);
757 : }
758 :
759 : static bool g_mem_event_cb_registered = false;
760 :
761 : static int
762 0 : mem_map_mem_event_callback_register(void)
763 : {
764 : int rc;
765 :
766 0 : rc = rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL);
767 0 : if (rc != 0) {
768 0 : DEBUG_PRINT("memory event callback registration failed, rc = %d\n", rc);
769 0 : return -errno;
770 : }
771 :
772 0 : g_mem_event_cb_registered = true;
773 0 : return 0;
774 0 : }
775 :
776 : static void
777 0 : mem_map_mem_event_callback_unregister(void)
778 : {
779 0 : if (g_mem_event_cb_registered) {
780 0 : g_mem_event_cb_registered = false;
781 0 : rte_mem_event_callback_unregister("spdk", NULL);
782 0 : }
783 0 : }
784 :
785 : int
786 0 : mem_map_init(bool legacy_mem)
787 : {
788 : int rc;
789 :
790 0 : g_legacy_mem = legacy_mem;
791 :
792 0 : g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
793 0 : if (g_mem_reg_map == NULL) {
794 0 : DEBUG_PRINT("memory registration map allocation failed\n");
795 0 : return -ENOMEM;
796 : }
797 :
798 0 : if (!g_legacy_mem) {
799 : /**
800 : * To prevent DPDK complaining, only register the callback when
801 : * we are not in legacy mem mode.
802 : */
803 0 : rc = mem_map_mem_event_callback_register();
804 0 : if (rc != 0) {
805 0 : DEBUG_PRINT("memory event callback registration failed, rc = %d\n", rc);
806 0 : goto err_free_reg_map;
807 : }
808 0 : }
809 :
810 : /*
811 : * Walk all DPDK memory segments and register them
812 : * with the main memory map
813 : */
814 0 : rc = rte_memseg_contig_walk(memory_iter_cb, NULL);
815 0 : if (rc != 0) {
816 0 : DEBUG_PRINT("memory segments walking failed, rc = %d\n", rc);
817 0 : goto err_unregister_mem_cb;
818 : }
819 :
820 0 : return 0;
821 :
822 : err_unregister_mem_cb:
823 0 : mem_map_mem_event_callback_unregister();
824 : err_free_reg_map:
825 0 : spdk_mem_map_free(&g_mem_reg_map);
826 0 : return rc;
827 0 : }
828 :
829 : void
830 0 : mem_map_fini(void)
831 : {
832 0 : mem_map_mem_event_callback_unregister();
833 0 : spdk_mem_map_free(&g_mem_reg_map);
834 0 : }
835 :
836 : bool
837 0 : spdk_iommu_is_enabled(void)
838 : {
839 : #if VFIO_ENABLED
840 : return g_vfio.enabled && !g_vfio.noiommu_enabled;
841 : #else
842 0 : return false;
843 : #endif
844 : }
845 :
846 : struct spdk_vtophys_pci_device {
847 : struct rte_pci_device *pci_device;
848 : TAILQ_ENTRY(spdk_vtophys_pci_device) tailq;
849 : };
850 :
851 : static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER;
852 : static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices =
853 : TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices);
854 :
855 : static struct spdk_mem_map *g_vtophys_map;
856 : static struct spdk_mem_map *g_phys_ref_map;
857 : static struct spdk_mem_map *g_numa_map;
858 :
859 : #if VFIO_ENABLED
860 : static int
861 : _vfio_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
862 : {
863 : struct spdk_vfio_dma_map *dma_map;
864 : int ret;
865 :
866 : dma_map = calloc(1, sizeof(*dma_map));
867 : if (dma_map == NULL) {
868 : return -ENOMEM;
869 : }
870 :
871 : dma_map->map.argsz = sizeof(dma_map->map);
872 : dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
873 : dma_map->map.vaddr = vaddr;
874 : dma_map->map.iova = iova;
875 : dma_map->map.size = size;
876 :
877 : if (g_vfio.device_ref == 0) {
878 : /* VFIO requires at least one device (IOMMU group) to be added to
879 : * a VFIO container before it is possible to perform any IOMMU
880 : * operations on that container. This memory will be mapped once
881 : * the first device (IOMMU group) is hotplugged.
882 : *
883 : * Since the vfio container is managed internally by DPDK, it is
884 : * also possible that some device is already in that container, but
885 : * it's not managed by SPDK - e.g. an NIC attached internally
886 : * inside DPDK. We could map the memory straight away in such
887 : * scenario, but there's no need to do it. DPDK devices clearly
888 : * don't need our mappings and hence we defer the mapping
889 : * unconditionally until the first SPDK-managed device is
890 : * hotplugged.
891 : */
892 : goto out_insert;
893 : }
894 :
895 : ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
896 : if (ret) {
897 : /* There are cases the vfio container doesn't have IOMMU group, it's safe for this case */
898 : SPDK_NOTICELOG("Cannot set up DMA mapping, error %d, ignored\n", errno);
899 : }
900 :
901 : out_insert:
902 : TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq);
903 : return 0;
904 : }
905 :
906 :
907 : static int
908 : vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
909 : {
910 : uint64_t refcount;
911 : int ret;
912 :
913 : refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL);
914 : assert(refcount < UINT64_MAX);
915 : if (refcount > 0) {
916 : spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1);
917 : return 0;
918 : }
919 :
920 : pthread_mutex_lock(&g_vfio.mutex);
921 : ret = _vfio_iommu_map_dma(vaddr, iova, size);
922 : pthread_mutex_unlock(&g_vfio.mutex);
923 : if (ret) {
924 : return ret;
925 : }
926 :
927 : spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1);
928 : return 0;
929 : }
930 :
931 : int
932 : vtophys_iommu_map_dma_bar(uint64_t vaddr, uint64_t iova, uint64_t size)
933 : {
934 : int ret;
935 :
936 : pthread_mutex_lock(&g_vfio.mutex);
937 : ret = _vfio_iommu_map_dma(vaddr, iova, size);
938 : pthread_mutex_unlock(&g_vfio.mutex);
939 :
940 : return ret;
941 : }
942 :
943 : static int
944 : _vfio_iommu_unmap_dma(struct spdk_vfio_dma_map *dma_map)
945 : {
946 : struct vfio_iommu_type1_dma_unmap unmap = {};
947 : int ret;
948 :
949 : if (g_vfio.device_ref == 0) {
950 : /* Memory is not mapped anymore, just remove it's references */
951 : goto out_remove;
952 : }
953 :
954 : unmap.argsz = sizeof(unmap);
955 : unmap.flags = 0;
956 : unmap.iova = dma_map->map.iova;
957 : unmap.size = dma_map->map.size;
958 : ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap);
959 : if (ret) {
960 : SPDK_NOTICELOG("Cannot clear DMA mapping, error %d, ignored\n", errno);
961 : }
962 :
963 : out_remove:
964 : TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq);
965 : free(dma_map);
966 : return 0;
967 : }
968 :
969 : static int
970 : vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size)
971 : {
972 : struct spdk_vfio_dma_map *dma_map;
973 : uint64_t refcount;
974 : int ret;
975 :
976 : pthread_mutex_lock(&g_vfio.mutex);
977 : TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
978 : if (dma_map->map.iova == iova) {
979 : break;
980 : }
981 : }
982 :
983 : if (dma_map == NULL) {
984 : DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova);
985 : pthread_mutex_unlock(&g_vfio.mutex);
986 : return -ENXIO;
987 : }
988 :
989 : refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL);
990 : assert(refcount < UINT64_MAX);
991 : if (refcount > 0) {
992 : spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1);
993 : }
994 :
995 : /* We still have outstanding references, don't clear it. */
996 : if (refcount > 1) {
997 : pthread_mutex_unlock(&g_vfio.mutex);
998 : return 0;
999 : }
1000 :
1001 : /** don't support partial or multiple-page unmap for now */
1002 : assert(dma_map->map.size == size);
1003 :
1004 : ret = _vfio_iommu_unmap_dma(dma_map);
1005 : pthread_mutex_unlock(&g_vfio.mutex);
1006 :
1007 : return ret;
1008 : }
1009 :
1010 : int
1011 : vtophys_iommu_unmap_dma_bar(uint64_t vaddr)
1012 : {
1013 : struct spdk_vfio_dma_map *dma_map;
1014 : int ret;
1015 :
1016 : pthread_mutex_lock(&g_vfio.mutex);
1017 : TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
1018 : if (dma_map->map.vaddr == vaddr) {
1019 : break;
1020 : }
1021 : }
1022 :
1023 : if (dma_map == NULL) {
1024 : DEBUG_PRINT("Cannot clear DMA mapping for address %"PRIx64" - it's not mapped\n", vaddr);
1025 : pthread_mutex_unlock(&g_vfio.mutex);
1026 : return -ENXIO;
1027 : }
1028 :
1029 : ret = _vfio_iommu_unmap_dma(dma_map);
1030 : pthread_mutex_unlock(&g_vfio.mutex);
1031 : return ret;
1032 : }
1033 : #endif
1034 :
1035 : static uint64_t
1036 0 : vtophys_get_paddr_memseg(uint64_t vaddr)
1037 : {
1038 : uintptr_t paddr;
1039 : struct rte_memseg *seg;
1040 :
1041 0 : seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
1042 0 : if (seg != NULL) {
1043 0 : paddr = seg->iova;
1044 0 : if (paddr == RTE_BAD_IOVA) {
1045 0 : return SPDK_VTOPHYS_ERROR;
1046 : }
1047 0 : paddr += (vaddr - (uintptr_t)seg->addr);
1048 0 : return paddr;
1049 : }
1050 :
1051 0 : return SPDK_VTOPHYS_ERROR;
1052 0 : }
1053 :
1054 : /* Try to get the paddr from /proc/self/pagemap */
1055 : static uint64_t
1056 0 : vtophys_get_paddr_pagemap(uint64_t vaddr)
1057 : {
1058 : uintptr_t paddr;
1059 :
1060 : /* Silence static analyzers */
1061 0 : assert(vaddr != 0);
1062 0 : paddr = rte_mem_virt2iova((void *)vaddr);
1063 0 : if (paddr == RTE_BAD_IOVA) {
1064 : /*
1065 : * The vaddr may be valid but doesn't have a backing page
1066 : * assigned yet. Touch the page to ensure a backing page
1067 : * gets assigned, then try to translate again.
1068 : */
1069 0 : rte_atomic64_read((rte_atomic64_t *)vaddr);
1070 0 : paddr = rte_mem_virt2iova((void *)vaddr);
1071 0 : }
1072 0 : if (paddr == RTE_BAD_IOVA) {
1073 : /* Unable to get to the physical address. */
1074 0 : return SPDK_VTOPHYS_ERROR;
1075 : }
1076 :
1077 0 : return paddr;
1078 0 : }
1079 :
1080 : static uint64_t
1081 0 : pci_device_vtophys(struct rte_pci_device *dev, uint64_t vaddr, size_t len)
1082 : {
1083 : struct rte_mem_resource *res;
1084 : uint64_t paddr;
1085 : unsigned r;
1086 :
1087 0 : for (r = 0; r < PCI_MAX_RESOURCE; r++) {
1088 0 : res = dpdk_pci_device_get_mem_resource(dev, r);
1089 :
1090 0 : if (res->phys_addr == 0 || vaddr < (uint64_t)res->addr ||
1091 0 : (vaddr + len) >= (uint64_t)res->addr + res->len) {
1092 0 : continue;
1093 : }
1094 :
1095 : #if VFIO_ENABLED
1096 : if (spdk_iommu_is_enabled() && rte_eal_iova_mode() == RTE_IOVA_VA) {
1097 : /*
1098 : * The IOMMU is on and we're using IOVA == VA. The BAR was
1099 : * automatically registered when it was mapped, so just return
1100 : * the virtual address here.
1101 : */
1102 : return vaddr;
1103 : }
1104 : #endif
1105 0 : paddr = res->phys_addr + (vaddr - (uint64_t)res->addr);
1106 0 : return paddr;
1107 : }
1108 :
1109 0 : return SPDK_VTOPHYS_ERROR;
1110 0 : }
1111 :
1112 : /* Try to get the paddr from pci devices */
1113 : static uint64_t
1114 0 : vtophys_get_paddr_pci(uint64_t vaddr, size_t len)
1115 : {
1116 : struct spdk_vtophys_pci_device *vtophys_dev;
1117 : uintptr_t paddr;
1118 : struct rte_pci_device *dev;
1119 :
1120 0 : pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
1121 0 : TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
1122 0 : dev = vtophys_dev->pci_device;
1123 0 : paddr = pci_device_vtophys(dev, vaddr, len);
1124 0 : if (paddr != SPDK_VTOPHYS_ERROR) {
1125 0 : pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
1126 0 : return paddr;
1127 : }
1128 0 : }
1129 0 : pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
1130 :
1131 0 : return SPDK_VTOPHYS_ERROR;
1132 0 : }
1133 :
1134 : static int
1135 0 : vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
1136 : enum spdk_mem_map_notify_action action,
1137 : void *vaddr, size_t len)
1138 : {
1139 0 : int rc = 0;
1140 : uint64_t paddr;
1141 :
1142 0 : if ((uintptr_t)vaddr & ~MASK_256TB) {
1143 0 : DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
1144 0 : return -EINVAL;
1145 : }
1146 :
1147 0 : if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
1148 0 : DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n",
1149 : vaddr, len);
1150 0 : return -EINVAL;
1151 : }
1152 :
1153 : /* Get the physical address from the DPDK memsegs */
1154 0 : paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
1155 :
1156 0 : switch (action) {
1157 : case SPDK_MEM_MAP_NOTIFY_REGISTER:
1158 0 : if (paddr == SPDK_VTOPHYS_ERROR) {
1159 : /* This is not an address that DPDK is managing. */
1160 :
1161 : /* Check if this is a PCI BAR. They need special handling */
1162 0 : paddr = vtophys_get_paddr_pci((uint64_t)vaddr, len);
1163 0 : if (paddr != SPDK_VTOPHYS_ERROR) {
1164 : /* Get paddr for each 2MB chunk in this address range */
1165 0 : while (len > 0) {
1166 0 : paddr = vtophys_get_paddr_pci((uint64_t)vaddr, VALUE_2MB);
1167 0 : if (paddr == SPDK_VTOPHYS_ERROR) {
1168 0 : DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
1169 0 : return -EFAULT;
1170 : }
1171 :
1172 0 : rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
1173 0 : if (rc != 0) {
1174 0 : return rc;
1175 : }
1176 :
1177 0 : vaddr += VALUE_2MB;
1178 0 : len -= VALUE_2MB;
1179 : }
1180 :
1181 0 : return 0;
1182 : }
1183 :
1184 : #if VFIO_ENABLED
1185 : enum rte_iova_mode iova_mode;
1186 :
1187 : iova_mode = rte_eal_iova_mode();
1188 :
1189 : if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) {
1190 : /* We'll use the virtual address as the iova to match DPDK. */
1191 : paddr = (uint64_t)vaddr;
1192 : rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len);
1193 : if (rc) {
1194 : return -EFAULT;
1195 : }
1196 : while (len > 0) {
1197 : rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
1198 : if (rc != 0) {
1199 : return rc;
1200 : }
1201 : vaddr += VALUE_2MB;
1202 : paddr += VALUE_2MB;
1203 : len -= VALUE_2MB;
1204 : }
1205 : } else
1206 : #endif
1207 : {
1208 : /* Get the physical address from /proc/self/pagemap. */
1209 0 : paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
1210 0 : if (paddr == SPDK_VTOPHYS_ERROR) {
1211 0 : DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
1212 0 : return -EFAULT;
1213 : }
1214 :
1215 : /* Get paddr for each 2MB chunk in this address range */
1216 0 : while (len > 0) {
1217 : /* Get the physical address from /proc/self/pagemap. */
1218 0 : paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
1219 :
1220 0 : if (paddr == SPDK_VTOPHYS_ERROR) {
1221 0 : DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
1222 0 : return -EFAULT;
1223 : }
1224 :
1225 0 : if (paddr & MASK_2MB) {
1226 0 : DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr);
1227 0 : return -EINVAL;
1228 : }
1229 : #if VFIO_ENABLED
1230 : /* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory
1231 : * with the IOMMU using the physical address to match. */
1232 : if (spdk_iommu_is_enabled()) {
1233 : rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB);
1234 : if (rc) {
1235 : DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr);
1236 : return -EFAULT;
1237 : }
1238 : }
1239 : #endif
1240 :
1241 0 : rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
1242 0 : if (rc != 0) {
1243 0 : return rc;
1244 : }
1245 :
1246 0 : vaddr += VALUE_2MB;
1247 0 : len -= VALUE_2MB;
1248 : }
1249 : }
1250 0 : } else {
1251 : /* This is an address managed by DPDK. Just setup the translations. */
1252 0 : while (len > 0) {
1253 0 : paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
1254 0 : if (paddr == SPDK_VTOPHYS_ERROR) {
1255 0 : DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
1256 0 : return -EFAULT;
1257 : }
1258 :
1259 0 : rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
1260 0 : if (rc != 0) {
1261 0 : return rc;
1262 : }
1263 :
1264 0 : vaddr += VALUE_2MB;
1265 0 : len -= VALUE_2MB;
1266 : }
1267 : }
1268 :
1269 0 : break;
1270 : case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
1271 : #if VFIO_ENABLED
1272 : if (paddr == SPDK_VTOPHYS_ERROR) {
1273 : /*
1274 : * This is not an address that DPDK is managing.
1275 : */
1276 :
1277 : /* Check if this is a PCI BAR. They need special handling */
1278 : paddr = vtophys_get_paddr_pci((uint64_t)vaddr, len);
1279 : if (paddr != SPDK_VTOPHYS_ERROR) {
1280 : /* Get paddr for each 2MB chunk in this address range */
1281 : while (len > 0) {
1282 : paddr = vtophys_get_paddr_pci((uint64_t)vaddr, VALUE_2MB);
1283 : if (paddr == SPDK_VTOPHYS_ERROR) {
1284 : DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
1285 : return -EFAULT;
1286 : }
1287 :
1288 : rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
1289 : if (rc != 0) {
1290 : return rc;
1291 : }
1292 :
1293 : vaddr += VALUE_2MB;
1294 : len -= VALUE_2MB;
1295 : }
1296 :
1297 : return 0;
1298 : }
1299 :
1300 : /* If vfio is enabled,
1301 : * we need to unmap the range from the IOMMU
1302 : */
1303 : if (spdk_iommu_is_enabled()) {
1304 : uint64_t buffer_len = len;
1305 : uint8_t *va = vaddr;
1306 : enum rte_iova_mode iova_mode;
1307 :
1308 : iova_mode = rte_eal_iova_mode();
1309 : /*
1310 : * In virtual address mode, the region is contiguous and can be done in
1311 : * one unmap.
1312 : */
1313 : if (iova_mode == RTE_IOVA_VA) {
1314 : paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len);
1315 : if (buffer_len != len || paddr != (uintptr_t)va) {
1316 : DEBUG_PRINT("Unmapping %p with length %lu failed because "
1317 : "translation had address 0x%" PRIx64 " and length %lu\n",
1318 : va, len, paddr, buffer_len);
1319 : return -EINVAL;
1320 : }
1321 : rc = vtophys_iommu_unmap_dma(paddr, len);
1322 : if (rc) {
1323 : DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr);
1324 : return -EFAULT;
1325 : }
1326 : } else if (iova_mode == RTE_IOVA_PA) {
1327 : /* Get paddr for each 2MB chunk in this address range */
1328 : while (buffer_len > 0) {
1329 : paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL);
1330 :
1331 : if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) {
1332 : DEBUG_PRINT("could not get phys addr for %p\n", va);
1333 : return -EFAULT;
1334 : }
1335 :
1336 : rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB);
1337 : if (rc) {
1338 : DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr);
1339 : return -EFAULT;
1340 : }
1341 :
1342 : va += VALUE_2MB;
1343 : buffer_len -= VALUE_2MB;
1344 : }
1345 : }
1346 : }
1347 : }
1348 : #endif
1349 0 : while (len > 0) {
1350 0 : rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
1351 0 : if (rc != 0) {
1352 0 : return rc;
1353 : }
1354 :
1355 0 : vaddr += VALUE_2MB;
1356 0 : len -= VALUE_2MB;
1357 : }
1358 :
1359 0 : break;
1360 : default:
1361 0 : SPDK_UNREACHABLE();
1362 : }
1363 :
1364 0 : return rc;
1365 0 : }
1366 :
1367 : static int
1368 0 : numa_notify(void *cb_ctx, struct spdk_mem_map *map,
1369 : enum spdk_mem_map_notify_action action,
1370 : void *vaddr, size_t len)
1371 : {
1372 : struct rte_memseg *seg;
1373 :
1374 : /* We always return 0 from here, even if we aren't able to get a
1375 : * memseg for the address. This can happen in non-DPDK memory
1376 : * registration paths, for example vhost or vfio-user. That is OK,
1377 : * spdk_mem_get_numa_id() just returns SPDK_ENV_NUMA_ID_ANY for
1378 : * that kind of memory. If we return an error here, the
1379 : * spdk_mem_register() from vhost or vfio-user would fail which is
1380 : * not what we want.
1381 : */
1382 0 : seg = rte_mem_virt2memseg(vaddr, NULL);
1383 0 : if (seg == NULL) {
1384 0 : return 0;
1385 : }
1386 :
1387 0 : switch (action) {
1388 : case SPDK_MEM_MAP_NOTIFY_REGISTER:
1389 0 : spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, seg->socket_id);
1390 0 : break;
1391 : case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
1392 0 : spdk_mem_map_clear_translation(map, (uint64_t)vaddr, len);
1393 0 : break;
1394 : default:
1395 0 : break;
1396 : }
1397 :
1398 0 : return 0;
1399 0 : }
1400 :
1401 : static int
1402 0 : vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2)
1403 : {
1404 : /* This function is always called with paddrs for two subsequent
1405 : * 2MB chunks in virtual address space, so those chunks will be only
1406 : * physically contiguous if the physical addresses are 2MB apart
1407 : * from each other as well.
1408 : */
1409 0 : return (paddr2 - paddr1 == VALUE_2MB);
1410 : }
1411 :
1412 : #if VFIO_ENABLED
1413 :
1414 : static bool
1415 : vfio_enabled(void)
1416 : {
1417 : return rte_vfio_is_enabled("vfio_pci");
1418 : }
1419 :
1420 : /* Check if IOMMU is enabled on the system */
1421 : static bool
1422 : has_iommu_groups(void)
1423 : {
1424 : int count = 0;
1425 : DIR *dir = opendir("/sys/kernel/iommu_groups");
1426 :
1427 : if (dir == NULL) {
1428 : return false;
1429 : }
1430 :
1431 : while (count < 3 && readdir(dir) != NULL) {
1432 : count++;
1433 : }
1434 :
1435 : closedir(dir);
1436 : /* there will always be ./ and ../ entries */
1437 : return count > 2;
1438 : }
1439 :
1440 : static bool
1441 : vfio_noiommu_enabled(void)
1442 : {
1443 : return rte_vfio_noiommu_is_enabled();
1444 : }
1445 :
1446 : static void
1447 : vtophys_iommu_init(void)
1448 : {
1449 : char proc_fd_path[PATH_MAX + 1];
1450 : char link_path[PATH_MAX + 1];
1451 : const char vfio_path[] = "/dev/vfio/vfio";
1452 : DIR *dir;
1453 : struct dirent *d;
1454 :
1455 : if (!vfio_enabled()) {
1456 : return;
1457 : }
1458 :
1459 : if (vfio_noiommu_enabled()) {
1460 : g_vfio.noiommu_enabled = true;
1461 : } else if (!has_iommu_groups()) {
1462 : return;
1463 : }
1464 :
1465 : dir = opendir("/proc/self/fd");
1466 : if (!dir) {
1467 : DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno);
1468 : return;
1469 : }
1470 :
1471 : while ((d = readdir(dir)) != NULL) {
1472 : if (d->d_type != DT_LNK) {
1473 : continue;
1474 : }
1475 :
1476 : snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name);
1477 : if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) {
1478 : continue;
1479 : }
1480 :
1481 : if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) {
1482 : sscanf(d->d_name, "%d", &g_vfio.fd);
1483 : break;
1484 : }
1485 : }
1486 :
1487 : closedir(dir);
1488 :
1489 : if (g_vfio.fd < 0) {
1490 : DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n");
1491 : return;
1492 : }
1493 :
1494 : g_vfio.enabled = true;
1495 :
1496 : return;
1497 : }
1498 :
1499 : #endif
1500 :
1501 : void
1502 0 : vtophys_pci_device_added(struct rte_pci_device *pci_device)
1503 : {
1504 : struct spdk_vtophys_pci_device *vtophys_dev;
1505 :
1506 0 : pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
1507 :
1508 0 : vtophys_dev = calloc(1, sizeof(*vtophys_dev));
1509 0 : if (vtophys_dev) {
1510 0 : vtophys_dev->pci_device = pci_device;
1511 0 : TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq);
1512 0 : } else {
1513 0 : DEBUG_PRINT("Memory allocation error\n");
1514 : }
1515 0 : pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
1516 :
1517 : #if VFIO_ENABLED
1518 : struct spdk_vfio_dma_map *dma_map;
1519 : int ret;
1520 :
1521 : if (!g_vfio.enabled) {
1522 : return;
1523 : }
1524 :
1525 : pthread_mutex_lock(&g_vfio.mutex);
1526 : g_vfio.device_ref++;
1527 : if (g_vfio.device_ref > 1) {
1528 : pthread_mutex_unlock(&g_vfio.mutex);
1529 : return;
1530 : }
1531 :
1532 : /* This is the first SPDK device using DPDK vfio. This means that the first
1533 : * IOMMU group might have been just been added to the DPDK vfio container.
1534 : * From this point it is certain that the memory can be mapped now.
1535 : */
1536 : TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
1537 : ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
1538 : if (ret) {
1539 : DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno);
1540 : break;
1541 : }
1542 : }
1543 : pthread_mutex_unlock(&g_vfio.mutex);
1544 : #endif
1545 0 : }
1546 :
1547 : void
1548 0 : vtophys_pci_device_removed(struct rte_pci_device *pci_device)
1549 : {
1550 : struct spdk_vtophys_pci_device *vtophys_dev;
1551 :
1552 0 : pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
1553 0 : TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
1554 0 : if (vtophys_dev->pci_device == pci_device) {
1555 0 : TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq);
1556 0 : free(vtophys_dev);
1557 0 : break;
1558 : }
1559 0 : }
1560 0 : pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
1561 :
1562 : #if VFIO_ENABLED
1563 : struct spdk_vfio_dma_map *dma_map;
1564 : int ret;
1565 :
1566 : if (!g_vfio.enabled) {
1567 : return;
1568 : }
1569 :
1570 : pthread_mutex_lock(&g_vfio.mutex);
1571 : assert(g_vfio.device_ref > 0);
1572 : g_vfio.device_ref--;
1573 : if (g_vfio.device_ref > 0) {
1574 : pthread_mutex_unlock(&g_vfio.mutex);
1575 : return;
1576 : }
1577 :
1578 : /* This is the last SPDK device using DPDK vfio. If DPDK doesn't have
1579 : * any additional devices using it's vfio container, all the mappings
1580 : * will be automatically removed by the Linux vfio driver. We unmap
1581 : * the memory manually to be able to easily re-map it later regardless
1582 : * of other, external factors.
1583 : */
1584 : TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
1585 : struct vfio_iommu_type1_dma_unmap unmap = {};
1586 : unmap.argsz = sizeof(unmap);
1587 : unmap.flags = 0;
1588 : unmap.iova = dma_map->map.iova;
1589 : unmap.size = dma_map->map.size;
1590 : ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap);
1591 : if (ret) {
1592 : DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno);
1593 : break;
1594 : }
1595 : }
1596 : pthread_mutex_unlock(&g_vfio.mutex);
1597 : #endif
1598 0 : }
1599 :
1600 : int
1601 0 : vtophys_init(void)
1602 : {
1603 0 : const struct spdk_mem_map_ops vtophys_map_ops = {
1604 : .notify_cb = vtophys_notify,
1605 : .are_contiguous = vtophys_check_contiguous_entries,
1606 : };
1607 :
1608 0 : const struct spdk_mem_map_ops phys_ref_map_ops = {
1609 : .notify_cb = NULL,
1610 : .are_contiguous = NULL,
1611 : };
1612 :
1613 0 : const struct spdk_mem_map_ops numa_map_ops = {
1614 : .notify_cb = numa_notify,
1615 : .are_contiguous = NULL,
1616 : };
1617 :
1618 : #if VFIO_ENABLED
1619 : vtophys_iommu_init();
1620 : #endif
1621 :
1622 0 : g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL);
1623 0 : if (g_phys_ref_map == NULL) {
1624 0 : DEBUG_PRINT("phys_ref map allocation failed.\n");
1625 0 : return -ENOMEM;
1626 : }
1627 :
1628 0 : g_numa_map = spdk_mem_map_alloc(SPDK_ENV_NUMA_ID_ANY, &numa_map_ops, NULL);
1629 0 : if (g_numa_map == NULL) {
1630 0 : DEBUG_PRINT("numa map allocation failed.\n");
1631 0 : spdk_mem_map_free(&g_phys_ref_map);
1632 0 : return -ENOMEM;
1633 : }
1634 :
1635 0 : if (g_huge_pages) {
1636 0 : g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL);
1637 0 : if (g_vtophys_map == NULL) {
1638 0 : DEBUG_PRINT("vtophys map allocation failed\n");
1639 0 : spdk_mem_map_free(&g_numa_map);
1640 0 : spdk_mem_map_free(&g_phys_ref_map);
1641 0 : return -ENOMEM;
1642 : }
1643 0 : }
1644 0 : return 0;
1645 0 : }
1646 :
1647 : void
1648 0 : vtophys_fini(void)
1649 : {
1650 0 : spdk_mem_map_free(&g_vtophys_map);
1651 0 : spdk_mem_map_free(&g_numa_map);
1652 0 : spdk_mem_map_free(&g_phys_ref_map);
1653 0 : }
1654 :
1655 : uint64_t
1656 0 : spdk_vtophys(const void *buf, uint64_t *size)
1657 : {
1658 : uint64_t vaddr, paddr_2mb;
1659 :
1660 0 : if (!g_huge_pages) {
1661 0 : return SPDK_VTOPHYS_ERROR;
1662 : }
1663 :
1664 0 : vaddr = (uint64_t)buf;
1665 0 : paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size);
1666 :
1667 : /*
1668 : * SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR,
1669 : * we will still bitwise-or it with the buf offset below, but the result will still be
1670 : * SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being
1671 : * unaligned) we must now check the return value before addition.
1672 : */
1673 : SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s");
1674 0 : if (paddr_2mb == SPDK_VTOPHYS_ERROR) {
1675 0 : return SPDK_VTOPHYS_ERROR;
1676 : } else {
1677 0 : return paddr_2mb + (vaddr & MASK_2MB);
1678 : }
1679 0 : }
1680 :
1681 : int32_t
1682 0 : spdk_mem_get_numa_id(const void *buf, uint64_t *size)
1683 : {
1684 0 : return spdk_mem_map_translate(g_numa_map, (uint64_t)buf, size);
1685 : }
1686 :
1687 : int
1688 0 : spdk_mem_get_fd_and_offset(void *vaddr, uint64_t *offset)
1689 : {
1690 : struct rte_memseg *seg;
1691 : int ret, fd;
1692 :
1693 0 : seg = rte_mem_virt2memseg(vaddr, NULL);
1694 0 : if (!seg) {
1695 0 : SPDK_ERRLOG("memory %p doesn't exist\n", vaddr);
1696 0 : return -ENOENT;
1697 : }
1698 :
1699 0 : fd = rte_memseg_get_fd_thread_unsafe(seg);
1700 0 : if (fd < 0) {
1701 0 : return fd;
1702 : }
1703 :
1704 0 : ret = rte_memseg_get_fd_offset_thread_unsafe(seg, offset);
1705 0 : if (ret < 0) {
1706 0 : return ret;
1707 : }
1708 :
1709 0 : return fd;
1710 0 : }
1711 :
1712 : void
1713 0 : mem_disable_huge_pages(void)
1714 : {
1715 0 : g_huge_pages = false;
1716 0 : mem_map_use_page_shift(SHIFT_4KB);
1717 0 : }
1718 :
1719 : void
1720 0 : mem_map_use_page_shift(uint32_t page_shift)
1721 : {
1722 0 : g_map_page_cfg.shift = page_shift;
1723 0 : g_map_page_cfg.size = 1UL << page_shift;
1724 0 : g_map_page_cfg.mask = g_map_page_cfg.size - 1;
1725 0 : g_map_page_cfg.num_pages_per_gb = 1UL << (SHIFT_1GB - page_shift);
1726 0 : }
|