Line data Source code
1 : /* SPDX-License-Identifier: BSD-3-Clause
2 : * Copyright (C) 2016 Intel Corporation. All rights reserved.
3 : * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4 : * Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5 : */
6 :
7 : #include "spdk/stdinc.h"
8 :
9 : #include "spdk/config.h"
10 : #include "spdk/thread.h"
11 : #include "spdk/likely.h"
12 : #include "spdk/nvmf_transport.h"
13 : #include "spdk/string.h"
14 : #include "spdk/trace.h"
15 : #include "spdk/tree.h"
16 : #include "spdk/util.h"
17 :
18 : #include "spdk_internal/assert.h"
19 : #include "spdk/log.h"
20 : #include "spdk_internal/rdma.h"
21 :
22 : #include "nvmf_internal.h"
23 : #include "transport.h"
24 :
25 : #include "spdk_internal/trace_defs.h"
26 :
27 : struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
28 : const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma;
29 :
30 : /*
31 : RDMA Connection Resource Defaults
32 : */
33 : #define NVMF_DEFAULT_MSDBD 16
34 : #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES
35 : #define NVMF_DEFAULT_RSP_SGE 1
36 : #define NVMF_DEFAULT_RX_SGE 2
37 :
38 : #define NVMF_RDMA_MAX_EVENTS_PER_POLL 32
39 :
40 : SPDK_STATIC_ASSERT(NVMF_DEFAULT_MSDBD <= SPDK_NVMF_MAX_SGL_ENTRIES,
41 : "MSDBD must not exceed SPDK_NVMF_MAX_SGL_ENTRIES");
42 :
43 : /* The RDMA completion queue size */
44 : #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096
45 : #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2)
46 :
47 : enum spdk_nvmf_rdma_request_state {
48 : /* The request is not currently in use */
49 : RDMA_REQUEST_STATE_FREE = 0,
50 :
51 : /* Initial state when request first received */
52 : RDMA_REQUEST_STATE_NEW,
53 :
54 : /* The request is queued until a data buffer is available. */
55 : RDMA_REQUEST_STATE_NEED_BUFFER,
56 :
57 : /* The request is waiting on RDMA queue depth availability
58 : * to transfer data from the host to the controller.
59 : */
60 : RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
61 :
62 : /* The request is currently transferring data from the host to the controller. */
63 : RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
64 :
65 : /* The request is ready to execute at the block device */
66 : RDMA_REQUEST_STATE_READY_TO_EXECUTE,
67 :
68 : /* The request is currently executing at the block device */
69 : RDMA_REQUEST_STATE_EXECUTING,
70 :
71 : /* The request finished executing at the block device */
72 : RDMA_REQUEST_STATE_EXECUTED,
73 :
74 : /* The request is waiting on RDMA queue depth availability
75 : * to transfer data from the controller to the host.
76 : */
77 : RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
78 :
79 : /* The request is waiting on RDMA queue depth availability
80 : * to send response to the host.
81 : */
82 : RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
83 :
84 : /* The request is ready to send a completion */
85 : RDMA_REQUEST_STATE_READY_TO_COMPLETE,
86 :
87 : /* The request is currently transferring data from the controller to the host. */
88 : RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
89 :
90 : /* The request currently has an outstanding completion without an
91 : * associated data transfer.
92 : */
93 : RDMA_REQUEST_STATE_COMPLETING,
94 :
95 : /* The request completed and can be marked free. */
96 : RDMA_REQUEST_STATE_COMPLETED,
97 :
98 : /* Terminator */
99 : RDMA_REQUEST_NUM_STATES,
100 : };
101 :
102 2 : SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
103 : {
104 0 : spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
105 :
106 0 : struct spdk_trace_tpoint_opts opts[] = {
107 : {
108 : "RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
109 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 1,
110 : {
111 : { "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 },
112 : { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 }
113 : }
114 : },
115 : {
116 : "RDMA_REQ_COMPLETED", TRACE_RDMA_REQUEST_STATE_COMPLETED,
117 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
118 : {
119 : { "qpair", SPDK_TRACE_ARG_TYPE_PTR, 8 },
120 : { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 }
121 : }
122 : },
123 : };
124 :
125 0 : spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
126 0 : spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
127 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
128 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
129 0 : spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
130 : TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
131 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
132 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
133 0 : spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
134 : TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
135 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
136 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
137 0 : spdk_trace_register_description("RDMA_REQ_TX_H2C",
138 : TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
139 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
140 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
141 0 : spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
142 : TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
143 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
144 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
145 0 : spdk_trace_register_description("RDMA_REQ_EXECUTING",
146 : TRACE_RDMA_REQUEST_STATE_EXECUTING,
147 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
148 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
149 0 : spdk_trace_register_description("RDMA_REQ_EXECUTED",
150 : TRACE_RDMA_REQUEST_STATE_EXECUTED,
151 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
152 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
153 0 : spdk_trace_register_description("RDMA_REQ_RDY2COMPL_PEND",
154 : TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING,
155 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
156 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
157 0 : spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
158 : TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
159 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
160 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
161 0 : spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
162 : TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
163 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
164 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
165 0 : spdk_trace_register_description("RDMA_REQ_COMPLETING",
166 : TRACE_RDMA_REQUEST_STATE_COMPLETING,
167 : OWNER_TYPE_NONE, OBJECT_NVMF_RDMA_IO, 0,
168 : SPDK_TRACE_ARG_TYPE_PTR, "qpair");
169 :
170 0 : spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
171 : OWNER_TYPE_NONE, OBJECT_NONE, 0,
172 : SPDK_TRACE_ARG_TYPE_INT, "");
173 0 : spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
174 : OWNER_TYPE_NONE, OBJECT_NONE, 0,
175 : SPDK_TRACE_ARG_TYPE_INT, "type");
176 0 : spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
177 : OWNER_TYPE_NONE, OBJECT_NONE, 0,
178 : SPDK_TRACE_ARG_TYPE_INT, "type");
179 0 : spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
180 : OWNER_TYPE_NONE, OBJECT_NONE, 0,
181 : SPDK_TRACE_ARG_TYPE_INT, "");
182 0 : spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
183 : OWNER_TYPE_NONE, OBJECT_NONE, 0,
184 : SPDK_TRACE_ARG_TYPE_INT, "");
185 0 : }
186 :
187 : enum spdk_nvmf_rdma_wr_type {
188 : RDMA_WR_TYPE_RECV,
189 : RDMA_WR_TYPE_SEND,
190 : RDMA_WR_TYPE_DATA,
191 : };
192 :
193 : struct spdk_nvmf_rdma_wr {
194 : /* Uses enum spdk_nvmf_rdma_wr_type */
195 : uint8_t type;
196 : };
197 :
198 : /* This structure holds commands as they are received off the wire.
199 : * It must be dynamically paired with a full request object
200 : * (spdk_nvmf_rdma_request) to service a request. It is separate
201 : * from the request because RDMA does not appear to order
202 : * completions, so occasionally we'll get a new incoming
203 : * command when there aren't any free request objects.
204 : */
205 : struct spdk_nvmf_rdma_recv {
206 : struct ibv_recv_wr wr;
207 : struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE];
208 :
209 : struct spdk_nvmf_rdma_qpair *qpair;
210 :
211 : /* In-capsule data buffer */
212 : uint8_t *buf;
213 :
214 : struct spdk_nvmf_rdma_wr rdma_wr;
215 : uint64_t receive_tsc;
216 :
217 : STAILQ_ENTRY(spdk_nvmf_rdma_recv) link;
218 : };
219 :
220 : struct spdk_nvmf_rdma_request_data {
221 : struct ibv_send_wr wr;
222 : struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
223 : };
224 :
225 : struct spdk_nvmf_rdma_request {
226 : struct spdk_nvmf_request req;
227 :
228 : bool fused_failed;
229 :
230 : struct spdk_nvmf_rdma_wr data_wr;
231 : struct spdk_nvmf_rdma_wr rsp_wr;
232 :
233 : /* Uses enum spdk_nvmf_rdma_request_state */
234 : uint8_t state;
235 :
236 : /* Data offset in req.iov */
237 : uint32_t offset;
238 :
239 : struct spdk_nvmf_rdma_recv *recv;
240 :
241 : struct {
242 : struct ibv_send_wr wr;
243 : struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE];
244 : } rsp;
245 :
246 : uint16_t iovpos;
247 : uint16_t num_outstanding_data_wr;
248 : /* Used to split Write IO with multi SGL payload */
249 : uint16_t num_remaining_data_wr;
250 : uint64_t receive_tsc;
251 : struct spdk_nvmf_rdma_request *fused_pair;
252 : STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link;
253 : struct ibv_send_wr *remaining_tranfer_in_wrs;
254 : struct ibv_send_wr *transfer_wr;
255 : struct spdk_nvmf_rdma_request_data data;
256 : };
257 :
258 : struct spdk_nvmf_rdma_resource_opts {
259 : struct spdk_nvmf_rdma_qpair *qpair;
260 : /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
261 : void *qp;
262 : struct spdk_rdma_mem_map *map;
263 : uint32_t max_queue_depth;
264 : uint32_t in_capsule_data_size;
265 : bool shared;
266 : };
267 :
268 : struct spdk_nvmf_rdma_resources {
269 : /* Array of size "max_queue_depth" containing RDMA requests. */
270 : struct spdk_nvmf_rdma_request *reqs;
271 :
272 : /* Array of size "max_queue_depth" containing RDMA recvs. */
273 : struct spdk_nvmf_rdma_recv *recvs;
274 :
275 : /* Array of size "max_queue_depth" containing 64 byte capsules
276 : * used for receive.
277 : */
278 : union nvmf_h2c_msg *cmds;
279 :
280 : /* Array of size "max_queue_depth" containing 16 byte completions
281 : * to be sent back to the user.
282 : */
283 : union nvmf_c2h_msg *cpls;
284 :
285 : /* Array of size "max_queue_depth * InCapsuleDataSize" containing
286 : * buffers to be used for in capsule data.
287 : */
288 : void *bufs;
289 :
290 : /* Receives that are waiting for a request object */
291 : STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue;
292 :
293 : /* Queue to track free requests */
294 : STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue;
295 : };
296 :
297 : typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair);
298 :
299 : typedef void (*spdk_poller_destroy_cb)(void *ctx);
300 :
301 : struct spdk_nvmf_rdma_ibv_event_ctx {
302 : struct spdk_nvmf_rdma_qpair *rqpair;
303 : spdk_nvmf_rdma_qpair_ibv_event cb_fn;
304 : /* Link to other ibv events associated with this qpair */
305 : STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link;
306 : };
307 :
308 : struct spdk_nvmf_rdma_qpair {
309 : struct spdk_nvmf_qpair qpair;
310 :
311 : struct spdk_nvmf_rdma_device *device;
312 : struct spdk_nvmf_rdma_poller *poller;
313 :
314 : struct spdk_rdma_qp *rdma_qp;
315 : struct rdma_cm_id *cm_id;
316 : struct spdk_rdma_srq *srq;
317 : struct rdma_cm_id *listen_id;
318 :
319 : /* Cache the QP number to improve QP search by RB tree. */
320 : uint32_t qp_num;
321 :
322 : /* The maximum number of I/O outstanding on this connection at one time */
323 : uint16_t max_queue_depth;
324 :
325 : /* The maximum number of active RDMA READ and ATOMIC operations at one time */
326 : uint16_t max_read_depth;
327 :
328 : /* The maximum number of RDMA SEND operations at one time */
329 : uint32_t max_send_depth;
330 :
331 : /* The current number of outstanding WRs from this qpair's
332 : * recv queue. Should not exceed device->attr.max_queue_depth.
333 : */
334 : uint16_t current_recv_depth;
335 :
336 : /* The current number of active RDMA READ operations */
337 : uint16_t current_read_depth;
338 :
339 : /* The current number of posted WRs from this qpair's
340 : * send queue. Should not exceed max_send_depth.
341 : */
342 : uint32_t current_send_depth;
343 :
344 : /* The maximum number of SGEs per WR on the send queue */
345 : uint32_t max_send_sge;
346 :
347 : /* The maximum number of SGEs per WR on the recv queue */
348 : uint32_t max_recv_sge;
349 :
350 : struct spdk_nvmf_rdma_resources *resources;
351 :
352 : STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue;
353 :
354 : STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue;
355 :
356 : STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_send_queue;
357 :
358 : /* Number of requests not in the free state */
359 : uint32_t qd;
360 :
361 : bool ibv_in_error_state;
362 :
363 : RB_ENTRY(spdk_nvmf_rdma_qpair) node;
364 :
365 : STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link;
366 :
367 : STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link;
368 :
369 : /* Points to the a request that has fuse bits set to
370 : * SPDK_NVME_CMD_FUSE_FIRST, when the qpair is waiting
371 : * for the request that has SPDK_NVME_CMD_FUSE_SECOND.
372 : */
373 : struct spdk_nvmf_rdma_request *fused_first;
374 :
375 : /*
376 : * io_channel which is used to destroy qpair when it is removed from poll group
377 : */
378 : struct spdk_io_channel *destruct_channel;
379 :
380 : /* List of ibv async events */
381 : STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events;
382 :
383 : /* Lets us know that we have received the last_wqe event. */
384 : bool last_wqe_reached;
385 :
386 : /* Indicate that nvmf_rdma_close_qpair is called */
387 : bool to_close;
388 : };
389 :
390 : struct spdk_nvmf_rdma_poller_stat {
391 : uint64_t completions;
392 : uint64_t polls;
393 : uint64_t idle_polls;
394 : uint64_t requests;
395 : uint64_t request_latency;
396 : uint64_t pending_free_request;
397 : uint64_t pending_rdma_read;
398 : uint64_t pending_rdma_write;
399 : uint64_t pending_rdma_send;
400 : struct spdk_rdma_qp_stats qp_stats;
401 : };
402 :
403 : struct spdk_nvmf_rdma_poller {
404 : struct spdk_nvmf_rdma_device *device;
405 : struct spdk_nvmf_rdma_poll_group *group;
406 :
407 : int num_cqe;
408 : int required_num_wr;
409 : struct ibv_cq *cq;
410 :
411 : /* The maximum number of I/O outstanding on the shared receive queue at one time */
412 : uint16_t max_srq_depth;
413 : bool need_destroy;
414 :
415 : /* Shared receive queue */
416 : struct spdk_rdma_srq *srq;
417 :
418 : struct spdk_nvmf_rdma_resources *resources;
419 : struct spdk_nvmf_rdma_poller_stat stat;
420 :
421 : spdk_poller_destroy_cb destroy_cb;
422 : void *destroy_cb_ctx;
423 :
424 : RB_HEAD(qpairs_tree, spdk_nvmf_rdma_qpair) qpairs;
425 :
426 : STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv;
427 :
428 : STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send;
429 :
430 : TAILQ_ENTRY(spdk_nvmf_rdma_poller) link;
431 : };
432 :
433 : struct spdk_nvmf_rdma_poll_group_stat {
434 : uint64_t pending_data_buffer;
435 : };
436 :
437 : struct spdk_nvmf_rdma_poll_group {
438 : struct spdk_nvmf_transport_poll_group group;
439 : struct spdk_nvmf_rdma_poll_group_stat stat;
440 : TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers;
441 : TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link;
442 : };
443 :
444 : struct spdk_nvmf_rdma_conn_sched {
445 : struct spdk_nvmf_rdma_poll_group *next_admin_pg;
446 : struct spdk_nvmf_rdma_poll_group *next_io_pg;
447 : };
448 :
449 : /* Assuming rdma_cm uses just one protection domain per ibv_context. */
450 : struct spdk_nvmf_rdma_device {
451 : struct ibv_device_attr attr;
452 : struct ibv_context *context;
453 :
454 : struct spdk_rdma_mem_map *map;
455 : struct ibv_pd *pd;
456 :
457 : int num_srq;
458 : bool need_destroy;
459 : bool ready_to_destroy;
460 : bool is_ready;
461 :
462 : TAILQ_ENTRY(spdk_nvmf_rdma_device) link;
463 : };
464 :
465 : struct spdk_nvmf_rdma_port {
466 : const struct spdk_nvme_transport_id *trid;
467 : struct rdma_cm_id *id;
468 : struct spdk_nvmf_rdma_device *device;
469 : TAILQ_ENTRY(spdk_nvmf_rdma_port) link;
470 : };
471 :
472 : struct rdma_transport_opts {
473 : int num_cqe;
474 : uint32_t max_srq_depth;
475 : bool no_srq;
476 : bool no_wr_batching;
477 : int acceptor_backlog;
478 : };
479 :
480 : struct spdk_nvmf_rdma_transport {
481 : struct spdk_nvmf_transport transport;
482 : struct rdma_transport_opts rdma_opts;
483 :
484 : struct spdk_nvmf_rdma_conn_sched conn_sched;
485 :
486 : struct rdma_event_channel *event_channel;
487 :
488 : struct spdk_mempool *data_wr_pool;
489 :
490 : struct spdk_poller *accept_poller;
491 :
492 : /* fields used to poll RDMA/IB events */
493 : nfds_t npoll_fds;
494 : struct pollfd *poll_fds;
495 :
496 : TAILQ_HEAD(, spdk_nvmf_rdma_device) devices;
497 : TAILQ_HEAD(, spdk_nvmf_rdma_port) ports;
498 : TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups;
499 :
500 : /* ports that are removed unexpectedly and need retry listen */
501 : TAILQ_HEAD(, spdk_nvmf_rdma_port) retry_ports;
502 : };
503 :
504 : struct poller_manage_ctx {
505 : struct spdk_nvmf_rdma_transport *rtransport;
506 : struct spdk_nvmf_rdma_poll_group *rgroup;
507 : struct spdk_nvmf_rdma_poller *rpoller;
508 : struct spdk_nvmf_rdma_device *device;
509 :
510 : struct spdk_thread *thread;
511 : volatile int *inflight_op_counter;
512 : };
513 :
514 : static const struct spdk_json_object_decoder rdma_transport_opts_decoder[] = {
515 : {
516 : "num_cqe", offsetof(struct rdma_transport_opts, num_cqe),
517 : spdk_json_decode_int32, true
518 : },
519 : {
520 : "max_srq_depth", offsetof(struct rdma_transport_opts, max_srq_depth),
521 : spdk_json_decode_uint32, true
522 : },
523 : {
524 : "no_srq", offsetof(struct rdma_transport_opts, no_srq),
525 : spdk_json_decode_bool, true
526 : },
527 : {
528 : "no_wr_batching", offsetof(struct rdma_transport_opts, no_wr_batching),
529 : spdk_json_decode_bool, true
530 : },
531 : {
532 : "acceptor_backlog", offsetof(struct rdma_transport_opts, acceptor_backlog),
533 : spdk_json_decode_int32, true
534 : },
535 : };
536 :
537 : static int
538 2 : nvmf_rdma_qpair_compare(struct spdk_nvmf_rdma_qpair *rqpair1, struct spdk_nvmf_rdma_qpair *rqpair2)
539 : {
540 2 : return rqpair1->qp_num < rqpair2->qp_num ? -1 : rqpair1->qp_num > rqpair2->qp_num;
541 : }
542 :
543 0 : RB_GENERATE_STATIC(qpairs_tree, spdk_nvmf_rdma_qpair, node, nvmf_rdma_qpair_compare);
544 :
545 : static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
546 : struct spdk_nvmf_rdma_request *rdma_req);
547 :
548 : static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
549 : struct spdk_nvmf_rdma_poller *rpoller);
550 :
551 : static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
552 : struct spdk_nvmf_rdma_poller *rpoller);
553 :
554 : static void _nvmf_rdma_remove_destroyed_device(void *c);
555 :
556 : static inline enum spdk_nvme_media_error_status_code
557 0 : nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
558 : enum spdk_nvme_media_error_status_code result;
559 0 : switch (err_type)
560 : {
561 0 : case SPDK_DIF_REFTAG_ERROR:
562 0 : result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
563 0 : break;
564 0 : case SPDK_DIF_APPTAG_ERROR:
565 0 : result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
566 0 : break;
567 0 : case SPDK_DIF_GUARD_ERROR:
568 0 : result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
569 0 : break;
570 0 : default:
571 0 : SPDK_UNREACHABLE();
572 : }
573 :
574 0 : return result;
575 : }
576 :
577 : /*
578 : * Return data_wrs to pool starting from \b data_wr
579 : * Request's own response and data WR are excluded
580 : */
581 : static void
582 7 : _nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
583 : struct ibv_send_wr *data_wr,
584 : struct spdk_mempool *pool)
585 : {
586 7 : struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
587 : struct spdk_nvmf_rdma_request_data *nvmf_data;
588 : struct ibv_send_wr *next_send_wr;
589 7 : uint64_t req_wrid = (uint64_t)&rdma_req->data_wr;
590 7 : uint32_t num_wrs = 0;
591 :
592 15 : while (data_wr && data_wr->wr_id == req_wrid) {
593 8 : nvmf_data = SPDK_CONTAINEROF(data_wr, struct spdk_nvmf_rdma_request_data, wr);
594 8 : memset(nvmf_data->sgl, 0, sizeof(data_wr->sg_list[0]) * data_wr->num_sge);
595 8 : data_wr->num_sge = 0;
596 8 : next_send_wr = data_wr->next;
597 8 : if (data_wr != &rdma_req->data.wr) {
598 1 : data_wr->next = NULL;
599 1 : assert(num_wrs < SPDK_NVMF_MAX_SGL_ENTRIES);
600 1 : work_requests[num_wrs] = nvmf_data;
601 1 : num_wrs++;
602 : }
603 8 : data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : next_send_wr;
604 : }
605 :
606 7 : if (num_wrs) {
607 1 : spdk_mempool_put_bulk(pool, (void **) work_requests, num_wrs);
608 : }
609 7 : }
610 :
611 : static void
612 7 : nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
613 : struct spdk_nvmf_rdma_transport *rtransport)
614 : {
615 7 : rdma_req->num_outstanding_data_wr = 0;
616 :
617 7 : _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
618 :
619 7 : if (rdma_req->remaining_tranfer_in_wrs) {
620 0 : _nvmf_rdma_request_free_data(rdma_req, rdma_req->remaining_tranfer_in_wrs,
621 : rtransport->data_wr_pool);
622 0 : rdma_req->remaining_tranfer_in_wrs = NULL;
623 : }
624 :
625 7 : rdma_req->data.wr.next = NULL;
626 7 : rdma_req->rsp.wr.next = NULL;
627 7 : }
628 :
629 : static void
630 0 : nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
631 : {
632 0 : SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
633 0 : if (req->req.cmd) {
634 0 : SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
635 : }
636 0 : if (req->recv) {
637 0 : SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
638 : }
639 0 : }
640 :
641 : static void
642 0 : nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
643 : {
644 : int i;
645 :
646 0 : SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
647 0 : for (i = 0; i < rqpair->max_queue_depth; i++) {
648 0 : if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
649 0 : nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
650 : }
651 : }
652 0 : }
653 :
654 : static void
655 1 : nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
656 : {
657 1 : spdk_free(resources->cmds);
658 1 : spdk_free(resources->cpls);
659 1 : spdk_free(resources->bufs);
660 1 : spdk_free(resources->reqs);
661 1 : spdk_free(resources->recvs);
662 1 : free(resources);
663 1 : }
664 :
665 :
666 : static struct spdk_nvmf_rdma_resources *
667 1 : nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
668 : {
669 : struct spdk_nvmf_rdma_resources *resources;
670 : struct spdk_nvmf_rdma_request *rdma_req;
671 : struct spdk_nvmf_rdma_recv *rdma_recv;
672 1 : struct spdk_rdma_qp *qp = NULL;
673 1 : struct spdk_rdma_srq *srq = NULL;
674 1 : struct ibv_recv_wr *bad_wr = NULL;
675 1 : struct spdk_rdma_memory_translation translation;
676 : uint32_t i;
677 1 : int rc = 0;
678 :
679 1 : resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
680 1 : if (!resources) {
681 0 : SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
682 0 : return NULL;
683 : }
684 :
685 1 : resources->reqs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->reqs),
686 : 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
687 1 : resources->recvs = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->recvs),
688 : 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
689 1 : resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
690 : 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
691 1 : resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
692 : 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
693 :
694 1 : if (opts->in_capsule_data_size > 0) {
695 1 : resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
696 : 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
697 : SPDK_MALLOC_DMA);
698 : }
699 :
700 1 : if (!resources->reqs || !resources->recvs || !resources->cmds ||
701 1 : !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
702 0 : SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
703 0 : goto cleanup;
704 : }
705 :
706 1 : SPDK_DEBUGLOG(rdma, "Command Array: %p Length: %lx\n",
707 : resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds));
708 1 : SPDK_DEBUGLOG(rdma, "Completion Array: %p Length: %lx\n",
709 : resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls));
710 1 : if (resources->bufs) {
711 1 : SPDK_DEBUGLOG(rdma, "In Capsule Data Array: %p Length: %x\n",
712 : resources->bufs, opts->max_queue_depth *
713 : opts->in_capsule_data_size);
714 : }
715 :
716 : /* Initialize queues */
717 1 : STAILQ_INIT(&resources->incoming_queue);
718 1 : STAILQ_INIT(&resources->free_queue);
719 :
720 1 : if (opts->shared) {
721 1 : srq = (struct spdk_rdma_srq *)opts->qp;
722 : } else {
723 0 : qp = (struct spdk_rdma_qp *)opts->qp;
724 : }
725 :
726 129 : for (i = 0; i < opts->max_queue_depth; i++) {
727 128 : rdma_recv = &resources->recvs[i];
728 128 : rdma_recv->qpair = opts->qpair;
729 :
730 : /* Set up memory to receive commands */
731 128 : if (resources->bufs) {
732 128 : rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
733 128 : opts->in_capsule_data_size));
734 : }
735 :
736 128 : rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
737 :
738 128 : rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
739 128 : rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
740 128 : rc = spdk_rdma_get_translation(opts->map, &resources->cmds[i], sizeof(resources->cmds[i]),
741 : &translation);
742 128 : if (rc) {
743 0 : goto cleanup;
744 : }
745 128 : rdma_recv->sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
746 128 : rdma_recv->wr.num_sge = 1;
747 :
748 128 : if (rdma_recv->buf) {
749 128 : rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
750 128 : rdma_recv->sgl[1].length = opts->in_capsule_data_size;
751 128 : rc = spdk_rdma_get_translation(opts->map, rdma_recv->buf, opts->in_capsule_data_size, &translation);
752 128 : if (rc) {
753 0 : goto cleanup;
754 : }
755 128 : rdma_recv->sgl[1].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
756 128 : rdma_recv->wr.num_sge++;
757 : }
758 :
759 128 : rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
760 128 : rdma_recv->wr.sg_list = rdma_recv->sgl;
761 128 : if (srq) {
762 0 : spdk_rdma_srq_queue_recv_wrs(srq, &rdma_recv->wr);
763 : } else {
764 128 : spdk_rdma_qp_queue_recv_wrs(qp, &rdma_recv->wr);
765 : }
766 : }
767 :
768 129 : for (i = 0; i < opts->max_queue_depth; i++) {
769 128 : rdma_req = &resources->reqs[i];
770 :
771 128 : if (opts->qpair != NULL) {
772 128 : rdma_req->req.qpair = &opts->qpair->qpair;
773 : } else {
774 0 : rdma_req->req.qpair = NULL;
775 : }
776 128 : rdma_req->req.cmd = NULL;
777 128 : rdma_req->req.iovcnt = 0;
778 128 : rdma_req->req.stripped_data = NULL;
779 :
780 : /* Set up memory to send responses */
781 128 : rdma_req->req.rsp = &resources->cpls[i];
782 :
783 128 : rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
784 128 : rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
785 128 : rc = spdk_rdma_get_translation(opts->map, &resources->cpls[i], sizeof(resources->cpls[i]),
786 : &translation);
787 128 : if (rc) {
788 0 : goto cleanup;
789 : }
790 128 : rdma_req->rsp.sgl[0].lkey = spdk_rdma_memory_translation_get_lkey(&translation);
791 :
792 128 : rdma_req->rsp_wr.type = RDMA_WR_TYPE_SEND;
793 128 : rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp_wr;
794 128 : rdma_req->rsp.wr.next = NULL;
795 128 : rdma_req->rsp.wr.opcode = IBV_WR_SEND;
796 128 : rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
797 128 : rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
798 128 : rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
799 :
800 : /* Set up memory for data buffers */
801 128 : rdma_req->data_wr.type = RDMA_WR_TYPE_DATA;
802 128 : rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
803 128 : rdma_req->data.wr.next = NULL;
804 128 : rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
805 128 : rdma_req->data.wr.sg_list = rdma_req->data.sgl;
806 128 : rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
807 :
808 : /* Initialize request state to FREE */
809 128 : rdma_req->state = RDMA_REQUEST_STATE_FREE;
810 128 : STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
811 : }
812 :
813 1 : if (srq) {
814 0 : rc = spdk_rdma_srq_flush_recv_wrs(srq, &bad_wr);
815 : } else {
816 1 : rc = spdk_rdma_qp_flush_recv_wrs(qp, &bad_wr);
817 : }
818 :
819 1 : if (rc) {
820 0 : goto cleanup;
821 : }
822 :
823 1 : return resources;
824 :
825 0 : cleanup:
826 0 : nvmf_rdma_resources_destroy(resources);
827 0 : return NULL;
828 : }
829 :
830 : static void
831 0 : nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair)
832 : {
833 : struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx;
834 0 : STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) {
835 0 : ctx->rqpair = NULL;
836 : /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */
837 0 : STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
838 : }
839 0 : }
840 :
841 : static void nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller);
842 :
843 : static void
844 0 : nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
845 : {
846 : struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp;
847 0 : struct ibv_recv_wr *bad_recv_wr = NULL;
848 : int rc;
849 :
850 0 : spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair);
851 :
852 0 : if (rqpair->qd != 0) {
853 0 : struct spdk_nvmf_qpair *qpair = &rqpair->qpair;
854 0 : struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport,
855 : struct spdk_nvmf_rdma_transport, transport);
856 : struct spdk_nvmf_rdma_request *req;
857 0 : uint32_t i, max_req_count = 0;
858 :
859 0 : SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
860 :
861 0 : if (rqpair->srq == NULL) {
862 0 : nvmf_rdma_dump_qpair_contents(rqpair);
863 0 : max_req_count = rqpair->max_queue_depth;
864 0 : } else if (rqpair->poller && rqpair->resources) {
865 0 : max_req_count = rqpair->poller->max_srq_depth;
866 : }
867 :
868 0 : SPDK_DEBUGLOG(rdma, "Release incomplete requests\n");
869 0 : for (i = 0; i < max_req_count; i++) {
870 0 : req = &rqpair->resources->reqs[i];
871 0 : if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) {
872 : /* nvmf_rdma_request_process checks qpair ibv and internal state
873 : * and completes a request */
874 0 : nvmf_rdma_request_process(rtransport, req);
875 : }
876 : }
877 0 : assert(rqpair->qd == 0);
878 : }
879 :
880 0 : if (rqpair->poller) {
881 0 : RB_REMOVE(qpairs_tree, &rqpair->poller->qpairs, rqpair);
882 :
883 0 : if (rqpair->srq != NULL && rqpair->resources != NULL) {
884 : /* Drop all received but unprocessed commands for this queue and return them to SRQ */
885 0 : STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
886 0 : if (rqpair == rdma_recv->qpair) {
887 0 : STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link);
888 0 : spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_recv->wr);
889 0 : rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
890 0 : if (rc) {
891 0 : SPDK_ERRLOG("Unable to re-post rx descriptor\n");
892 : }
893 : }
894 : }
895 : }
896 : }
897 :
898 0 : if (rqpair->cm_id) {
899 0 : if (rqpair->rdma_qp != NULL) {
900 0 : spdk_rdma_qp_destroy(rqpair->rdma_qp);
901 0 : rqpair->rdma_qp = NULL;
902 : }
903 :
904 0 : if (rqpair->poller != NULL && rqpair->srq == NULL) {
905 0 : rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
906 : }
907 : }
908 :
909 0 : if (rqpair->srq == NULL && rqpair->resources != NULL) {
910 0 : nvmf_rdma_resources_destroy(rqpair->resources);
911 : }
912 :
913 0 : nvmf_rdma_qpair_clean_ibv_events(rqpair);
914 :
915 0 : if (rqpair->destruct_channel) {
916 0 : spdk_put_io_channel(rqpair->destruct_channel);
917 0 : rqpair->destruct_channel = NULL;
918 : }
919 :
920 0 : if (rqpair->poller && rqpair->poller->need_destroy && RB_EMPTY(&rqpair->poller->qpairs)) {
921 0 : nvmf_rdma_poller_destroy(rqpair->poller);
922 : }
923 :
924 : /* destroy cm_id last so cma device will not be freed before we destroy the cq. */
925 0 : if (rqpair->cm_id) {
926 0 : rdma_destroy_id(rqpair->cm_id);
927 : }
928 :
929 0 : free(rqpair);
930 0 : }
931 :
932 : static int
933 5 : nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
934 : {
935 : struct spdk_nvmf_rdma_poller *rpoller;
936 : int rc, num_cqe, required_num_wr;
937 :
938 : /* Enlarge CQ size dynamically */
939 5 : rpoller = rqpair->poller;
940 5 : required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
941 5 : num_cqe = rpoller->num_cqe;
942 5 : if (num_cqe < required_num_wr) {
943 4 : num_cqe = spdk_max(num_cqe * 2, required_num_wr);
944 4 : num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
945 : }
946 :
947 5 : if (rpoller->num_cqe != num_cqe) {
948 4 : if (device->context->device->transport_type == IBV_TRANSPORT_IWARP) {
949 1 : SPDK_ERRLOG("iWARP doesn't support CQ resize. Current capacity %u, required %u\n"
950 : "Using CQ of insufficient size may lead to CQ overrun\n", rpoller->num_cqe, num_cqe);
951 1 : return -1;
952 : }
953 3 : if (required_num_wr > device->attr.max_cqe) {
954 1 : SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
955 : required_num_wr, device->attr.max_cqe);
956 1 : return -1;
957 : }
958 :
959 2 : SPDK_DEBUGLOG(rdma, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
960 2 : rc = ibv_resize_cq(rpoller->cq, num_cqe);
961 2 : if (rc) {
962 1 : SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
963 1 : return -1;
964 : }
965 :
966 1 : rpoller->num_cqe = num_cqe;
967 : }
968 :
969 2 : rpoller->required_num_wr = required_num_wr;
970 2 : return 0;
971 : }
972 :
973 : static int
974 0 : nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
975 : {
976 : struct spdk_nvmf_rdma_qpair *rqpair;
977 : struct spdk_nvmf_rdma_transport *rtransport;
978 : struct spdk_nvmf_transport *transport;
979 0 : struct spdk_nvmf_rdma_resource_opts opts;
980 : struct spdk_nvmf_rdma_device *device;
981 0 : struct spdk_rdma_qp_init_attr qp_init_attr = {};
982 :
983 0 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
984 0 : device = rqpair->device;
985 :
986 0 : qp_init_attr.qp_context = rqpair;
987 0 : qp_init_attr.pd = device->pd;
988 0 : qp_init_attr.send_cq = rqpair->poller->cq;
989 0 : qp_init_attr.recv_cq = rqpair->poller->cq;
990 :
991 0 : if (rqpair->srq) {
992 0 : qp_init_attr.srq = rqpair->srq->srq;
993 : } else {
994 0 : qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth;
995 : }
996 :
997 : /* SEND, READ, and WRITE operations */
998 0 : qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2;
999 0 : qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
1000 0 : qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
1001 0 : qp_init_attr.stats = &rqpair->poller->stat.qp_stats;
1002 :
1003 0 : if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
1004 0 : SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
1005 0 : goto error;
1006 : }
1007 :
1008 0 : rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr);
1009 0 : if (!rqpair->rdma_qp) {
1010 0 : goto error;
1011 : }
1012 :
1013 0 : rqpair->qp_num = rqpair->rdma_qp->qp->qp_num;
1014 :
1015 0 : rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2),
1016 : qp_init_attr.cap.max_send_wr);
1017 0 : rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge);
1018 0 : rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge);
1019 0 : spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair);
1020 0 : SPDK_DEBUGLOG(rdma, "New RDMA Connection: %p\n", qpair);
1021 :
1022 0 : if (rqpair->poller->srq == NULL) {
1023 0 : rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
1024 0 : transport = &rtransport->transport;
1025 :
1026 0 : opts.qp = rqpair->rdma_qp;
1027 0 : opts.map = device->map;
1028 0 : opts.qpair = rqpair;
1029 0 : opts.shared = false;
1030 0 : opts.max_queue_depth = rqpair->max_queue_depth;
1031 0 : opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
1032 :
1033 0 : rqpair->resources = nvmf_rdma_resources_create(&opts);
1034 :
1035 0 : if (!rqpair->resources) {
1036 0 : SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
1037 0 : rdma_destroy_qp(rqpair->cm_id);
1038 0 : goto error;
1039 : }
1040 : } else {
1041 0 : rqpair->resources = rqpair->poller->resources;
1042 : }
1043 :
1044 0 : rqpair->current_recv_depth = 0;
1045 0 : STAILQ_INIT(&rqpair->pending_rdma_read_queue);
1046 0 : STAILQ_INIT(&rqpair->pending_rdma_write_queue);
1047 0 : STAILQ_INIT(&rqpair->pending_rdma_send_queue);
1048 0 : rqpair->qpair.queue_depth = 0;
1049 :
1050 0 : return 0;
1051 :
1052 0 : error:
1053 0 : rdma_destroy_id(rqpair->cm_id);
1054 0 : rqpair->cm_id = NULL;
1055 0 : return -1;
1056 : }
1057 :
1058 : /* Append the given recv wr structure to the resource structs outstanding recvs list. */
1059 : /* This function accepts either a single wr or the first wr in a linked list. */
1060 : static void
1061 6 : nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
1062 : {
1063 6 : struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1064 : struct spdk_nvmf_rdma_transport, transport);
1065 :
1066 6 : if (rqpair->srq != NULL) {
1067 0 : spdk_rdma_srq_queue_recv_wrs(rqpair->srq, first);
1068 : } else {
1069 6 : if (spdk_rdma_qp_queue_recv_wrs(rqpair->rdma_qp, first)) {
1070 6 : STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
1071 : }
1072 : }
1073 :
1074 6 : if (rtransport->rdma_opts.no_wr_batching) {
1075 0 : _poller_submit_recvs(rtransport, rqpair->poller);
1076 : }
1077 6 : }
1078 :
1079 : static int
1080 4 : request_transfer_in(struct spdk_nvmf_request *req)
1081 : {
1082 : struct spdk_nvmf_rdma_request *rdma_req;
1083 : struct spdk_nvmf_qpair *qpair;
1084 : struct spdk_nvmf_rdma_qpair *rqpair;
1085 : struct spdk_nvmf_rdma_transport *rtransport;
1086 :
1087 4 : qpair = req->qpair;
1088 4 : rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1089 4 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1090 4 : rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1091 : struct spdk_nvmf_rdma_transport, transport);
1092 :
1093 4 : assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1094 4 : assert(rdma_req != NULL);
1095 :
1096 4 : if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, rdma_req->transfer_wr)) {
1097 4 : STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1098 : }
1099 4 : if (rtransport->rdma_opts.no_wr_batching) {
1100 0 : _poller_submit_sends(rtransport, rqpair->poller);
1101 : }
1102 :
1103 4 : assert(rqpair->current_read_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_read_depth);
1104 4 : rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
1105 4 : assert(rqpair->current_send_depth + rdma_req->num_outstanding_data_wr <= rqpair->max_send_depth);
1106 4 : rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
1107 4 : return 0;
1108 : }
1109 :
1110 : static inline void
1111 0 : nvmf_rdma_request_reset_transfer_in(struct spdk_nvmf_rdma_request *rdma_req,
1112 : struct spdk_nvmf_rdma_transport *rtransport)
1113 : {
1114 : /* Put completed WRs back to pool and move transfer_wr pointer */
1115 0 : _nvmf_rdma_request_free_data(rdma_req, rdma_req->transfer_wr, rtransport->data_wr_pool);
1116 0 : rdma_req->transfer_wr = rdma_req->remaining_tranfer_in_wrs;
1117 0 : rdma_req->remaining_tranfer_in_wrs = NULL;
1118 0 : rdma_req->num_outstanding_data_wr = rdma_req->num_remaining_data_wr;
1119 0 : rdma_req->num_remaining_data_wr = 0;
1120 0 : }
1121 :
1122 : static inline int
1123 0 : request_prepare_transfer_in_part(struct spdk_nvmf_request *req, uint32_t num_reads_available)
1124 : {
1125 : struct spdk_nvmf_rdma_request *rdma_req;
1126 : struct ibv_send_wr *wr;
1127 : uint32_t i;
1128 :
1129 0 : rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1130 :
1131 0 : assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
1132 0 : assert(rdma_req != NULL);
1133 0 : assert(num_reads_available > 0);
1134 0 : assert(rdma_req->num_outstanding_data_wr > num_reads_available);
1135 0 : wr = rdma_req->transfer_wr;
1136 :
1137 0 : for (i = 0; i < num_reads_available - 1; i++) {
1138 0 : wr = wr->next;
1139 : }
1140 :
1141 0 : rdma_req->remaining_tranfer_in_wrs = wr->next;
1142 0 : rdma_req->num_remaining_data_wr = rdma_req->num_outstanding_data_wr - num_reads_available;
1143 0 : rdma_req->num_outstanding_data_wr = num_reads_available;
1144 : /* Break chain of WRs to send only part. Once this portion completes, we continue sending RDMA_READs */
1145 0 : wr->next = NULL;
1146 :
1147 0 : return 0;
1148 : }
1149 :
1150 : static int
1151 6 : request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
1152 : {
1153 6 : int num_outstanding_data_wr = 0;
1154 : struct spdk_nvmf_rdma_request *rdma_req;
1155 : struct spdk_nvmf_qpair *qpair;
1156 : struct spdk_nvmf_rdma_qpair *rqpair;
1157 : struct spdk_nvme_cpl *rsp;
1158 6 : struct ibv_send_wr *first = NULL;
1159 : struct spdk_nvmf_rdma_transport *rtransport;
1160 :
1161 6 : *data_posted = 0;
1162 6 : qpair = req->qpair;
1163 6 : rsp = &req->rsp->nvme_cpl;
1164 6 : rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
1165 6 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
1166 6 : rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
1167 : struct spdk_nvmf_rdma_transport, transport);
1168 :
1169 : /* Advance our sq_head pointer */
1170 6 : if (qpair->sq_head == qpair->sq_head_max) {
1171 6 : qpair->sq_head = 0;
1172 : } else {
1173 0 : qpair->sq_head++;
1174 : }
1175 6 : rsp->sqhd = qpair->sq_head;
1176 :
1177 : /* queue the capsule for the recv buffer */
1178 6 : assert(rdma_req->recv != NULL);
1179 :
1180 6 : nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
1181 :
1182 6 : rdma_req->recv = NULL;
1183 6 : assert(rqpair->current_recv_depth > 0);
1184 6 : rqpair->current_recv_depth--;
1185 :
1186 : /* Build the response which consists of optional
1187 : * RDMA WRITEs to transfer data, plus an RDMA SEND
1188 : * containing the response.
1189 : */
1190 6 : first = &rdma_req->rsp.wr;
1191 :
1192 6 : if (spdk_unlikely(rsp->status.sc != SPDK_NVME_SC_SUCCESS)) {
1193 : /* On failure, data was not read from the controller. So clear the
1194 : * number of outstanding data WRs to zero.
1195 : */
1196 1 : rdma_req->num_outstanding_data_wr = 0;
1197 5 : } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1198 1 : first = rdma_req->transfer_wr;
1199 1 : *data_posted = 1;
1200 1 : num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
1201 : }
1202 6 : if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) {
1203 6 : STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
1204 : }
1205 6 : if (rtransport->rdma_opts.no_wr_batching) {
1206 0 : _poller_submit_sends(rtransport, rqpair->poller);
1207 : }
1208 :
1209 : /* +1 for the rsp wr */
1210 6 : assert(rqpair->current_send_depth + num_outstanding_data_wr + 1 <= rqpair->max_send_depth);
1211 6 : rqpair->current_send_depth += num_outstanding_data_wr + 1;
1212 :
1213 6 : return 0;
1214 : }
1215 :
1216 : static int
1217 0 : nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
1218 : {
1219 0 : struct spdk_nvmf_rdma_accept_private_data accept_data;
1220 0 : struct rdma_conn_param ctrlr_event_data = {};
1221 : int rc;
1222 :
1223 0 : accept_data.recfmt = 0;
1224 0 : accept_data.crqsize = rqpair->max_queue_depth;
1225 :
1226 0 : ctrlr_event_data.private_data = &accept_data;
1227 0 : ctrlr_event_data.private_data_len = sizeof(accept_data);
1228 0 : if (id->ps == RDMA_PS_TCP) {
1229 0 : ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
1230 0 : ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
1231 : }
1232 :
1233 : /* Configure infinite retries for the initiator side qpair.
1234 : * We need to pass this value to the initiator to prevent the
1235 : * initiator side NIC from completing SEND requests back to the
1236 : * initiator with status rnr_retry_count_exceeded. */
1237 0 : ctrlr_event_data.rnr_retry_count = 0x7;
1238 :
1239 : /* When qpair is created without use of rdma cm API, an additional
1240 : * information must be provided to initiator in the connection response:
1241 : * whether qpair is using SRQ and its qp_num
1242 : * Fields below are ignored by rdma cm if qpair has been
1243 : * created using rdma cm API. */
1244 0 : ctrlr_event_data.srq = rqpair->srq ? 1 : 0;
1245 0 : ctrlr_event_data.qp_num = rqpair->qp_num;
1246 :
1247 0 : rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data);
1248 0 : if (rc) {
1249 0 : SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno);
1250 : } else {
1251 0 : SPDK_DEBUGLOG(rdma, "Sent back the accept\n");
1252 : }
1253 :
1254 0 : return rc;
1255 : }
1256 :
1257 : static void
1258 0 : nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
1259 : {
1260 0 : struct spdk_nvmf_rdma_reject_private_data rej_data;
1261 :
1262 0 : rej_data.recfmt = 0;
1263 0 : rej_data.sts = error;
1264 :
1265 0 : rdma_reject(id, &rej_data, sizeof(rej_data));
1266 0 : }
1267 :
1268 : static int
1269 0 : nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event)
1270 : {
1271 : struct spdk_nvmf_rdma_transport *rtransport;
1272 0 : struct spdk_nvmf_rdma_qpair *rqpair = NULL;
1273 : struct spdk_nvmf_rdma_port *port;
1274 0 : struct rdma_conn_param *rdma_param = NULL;
1275 0 : const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
1276 : uint16_t max_queue_depth;
1277 : uint16_t max_read_depth;
1278 :
1279 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
1280 :
1281 0 : assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
1282 0 : assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
1283 :
1284 0 : rdma_param = &event->param.conn;
1285 0 : if (rdma_param->private_data == NULL ||
1286 0 : rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
1287 0 : SPDK_ERRLOG("connect request: no private data provided\n");
1288 0 : nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
1289 0 : return -1;
1290 : }
1291 :
1292 0 : private_data = rdma_param->private_data;
1293 0 : if (private_data->recfmt != 0) {
1294 0 : SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
1295 0 : nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
1296 0 : return -1;
1297 : }
1298 :
1299 0 : SPDK_DEBUGLOG(rdma, "Connect Recv on fabric intf name %s, dev_name %s\n",
1300 : event->id->verbs->device->name, event->id->verbs->device->dev_name);
1301 :
1302 0 : port = event->listen_id->context;
1303 0 : SPDK_DEBUGLOG(rdma, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
1304 : event->listen_id, event->listen_id->verbs, port);
1305 :
1306 : /* Figure out the supported queue depth. This is a multi-step process
1307 : * that takes into account hardware maximums, host provided values,
1308 : * and our target's internal memory limits */
1309 :
1310 0 : SPDK_DEBUGLOG(rdma, "Calculating Queue Depth\n");
1311 :
1312 : /* Start with the maximum queue depth allowed by the target */
1313 0 : max_queue_depth = rtransport->transport.opts.max_queue_depth;
1314 0 : max_read_depth = rtransport->transport.opts.max_queue_depth;
1315 0 : SPDK_DEBUGLOG(rdma, "Target Max Queue Depth: %d\n",
1316 : rtransport->transport.opts.max_queue_depth);
1317 :
1318 : /* Next check the local NIC's hardware limitations */
1319 0 : SPDK_DEBUGLOG(rdma,
1320 : "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
1321 : port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
1322 0 : max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
1323 0 : max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
1324 :
1325 : /* Next check the remote NIC's hardware limitations */
1326 0 : SPDK_DEBUGLOG(rdma,
1327 : "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
1328 : rdma_param->initiator_depth, rdma_param->responder_resources);
1329 : /* from man3 rdma_get_cm_event
1330 : * responder_resources - Specifies the number of responder resources that is requested by the recipient.
1331 : * The responder_resources field must match the initiator depth specified by the remote node when running
1332 : * the rdma_connect and rdma_accept functions. */
1333 0 : if (rdma_param->responder_resources != 0) {
1334 0 : if (private_data->qid) {
1335 0 : SPDK_DEBUGLOG(rdma, "Host (Initiator) is not allowed to use RDMA operations,"
1336 : " responder_resources must be 0 but set to %u\n",
1337 : rdma_param->responder_resources);
1338 : } else {
1339 0 : SPDK_WARNLOG("Host (Initiator) is not allowed to use RDMA operations,"
1340 : " responder_resources must be 0 but set to %u\n",
1341 : rdma_param->responder_resources);
1342 : }
1343 : }
1344 : /* from man3 rdma_get_cm_event
1345 : * initiator_depth - Specifies the maximum number of outstanding RDMA read operations that the recipient holds.
1346 : * The initiator_depth field must match the responder resources specified by the remote node when running
1347 : * the rdma_connect and rdma_accept functions. */
1348 0 : if (rdma_param->initiator_depth == 0) {
1349 0 : SPDK_ERRLOG("Host (Initiator) doesn't support RDMA_READ or atomic operations\n");
1350 0 : nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_IRD);
1351 0 : return -1;
1352 : }
1353 0 : max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
1354 :
1355 0 : SPDK_DEBUGLOG(rdma, "Host Receive Queue Size: %d\n", private_data->hrqsize);
1356 0 : SPDK_DEBUGLOG(rdma, "Host Send Queue Size: %d\n", private_data->hsqsize);
1357 0 : max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
1358 0 : max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
1359 :
1360 0 : SPDK_DEBUGLOG(rdma, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
1361 : max_queue_depth, max_read_depth);
1362 :
1363 0 : rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
1364 0 : if (rqpair == NULL) {
1365 0 : SPDK_ERRLOG("Could not allocate new connection.\n");
1366 0 : nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
1367 0 : return -1;
1368 : }
1369 :
1370 0 : rqpair->device = port->device;
1371 0 : rqpair->max_queue_depth = max_queue_depth;
1372 0 : rqpair->max_read_depth = max_read_depth;
1373 0 : rqpair->cm_id = event->id;
1374 0 : rqpair->listen_id = event->listen_id;
1375 0 : rqpair->qpair.transport = transport;
1376 0 : STAILQ_INIT(&rqpair->ibv_events);
1377 : /* use qid from the private data to determine the qpair type
1378 : qid will be set to the appropriate value when the controller is created */
1379 0 : rqpair->qpair.qid = private_data->qid;
1380 :
1381 0 : event->id->context = &rqpair->qpair;
1382 :
1383 0 : spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair);
1384 :
1385 0 : return 0;
1386 : }
1387 :
1388 : static inline void
1389 28 : nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next,
1390 : enum spdk_nvme_data_transfer xfer)
1391 : {
1392 28 : if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1393 24 : wr->opcode = IBV_WR_RDMA_WRITE;
1394 24 : wr->send_flags = 0;
1395 24 : wr->next = next;
1396 4 : } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
1397 4 : wr->opcode = IBV_WR_RDMA_READ;
1398 4 : wr->send_flags = IBV_SEND_SIGNALED;
1399 4 : wr->next = NULL;
1400 : } else {
1401 0 : assert(0);
1402 : }
1403 28 : }
1404 :
1405 : static int
1406 6 : nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
1407 : struct spdk_nvmf_rdma_request *rdma_req,
1408 : uint32_t num_sgl_descriptors)
1409 : {
1410 6 : struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
1411 : struct spdk_nvmf_rdma_request_data *current_data_wr;
1412 : uint32_t i;
1413 :
1414 6 : if (spdk_unlikely(num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES)) {
1415 0 : SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n",
1416 : num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES);
1417 0 : return -EINVAL;
1418 : }
1419 :
1420 6 : if (spdk_unlikely(spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests,
1421 : num_sgl_descriptors))) {
1422 0 : return -ENOMEM;
1423 : }
1424 :
1425 6 : current_data_wr = &rdma_req->data;
1426 :
1427 12 : for (i = 0; i < num_sgl_descriptors; i++) {
1428 6 : nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer);
1429 6 : current_data_wr->wr.next = &work_requests[i]->wr;
1430 6 : current_data_wr = work_requests[i];
1431 6 : current_data_wr->wr.sg_list = current_data_wr->sgl;
1432 6 : current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id;
1433 : }
1434 :
1435 6 : nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1436 :
1437 6 : return 0;
1438 : }
1439 :
1440 : static inline void
1441 16 : nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req)
1442 : {
1443 16 : struct ibv_send_wr *wr = &rdma_req->data.wr;
1444 16 : struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1445 :
1446 16 : wr->wr.rdma.rkey = sgl->keyed.key;
1447 16 : wr->wr.rdma.remote_addr = sgl->address;
1448 16 : nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer);
1449 16 : }
1450 :
1451 : static inline void
1452 1 : nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs)
1453 : {
1454 1 : struct ibv_send_wr *wr = &rdma_req->data.wr;
1455 1 : struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1;
1456 : uint32_t i;
1457 : int j;
1458 1 : uint64_t remote_addr_offset = 0;
1459 :
1460 3 : for (i = 0; i < num_wrs; ++i) {
1461 2 : wr->wr.rdma.rkey = sgl->keyed.key;
1462 2 : wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset;
1463 19 : for (j = 0; j < wr->num_sge; ++j) {
1464 17 : remote_addr_offset += wr->sg_list[j].length;
1465 : }
1466 2 : wr = wr->next;
1467 : }
1468 1 : }
1469 :
1470 : static int
1471 15 : nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_device *device,
1472 : struct spdk_nvmf_rdma_request *rdma_req,
1473 : struct ibv_send_wr *wr,
1474 : uint32_t total_length)
1475 : {
1476 15 : struct spdk_rdma_memory_translation mem_translation;
1477 : struct ibv_sge *sg_ele;
1478 : struct iovec *iov;
1479 : uint32_t lkey, remaining;
1480 : int rc;
1481 :
1482 15 : wr->num_sge = 0;
1483 :
1484 74 : while (total_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
1485 59 : iov = &rdma_req->req.iov[rdma_req->iovpos];
1486 59 : rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1487 59 : if (spdk_unlikely(rc)) {
1488 0 : return rc;
1489 : }
1490 :
1491 59 : lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1492 59 : sg_ele = &wr->sg_list[wr->num_sge];
1493 59 : remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1494 :
1495 59 : sg_ele->lkey = lkey;
1496 59 : sg_ele->addr = (uintptr_t)iov->iov_base + rdma_req->offset;
1497 59 : sg_ele->length = remaining;
1498 59 : SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele, sg_ele->addr,
1499 : sg_ele->length);
1500 59 : rdma_req->offset += sg_ele->length;
1501 59 : total_length -= sg_ele->length;
1502 59 : wr->num_sge++;
1503 :
1504 59 : if (rdma_req->offset == iov->iov_len) {
1505 57 : rdma_req->offset = 0;
1506 57 : rdma_req->iovpos++;
1507 : }
1508 : }
1509 :
1510 15 : if (spdk_unlikely(total_length)) {
1511 0 : SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1512 0 : return -EINVAL;
1513 : }
1514 :
1515 15 : return 0;
1516 : }
1517 :
1518 : static int
1519 10 : nvmf_rdma_fill_wr_sgl_with_dif(struct spdk_nvmf_rdma_device *device,
1520 : struct spdk_nvmf_rdma_request *rdma_req,
1521 : struct ibv_send_wr *wr,
1522 : uint32_t total_length,
1523 : uint32_t num_extra_wrs)
1524 : {
1525 10 : struct spdk_rdma_memory_translation mem_translation;
1526 10 : struct spdk_dif_ctx *dif_ctx = &rdma_req->req.dif.dif_ctx;
1527 : struct ibv_sge *sg_ele;
1528 : struct iovec *iov;
1529 : struct iovec *rdma_iov;
1530 : uint32_t lkey, remaining;
1531 : uint32_t remaining_data_block, data_block_size, md_size;
1532 : uint32_t sge_len;
1533 : int rc;
1534 :
1535 10 : data_block_size = dif_ctx->block_size - dif_ctx->md_size;
1536 :
1537 10 : if (spdk_likely(!rdma_req->req.stripped_data)) {
1538 5 : rdma_iov = rdma_req->req.iov;
1539 5 : remaining_data_block = data_block_size;
1540 5 : md_size = dif_ctx->md_size;
1541 : } else {
1542 5 : rdma_iov = rdma_req->req.stripped_data->iov;
1543 5 : total_length = total_length / dif_ctx->block_size * data_block_size;
1544 5 : remaining_data_block = total_length;
1545 5 : md_size = 0;
1546 : }
1547 :
1548 10 : wr->num_sge = 0;
1549 :
1550 25 : while (total_length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) {
1551 15 : iov = rdma_iov + rdma_req->iovpos;
1552 15 : rc = spdk_rdma_get_translation(device->map, iov->iov_base, iov->iov_len, &mem_translation);
1553 15 : if (spdk_unlikely(rc)) {
1554 0 : return rc;
1555 : }
1556 :
1557 15 : lkey = spdk_rdma_memory_translation_get_lkey(&mem_translation);
1558 15 : sg_ele = &wr->sg_list[wr->num_sge];
1559 15 : remaining = spdk_min((uint32_t)iov->iov_len - rdma_req->offset, total_length);
1560 :
1561 53 : while (remaining) {
1562 38 : if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) {
1563 1 : if (num_extra_wrs > 0 && wr->next) {
1564 1 : wr = wr->next;
1565 1 : wr->num_sge = 0;
1566 1 : sg_ele = &wr->sg_list[wr->num_sge];
1567 1 : num_extra_wrs--;
1568 : } else {
1569 : break;
1570 : }
1571 : }
1572 38 : sg_ele->lkey = lkey;
1573 38 : sg_ele->addr = (uintptr_t)((char *)iov->iov_base + rdma_req->offset);
1574 38 : sge_len = spdk_min(remaining, remaining_data_block);
1575 38 : sg_ele->length = sge_len;
1576 38 : SPDK_DEBUGLOG(rdma, "sge[%d] %p addr 0x%"PRIx64", len %u\n", wr->num_sge, sg_ele,
1577 : sg_ele->addr, sg_ele->length);
1578 38 : remaining -= sge_len;
1579 38 : remaining_data_block -= sge_len;
1580 38 : rdma_req->offset += sge_len;
1581 38 : total_length -= sge_len;
1582 :
1583 38 : sg_ele++;
1584 38 : wr->num_sge++;
1585 :
1586 38 : if (remaining_data_block == 0) {
1587 : /* skip metadata */
1588 34 : rdma_req->offset += md_size;
1589 34 : total_length -= md_size;
1590 : /* Metadata that do not fit this IO buffer will be included in the next IO buffer */
1591 34 : remaining -= spdk_min(remaining, md_size);
1592 34 : remaining_data_block = data_block_size;
1593 : }
1594 :
1595 38 : if (remaining == 0) {
1596 : /* By subtracting the size of the last IOV from the offset, we ensure that we skip
1597 : the remaining metadata bits at the beginning of the next buffer */
1598 15 : rdma_req->offset -= spdk_min(iov->iov_len, rdma_req->offset);
1599 15 : rdma_req->iovpos++;
1600 : }
1601 : }
1602 : }
1603 :
1604 10 : if (spdk_unlikely(total_length)) {
1605 0 : SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
1606 0 : return -EINVAL;
1607 : }
1608 :
1609 10 : return 0;
1610 : }
1611 :
1612 : static inline uint32_t
1613 8 : nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size)
1614 : {
1615 : /* estimate the number of SG entries and WRs needed to process the request */
1616 8 : uint32_t num_sge = 0;
1617 : uint32_t i;
1618 8 : uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size);
1619 :
1620 23 : for (i = 0; i < num_buffers && length > 0; i++) {
1621 15 : uint32_t buffer_len = spdk_min(length, io_unit_size);
1622 15 : uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size);
1623 :
1624 15 : if (num_sge_in_block * block_size > buffer_len) {
1625 11 : ++num_sge_in_block;
1626 : }
1627 15 : num_sge += num_sge_in_block;
1628 15 : length -= buffer_len;
1629 : }
1630 8 : return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES);
1631 : }
1632 :
1633 : static int
1634 16 : nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
1635 : struct spdk_nvmf_rdma_device *device,
1636 : struct spdk_nvmf_rdma_request *rdma_req)
1637 : {
1638 : struct spdk_nvmf_rdma_qpair *rqpair;
1639 : struct spdk_nvmf_rdma_poll_group *rgroup;
1640 16 : struct spdk_nvmf_request *req = &rdma_req->req;
1641 16 : struct ibv_send_wr *wr = &rdma_req->data.wr;
1642 : int rc;
1643 16 : uint32_t num_wrs = 1;
1644 : uint32_t length;
1645 :
1646 16 : rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
1647 16 : rgroup = rqpair->poller->group;
1648 :
1649 : /* rdma wr specifics */
1650 16 : nvmf_rdma_setup_request(rdma_req);
1651 :
1652 16 : length = req->length;
1653 16 : if (spdk_unlikely(req->dif_enabled)) {
1654 8 : req->dif.orig_length = length;
1655 8 : length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
1656 8 : req->dif.elba_length = length;
1657 : }
1658 :
1659 16 : rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
1660 : length);
1661 16 : if (spdk_unlikely(rc != 0)) {
1662 1 : return rc;
1663 : }
1664 :
1665 15 : assert(req->iovcnt <= rqpair->max_send_sge);
1666 :
1667 : /* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1668 : * the stripped_buffers are got for DIF stripping. */
1669 15 : if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1670 : && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1671 7 : rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1672 : &rtransport->transport, req->dif.orig_length);
1673 7 : if (rc != 0) {
1674 4 : SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1675 : }
1676 : }
1677 :
1678 15 : rdma_req->iovpos = 0;
1679 :
1680 15 : if (spdk_unlikely(req->dif_enabled)) {
1681 8 : num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size,
1682 : req->dif.dif_ctx.block_size);
1683 8 : if (num_wrs > 1) {
1684 1 : rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1);
1685 1 : if (spdk_unlikely(rc != 0)) {
1686 0 : goto err_exit;
1687 : }
1688 : }
1689 :
1690 8 : rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, wr, length, num_wrs - 1);
1691 8 : if (spdk_unlikely(rc != 0)) {
1692 0 : goto err_exit;
1693 : }
1694 :
1695 8 : if (num_wrs > 1) {
1696 1 : nvmf_rdma_update_remote_addr(rdma_req, num_wrs);
1697 : }
1698 : } else {
1699 7 : rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, wr, length);
1700 7 : if (spdk_unlikely(rc != 0)) {
1701 0 : goto err_exit;
1702 : }
1703 : }
1704 :
1705 : /* set the number of outstanding data WRs for this request. */
1706 15 : rdma_req->num_outstanding_data_wr = num_wrs;
1707 :
1708 15 : return rc;
1709 :
1710 0 : err_exit:
1711 0 : spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1712 0 : nvmf_rdma_request_free_data(rdma_req, rtransport);
1713 0 : req->iovcnt = 0;
1714 0 : return rc;
1715 : }
1716 :
1717 : static int
1718 5 : nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1719 : struct spdk_nvmf_rdma_device *device,
1720 : struct spdk_nvmf_rdma_request *rdma_req)
1721 : {
1722 : struct spdk_nvmf_rdma_qpair *rqpair;
1723 : struct spdk_nvmf_rdma_poll_group *rgroup;
1724 : struct ibv_send_wr *current_wr;
1725 5 : struct spdk_nvmf_request *req = &rdma_req->req;
1726 : struct spdk_nvme_sgl_descriptor *inline_segment, *desc;
1727 : uint32_t num_sgl_descriptors;
1728 5 : uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES], total_length = 0;
1729 : uint32_t i;
1730 : int rc;
1731 :
1732 5 : rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1733 5 : rgroup = rqpair->poller->group;
1734 :
1735 5 : inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
1736 5 : assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
1737 5 : assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
1738 :
1739 5 : num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
1740 5 : assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
1741 :
1742 5 : desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1743 15 : for (i = 0; i < num_sgl_descriptors; i++) {
1744 10 : if (spdk_likely(!req->dif_enabled)) {
1745 8 : lengths[i] = desc->keyed.length;
1746 : } else {
1747 2 : req->dif.orig_length += desc->keyed.length;
1748 2 : lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx);
1749 2 : req->dif.elba_length += lengths[i];
1750 : }
1751 10 : total_length += lengths[i];
1752 10 : desc++;
1753 : }
1754 :
1755 5 : if (spdk_unlikely(total_length > rtransport->transport.opts.max_io_size)) {
1756 0 : SPDK_ERRLOG("Multi SGL length 0x%x exceeds max io size 0x%x\n",
1757 : total_length, rtransport->transport.opts.max_io_size);
1758 0 : req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1759 0 : return -EINVAL;
1760 : }
1761 :
1762 5 : rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1);
1763 5 : if (spdk_unlikely(rc != 0)) {
1764 0 : return -ENOMEM;
1765 : }
1766 :
1767 5 : rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, total_length);
1768 5 : if (spdk_unlikely(rc != 0)) {
1769 0 : nvmf_rdma_request_free_data(rdma_req, rtransport);
1770 0 : return rc;
1771 : }
1772 :
1773 : /* When dif_insert_or_strip is true and the I/O data length is greater than one block,
1774 : * the stripped_buffers are got for DIF stripping. */
1775 5 : if (spdk_unlikely(req->dif_enabled && (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST)
1776 : && (req->dif.elba_length > req->dif.dif_ctx.block_size))) {
1777 1 : rc = nvmf_request_get_stripped_buffers(req, &rgroup->group,
1778 : &rtransport->transport, req->dif.orig_length);
1779 1 : if (spdk_unlikely(rc != 0)) {
1780 0 : SPDK_INFOLOG(rdma, "Get stripped buffers fail %d, fallback to req.iov.\n", rc);
1781 : }
1782 : }
1783 :
1784 : /* The first WR must always be the embedded data WR. This is how we unwind them later. */
1785 5 : current_wr = &rdma_req->data.wr;
1786 5 : assert(current_wr != NULL);
1787 :
1788 5 : req->length = 0;
1789 5 : rdma_req->iovpos = 0;
1790 5 : desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
1791 15 : for (i = 0; i < num_sgl_descriptors; i++) {
1792 : /* The descriptors must be keyed data block descriptors with an address, not an offset. */
1793 10 : if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
1794 : desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
1795 0 : rc = -EINVAL;
1796 0 : goto err_exit;
1797 : }
1798 :
1799 10 : if (spdk_likely(!req->dif_enabled)) {
1800 8 : rc = nvmf_rdma_fill_wr_sgl(device, rdma_req, current_wr, lengths[i]);
1801 : } else {
1802 2 : rc = nvmf_rdma_fill_wr_sgl_with_dif(device, rdma_req, current_wr,
1803 : lengths[i], 0);
1804 : }
1805 10 : if (spdk_unlikely(rc != 0)) {
1806 0 : rc = -ENOMEM;
1807 0 : goto err_exit;
1808 : }
1809 :
1810 10 : req->length += desc->keyed.length;
1811 10 : current_wr->wr.rdma.rkey = desc->keyed.key;
1812 10 : current_wr->wr.rdma.remote_addr = desc->address;
1813 10 : current_wr = current_wr->next;
1814 10 : desc++;
1815 : }
1816 :
1817 : #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1818 : /* Go back to the last descriptor in the list. */
1819 5 : desc--;
1820 5 : if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1821 0 : if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1822 0 : rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1823 0 : rdma_req->rsp.wr.imm_data = desc->keyed.key;
1824 : }
1825 : }
1826 : #endif
1827 :
1828 5 : rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
1829 :
1830 5 : return 0;
1831 :
1832 0 : err_exit:
1833 0 : spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
1834 0 : nvmf_rdma_request_free_data(rdma_req, rtransport);
1835 0 : return rc;
1836 : }
1837 :
1838 : static int
1839 25 : nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
1840 : struct spdk_nvmf_rdma_device *device,
1841 : struct spdk_nvmf_rdma_request *rdma_req)
1842 : {
1843 25 : struct spdk_nvmf_request *req = &rdma_req->req;
1844 : struct spdk_nvme_cpl *rsp;
1845 : struct spdk_nvme_sgl_descriptor *sgl;
1846 : int rc;
1847 : uint32_t length;
1848 :
1849 25 : rsp = &req->rsp->nvme_cpl;
1850 25 : sgl = &req->cmd->nvme_cmd.dptr.sgl1;
1851 :
1852 25 : if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
1853 17 : (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
1854 0 : sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
1855 :
1856 17 : length = sgl->keyed.length;
1857 17 : if (spdk_unlikely(length > rtransport->transport.opts.max_io_size)) {
1858 1 : SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
1859 : length, rtransport->transport.opts.max_io_size);
1860 1 : rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1861 1 : return -1;
1862 : }
1863 : #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
1864 16 : if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
1865 0 : if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
1866 0 : rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
1867 0 : rdma_req->rsp.wr.imm_data = sgl->keyed.key;
1868 : }
1869 : }
1870 : #endif
1871 :
1872 : /* fill request length and populate iovs */
1873 16 : req->length = length;
1874 :
1875 16 : rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req);
1876 16 : if (spdk_unlikely(rc < 0)) {
1877 1 : if (rc == -EINVAL) {
1878 0 : SPDK_ERRLOG("SGL length exceeds the max I/O size\n");
1879 0 : rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1880 0 : return -1;
1881 : }
1882 : /* No available buffers. Queue this request up. */
1883 1 : SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1884 1 : return 0;
1885 : }
1886 :
1887 15 : SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1888 : req->iovcnt);
1889 :
1890 15 : return 0;
1891 8 : } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
1892 3 : sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1893 3 : uint64_t offset = sgl->address;
1894 3 : uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
1895 :
1896 3 : SPDK_DEBUGLOG(nvmf, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
1897 : offset, sgl->unkeyed.length);
1898 :
1899 3 : if (spdk_unlikely(offset > max_len)) {
1900 0 : SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
1901 : offset, max_len);
1902 0 : rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
1903 0 : return -1;
1904 : }
1905 3 : max_len -= (uint32_t)offset;
1906 :
1907 3 : if (spdk_unlikely(sgl->unkeyed.length > max_len)) {
1908 2 : SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
1909 : sgl->unkeyed.length, max_len);
1910 2 : rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1911 2 : return -1;
1912 : }
1913 :
1914 1 : rdma_req->num_outstanding_data_wr = 0;
1915 1 : req->data_from_pool = false;
1916 1 : req->length = sgl->unkeyed.length;
1917 :
1918 1 : req->iov[0].iov_base = rdma_req->recv->buf + offset;
1919 1 : req->iov[0].iov_len = req->length;
1920 1 : req->iovcnt = 1;
1921 :
1922 1 : return 0;
1923 5 : } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
1924 5 : sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
1925 :
1926 5 : rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
1927 5 : if (spdk_unlikely(rc == -ENOMEM)) {
1928 0 : SPDK_DEBUGLOG(rdma, "No available large data buffers. Queueing request %p\n", rdma_req);
1929 0 : return 0;
1930 5 : } else if (spdk_unlikely(rc == -EINVAL)) {
1931 0 : SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
1932 0 : rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
1933 0 : return -1;
1934 : }
1935 :
1936 5 : SPDK_DEBUGLOG(rdma, "Request %p took %d buffer/s from central pool\n", rdma_req,
1937 : req->iovcnt);
1938 :
1939 5 : return 0;
1940 : }
1941 :
1942 0 : SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n",
1943 : sgl->generic.type, sgl->generic.subtype);
1944 0 : rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
1945 0 : return -1;
1946 : }
1947 :
1948 : static void
1949 6 : _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
1950 : struct spdk_nvmf_rdma_transport *rtransport)
1951 : {
1952 : struct spdk_nvmf_rdma_qpair *rqpair;
1953 : struct spdk_nvmf_rdma_poll_group *rgroup;
1954 :
1955 6 : rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
1956 6 : if (rdma_req->req.data_from_pool) {
1957 5 : rgroup = rqpair->poller->group;
1958 :
1959 5 : spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
1960 : }
1961 6 : if (rdma_req->req.stripped_data) {
1962 0 : nvmf_request_free_stripped_buffers(&rdma_req->req,
1963 0 : &rqpair->poller->group->group,
1964 : &rtransport->transport);
1965 : }
1966 6 : nvmf_rdma_request_free_data(rdma_req, rtransport);
1967 6 : rdma_req->req.length = 0;
1968 6 : rdma_req->req.iovcnt = 0;
1969 6 : rdma_req->offset = 0;
1970 6 : rdma_req->req.dif_enabled = false;
1971 6 : rdma_req->fused_failed = false;
1972 6 : rdma_req->transfer_wr = NULL;
1973 6 : if (rdma_req->fused_pair) {
1974 : /* This req was part of a valid fused pair, but failed before it got to
1975 : * READ_TO_EXECUTE state. This means we need to fail the other request
1976 : * in the pair, because it is no longer part of a valid pair. If the pair
1977 : * already reached READY_TO_EXECUTE state, we need to kick it.
1978 : */
1979 0 : rdma_req->fused_pair->fused_failed = true;
1980 0 : if (rdma_req->fused_pair->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
1981 0 : nvmf_rdma_request_process(rtransport, rdma_req->fused_pair);
1982 : }
1983 0 : rdma_req->fused_pair = NULL;
1984 : }
1985 6 : memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
1986 6 : rqpair->qd--;
1987 :
1988 6 : STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
1989 6 : rqpair->qpair.queue_depth--;
1990 6 : rdma_req->state = RDMA_REQUEST_STATE_FREE;
1991 6 : }
1992 :
1993 : static void
1994 6 : nvmf_rdma_check_fused_ordering(struct spdk_nvmf_rdma_transport *rtransport,
1995 : struct spdk_nvmf_rdma_qpair *rqpair,
1996 : struct spdk_nvmf_rdma_request *rdma_req)
1997 : {
1998 : enum spdk_nvme_cmd_fuse last, next;
1999 :
2000 6 : last = rqpair->fused_first ? rqpair->fused_first->req.cmd->nvme_cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2001 6 : next = rdma_req->req.cmd->nvme_cmd.fuse;
2002 :
2003 6 : assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2004 :
2005 6 : if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2006 6 : return;
2007 : }
2008 :
2009 0 : if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2010 0 : if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2011 : /* This is a valid pair of fused commands. Point them at each other
2012 : * so they can be submitted consecutively once ready to be executed.
2013 : */
2014 0 : rqpair->fused_first->fused_pair = rdma_req;
2015 0 : rdma_req->fused_pair = rqpair->fused_first;
2016 0 : rqpair->fused_first = NULL;
2017 0 : return;
2018 : } else {
2019 : /* Mark the last req as failed since it wasn't followed by a SECOND. */
2020 0 : rqpair->fused_first->fused_failed = true;
2021 :
2022 : /* If the last req is in READY_TO_EXECUTE state, then call
2023 : * nvmf_rdma_request_process(), otherwise nothing else will kick it.
2024 : */
2025 0 : if (rqpair->fused_first->state == RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2026 0 : nvmf_rdma_request_process(rtransport, rqpair->fused_first);
2027 : }
2028 :
2029 0 : rqpair->fused_first = NULL;
2030 : }
2031 : }
2032 :
2033 0 : if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2034 : /* Set rqpair->fused_first here so that we know to check that the next request
2035 : * is a SECOND (and to fail this one if it isn't).
2036 : */
2037 0 : rqpair->fused_first = rdma_req;
2038 0 : } else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2039 : /* Mark this req failed since it ia SECOND and the last one was not a FIRST. */
2040 0 : rdma_req->fused_failed = true;
2041 : }
2042 : }
2043 :
2044 : bool
2045 23 : nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
2046 : struct spdk_nvmf_rdma_request *rdma_req)
2047 : {
2048 : struct spdk_nvmf_rdma_qpair *rqpair;
2049 : struct spdk_nvmf_rdma_device *device;
2050 : struct spdk_nvmf_rdma_poll_group *rgroup;
2051 23 : struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2052 : int rc;
2053 : struct spdk_nvmf_rdma_recv *rdma_recv;
2054 : enum spdk_nvmf_rdma_request_state prev_state;
2055 23 : bool progress = false;
2056 23 : int data_posted;
2057 : uint32_t num_blocks, num_rdma_reads_available, qdepth;
2058 :
2059 23 : rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
2060 23 : device = rqpair->device;
2061 23 : rgroup = rqpair->poller->group;
2062 :
2063 23 : assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
2064 :
2065 : /* If the queue pair is in an error state, force the request to the completed state
2066 : * to release resources. */
2067 23 : if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
2068 0 : switch (rdma_req->state) {
2069 0 : case RDMA_REQUEST_STATE_NEED_BUFFER:
2070 0 : STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
2071 0 : break;
2072 0 : case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2073 0 : STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2074 0 : break;
2075 0 : case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2076 0 : STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2077 0 : break;
2078 0 : case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2079 0 : STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2080 0 : break;
2081 0 : default:
2082 0 : break;
2083 : }
2084 0 : rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2085 : }
2086 :
2087 : /* The loop here is to allow for several back-to-back state changes. */
2088 : do {
2089 66 : prev_state = rdma_req->state;
2090 :
2091 66 : SPDK_DEBUGLOG(rdma, "Request %p entering state %d\n", rdma_req, prev_state);
2092 :
2093 66 : switch (rdma_req->state) {
2094 6 : case RDMA_REQUEST_STATE_FREE:
2095 : /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
2096 : * to escape this state. */
2097 6 : break;
2098 6 : case RDMA_REQUEST_STATE_NEW:
2099 6 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
2100 : (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth);
2101 6 : rdma_recv = rdma_req->recv;
2102 :
2103 : /* The first element of the SGL is the NVMe command */
2104 6 : rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
2105 6 : memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
2106 6 : rdma_req->transfer_wr = &rdma_req->data.wr;
2107 :
2108 6 : if (spdk_unlikely(rqpair->ibv_in_error_state || !spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
2109 0 : rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2110 0 : break;
2111 : }
2112 :
2113 6 : if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) {
2114 0 : rdma_req->req.dif_enabled = true;
2115 : }
2116 :
2117 6 : nvmf_rdma_check_fused_ordering(rtransport, rqpair, rdma_req);
2118 :
2119 : #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2120 6 : rdma_req->rsp.wr.opcode = IBV_WR_SEND;
2121 6 : rdma_req->rsp.wr.imm_data = 0;
2122 : #endif
2123 :
2124 : /* The next state transition depends on the data transfer needs of this request. */
2125 6 : rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req);
2126 :
2127 6 : if (spdk_unlikely(rdma_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2128 1 : rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2129 1 : rsp->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
2130 1 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2131 1 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2132 1 : SPDK_DEBUGLOG(rdma, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", rdma_req);
2133 1 : break;
2134 : }
2135 :
2136 : /* If no data to transfer, ready to execute. */
2137 5 : if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
2138 0 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2139 0 : break;
2140 : }
2141 :
2142 5 : rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
2143 5 : STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
2144 5 : break;
2145 5 : case RDMA_REQUEST_STATE_NEED_BUFFER:
2146 5 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
2147 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2148 :
2149 5 : assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
2150 :
2151 5 : if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
2152 : /* This request needs to wait in line to obtain a buffer */
2153 0 : break;
2154 : }
2155 :
2156 : /* Try to get a data buffer */
2157 5 : rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
2158 5 : if (spdk_unlikely(rc < 0)) {
2159 0 : STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2160 0 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2161 0 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2162 0 : break;
2163 : }
2164 :
2165 5 : if (rdma_req->req.iovcnt == 0) {
2166 : /* No buffers available. */
2167 0 : rgroup->stat.pending_data_buffer++;
2168 0 : break;
2169 : }
2170 :
2171 5 : STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
2172 :
2173 : /* If data is transferring from host to controller and the data didn't
2174 : * arrive using in capsule data, we need to do a transfer from the host.
2175 : */
2176 5 : if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
2177 : rdma_req->req.data_from_pool) {
2178 4 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
2179 4 : rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
2180 4 : break;
2181 : }
2182 :
2183 1 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
2184 1 : break;
2185 4 : case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
2186 4 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
2187 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2188 :
2189 4 : if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
2190 : /* This request needs to wait in line to perform RDMA */
2191 0 : break;
2192 : }
2193 4 : assert(rqpair->max_send_depth >= rqpair->current_send_depth);
2194 4 : qdepth = rqpair->max_send_depth - rqpair->current_send_depth;
2195 4 : assert(rqpair->max_read_depth >= rqpair->current_read_depth);
2196 4 : num_rdma_reads_available = rqpair->max_read_depth - rqpair->current_read_depth;
2197 4 : if (rdma_req->num_outstanding_data_wr > qdepth ||
2198 4 : rdma_req->num_outstanding_data_wr > num_rdma_reads_available) {
2199 0 : if (num_rdma_reads_available && qdepth) {
2200 : /* Send as much as we can */
2201 0 : request_prepare_transfer_in_part(&rdma_req->req, spdk_min(num_rdma_reads_available, qdepth));
2202 : } else {
2203 : /* We can only have so many WRs outstanding. we have to wait until some finish. */
2204 0 : rqpair->poller->stat.pending_rdma_read++;
2205 0 : break;
2206 : }
2207 : }
2208 :
2209 : /* We have already verified that this request is the head of the queue. */
2210 4 : STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
2211 :
2212 4 : rc = request_transfer_in(&rdma_req->req);
2213 4 : if (spdk_likely(rc == 0)) {
2214 4 : rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
2215 : } else {
2216 0 : rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2217 0 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2218 0 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2219 : }
2220 4 : break;
2221 4 : case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2222 4 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
2223 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2224 : /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
2225 : * to escape this state. */
2226 4 : break;
2227 5 : case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
2228 5 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
2229 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2230 :
2231 5 : if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2232 0 : if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2233 : /* generate DIF for write operation */
2234 0 : num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2235 0 : assert(num_blocks > 0);
2236 :
2237 0 : rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
2238 0 : num_blocks, &rdma_req->req.dif.dif_ctx);
2239 0 : if (rc != 0) {
2240 0 : SPDK_ERRLOG("DIF generation failed\n");
2241 0 : rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2242 0 : spdk_nvmf_qpair_disconnect(&rqpair->qpair);
2243 0 : break;
2244 : }
2245 : }
2246 :
2247 0 : assert(rdma_req->req.dif.elba_length >= rdma_req->req.length);
2248 : /* set extended length before IO operation */
2249 0 : rdma_req->req.length = rdma_req->req.dif.elba_length;
2250 : }
2251 :
2252 5 : if (rdma_req->req.cmd->nvme_cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2253 0 : if (rdma_req->fused_failed) {
2254 : /* This request failed FUSED semantics. Fail it immediately, without
2255 : * even sending it to the target layer.
2256 : */
2257 0 : rsp->status.sct = SPDK_NVME_SCT_GENERIC;
2258 0 : rsp->status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2259 0 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2260 0 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2261 0 : break;
2262 : }
2263 :
2264 0 : if (rdma_req->fused_pair == NULL ||
2265 0 : rdma_req->fused_pair->state != RDMA_REQUEST_STATE_READY_TO_EXECUTE) {
2266 : /* This request is ready to execute, but either we don't know yet if it's
2267 : * valid - i.e. this is a FIRST but we haven't received the next
2268 : * request yet or the other request of this fused pair isn't ready to
2269 : * execute. So break here and this request will get processed later either
2270 : * when the other request is ready or we find that this request isn't valid.
2271 : */
2272 : break;
2273 : }
2274 : }
2275 :
2276 : /* If we get to this point, and this request is a fused command, we know that
2277 : * it is part of valid sequence (FIRST followed by a SECOND) and that both
2278 : * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this
2279 : * request, and the other request of the fused pair, in the correct order.
2280 : * Also clear the ->fused_pair pointers on both requests, since after this point
2281 : * we no longer need to maintain the relationship between these two requests.
2282 : */
2283 5 : if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2284 0 : assert(rdma_req->fused_pair != NULL);
2285 0 : assert(rdma_req->fused_pair->fused_pair != NULL);
2286 0 : rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2287 0 : spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2288 0 : rdma_req->fused_pair->fused_pair = NULL;
2289 0 : rdma_req->fused_pair = NULL;
2290 : }
2291 5 : rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
2292 5 : spdk_nvmf_request_exec(&rdma_req->req);
2293 5 : if (rdma_req->req.cmd->nvme_cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2294 0 : assert(rdma_req->fused_pair != NULL);
2295 0 : assert(rdma_req->fused_pair->fused_pair != NULL);
2296 0 : rdma_req->fused_pair->state = RDMA_REQUEST_STATE_EXECUTING;
2297 0 : spdk_nvmf_request_exec(&rdma_req->fused_pair->req);
2298 0 : rdma_req->fused_pair->fused_pair = NULL;
2299 0 : rdma_req->fused_pair = NULL;
2300 : }
2301 5 : break;
2302 5 : case RDMA_REQUEST_STATE_EXECUTING:
2303 5 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
2304 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2305 : /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
2306 : * to escape this state. */
2307 5 : break;
2308 5 : case RDMA_REQUEST_STATE_EXECUTED:
2309 5 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
2310 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2311 5 : if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
2312 5 : rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2313 1 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
2314 1 : rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
2315 : } else {
2316 4 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2317 4 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2318 : }
2319 5 : if (spdk_unlikely(rdma_req->req.dif_enabled)) {
2320 : /* restore the original length */
2321 0 : rdma_req->req.length = rdma_req->req.dif.orig_length;
2322 :
2323 0 : if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2324 0 : struct spdk_dif_error error_blk;
2325 :
2326 0 : num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size);
2327 0 : if (!rdma_req->req.stripped_data) {
2328 0 : rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2329 0 : &rdma_req->req.dif.dif_ctx, &error_blk);
2330 : } else {
2331 0 : rc = spdk_dif_verify_copy(rdma_req->req.stripped_data->iov,
2332 0 : rdma_req->req.stripped_data->iovcnt,
2333 0 : rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks,
2334 0 : &rdma_req->req.dif.dif_ctx, &error_blk);
2335 : }
2336 0 : if (rc) {
2337 0 : struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
2338 :
2339 0 : SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
2340 : error_blk.err_offset);
2341 0 : rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2342 0 : rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
2343 0 : STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
2344 0 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req, state_link);
2345 0 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
2346 : }
2347 : }
2348 : }
2349 5 : break;
2350 1 : case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
2351 1 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
2352 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2353 :
2354 1 : if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
2355 : /* This request needs to wait in line to perform RDMA */
2356 0 : break;
2357 : }
2358 1 : if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
2359 1 : rqpair->max_send_depth) {
2360 : /* We can only have so many WRs outstanding. we have to wait until some finish.
2361 : * +1 since each request has an additional wr in the resp. */
2362 0 : rqpair->poller->stat.pending_rdma_write++;
2363 0 : break;
2364 : }
2365 :
2366 : /* We have already verified that this request is the head of the queue. */
2367 1 : STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
2368 :
2369 : /* The data transfer will be kicked off from
2370 : * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2371 : * We verified that data + response fit into send queue, so we can go to the next state directly
2372 : */
2373 1 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2374 1 : break;
2375 7 : case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
2376 7 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING, 0, 0,
2377 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2378 :
2379 7 : if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_send_queue)) {
2380 : /* This request needs to wait in line to send the completion */
2381 0 : break;
2382 : }
2383 :
2384 7 : assert(rqpair->current_send_depth <= rqpair->max_send_depth);
2385 7 : if (rqpair->current_send_depth == rqpair->max_send_depth) {
2386 : /* We can only have so many WRs outstanding. we have to wait until some finish */
2387 2 : rqpair->poller->stat.pending_rdma_send++;
2388 2 : break;
2389 : }
2390 :
2391 : /* We have already verified that this request is the head of the queue. */
2392 5 : STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_send_queue, state_link);
2393 :
2394 : /* The response sending will be kicked off from
2395 : * RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
2396 : */
2397 5 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
2398 5 : break;
2399 6 : case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
2400 6 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
2401 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2402 6 : rc = request_transfer_out(&rdma_req->req, &data_posted);
2403 6 : assert(rc == 0); /* No good way to handle this currently */
2404 6 : if (spdk_unlikely(rc)) {
2405 0 : rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
2406 : } else {
2407 6 : rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
2408 : RDMA_REQUEST_STATE_COMPLETING;
2409 : }
2410 6 : break;
2411 1 : case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2412 1 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
2413 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2414 : /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2415 : * to escape this state. */
2416 1 : break;
2417 5 : case RDMA_REQUEST_STATE_COMPLETING:
2418 5 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
2419 : (uintptr_t)rdma_req, (uintptr_t)rqpair);
2420 : /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
2421 : * to escape this state. */
2422 5 : break;
2423 6 : case RDMA_REQUEST_STATE_COMPLETED:
2424 6 : spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
2425 : (uintptr_t)rdma_req, (uintptr_t)rqpair, rqpair->qpair.queue_depth);
2426 :
2427 6 : rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
2428 6 : _nvmf_rdma_request_free(rdma_req, rtransport);
2429 6 : break;
2430 0 : case RDMA_REQUEST_NUM_STATES:
2431 : default:
2432 0 : assert(0);
2433 : break;
2434 : }
2435 :
2436 66 : if (rdma_req->state != prev_state) {
2437 43 : progress = true;
2438 : }
2439 66 : } while (rdma_req->state != prev_state);
2440 :
2441 23 : return progress;
2442 : }
2443 :
2444 : /* Public API callbacks begin here */
2445 :
2446 : #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
2447 : #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
2448 : #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
2449 : #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
2450 : #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
2451 : #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
2452 : #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
2453 : #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
2454 : #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
2455 : #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
2456 : #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
2457 : #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100
2458 : #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1
2459 : #define SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING false
2460 : #define SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE 4095
2461 :
2462 : static void
2463 1 : nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
2464 : {
2465 1 : opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
2466 1 : opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
2467 1 : opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
2468 1 : opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
2469 1 : opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
2470 1 : opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
2471 1 : opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
2472 1 : opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
2473 1 : opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
2474 1 : opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC;
2475 1 : opts->transport_specific = NULL;
2476 1 : opts->data_wr_pool_size = SPDK_NVMF_RDMA_DEFAULT_DATA_WR_POOL_SIZE;
2477 1 : }
2478 :
2479 : static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2480 : spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg);
2481 :
2482 : static inline bool
2483 0 : nvmf_rdma_is_rxe_device(struct spdk_nvmf_rdma_device *device)
2484 : {
2485 0 : return device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_OLD ||
2486 0 : device->attr.vendor_id == SPDK_RDMA_RXE_VENDOR_ID_NEW;
2487 : }
2488 :
2489 : static int nvmf_rdma_accept(void *ctx);
2490 : static bool nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport);
2491 : static void destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2492 : struct spdk_nvmf_rdma_device *device);
2493 :
2494 : static int
2495 0 : create_ib_device(struct spdk_nvmf_rdma_transport *rtransport, struct ibv_context *context,
2496 : struct spdk_nvmf_rdma_device **new_device)
2497 : {
2498 : struct spdk_nvmf_rdma_device *device;
2499 0 : int flag = 0;
2500 0 : int rc = 0;
2501 :
2502 0 : device = calloc(1, sizeof(*device));
2503 0 : if (!device) {
2504 0 : SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
2505 0 : return -ENOMEM;
2506 : }
2507 0 : device->context = context;
2508 0 : rc = ibv_query_device(device->context, &device->attr);
2509 0 : if (rc < 0) {
2510 0 : SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2511 0 : free(device);
2512 0 : return rc;
2513 : }
2514 :
2515 : #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
2516 0 : if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
2517 0 : SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
2518 0 : SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
2519 : }
2520 :
2521 : /**
2522 : * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
2523 : * The Soft-RoCE RXE driver does not currently support send with invalidate,
2524 : * but incorrectly reports that it does. There are changes making their way
2525 : * through the kernel now that will enable this feature. When they are merged,
2526 : * we can conditionally enable this feature.
2527 : *
2528 : * TODO: enable this for versions of the kernel rxe driver that support it.
2529 : */
2530 0 : if (nvmf_rdma_is_rxe_device(device)) {
2531 0 : device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
2532 : }
2533 : #endif
2534 :
2535 : /* set up device context async ev fd as NON_BLOCKING */
2536 0 : flag = fcntl(device->context->async_fd, F_GETFL);
2537 0 : rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
2538 0 : if (rc < 0) {
2539 0 : SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
2540 0 : free(device);
2541 0 : return rc;
2542 : }
2543 :
2544 0 : TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
2545 0 : SPDK_DEBUGLOG(rdma, "New device %p is added to RDMA trasport\n", device);
2546 :
2547 0 : if (g_nvmf_hooks.get_ibv_pd) {
2548 0 : device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
2549 : } else {
2550 0 : device->pd = ibv_alloc_pd(device->context);
2551 : }
2552 :
2553 0 : if (!device->pd) {
2554 0 : SPDK_ERRLOG("Unable to allocate protection domain.\n");
2555 0 : destroy_ib_device(rtransport, device);
2556 0 : return -ENOMEM;
2557 : }
2558 :
2559 0 : assert(device->map == NULL);
2560 :
2561 0 : device->map = spdk_rdma_create_mem_map(device->pd, &g_nvmf_hooks, SPDK_RDMA_MEMORY_MAP_ROLE_TARGET);
2562 0 : if (!device->map) {
2563 0 : SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
2564 0 : destroy_ib_device(rtransport, device);
2565 0 : return -ENOMEM;
2566 : }
2567 :
2568 0 : assert(device->map != NULL);
2569 0 : assert(device->pd != NULL);
2570 :
2571 0 : if (new_device) {
2572 0 : *new_device = device;
2573 : }
2574 0 : SPDK_NOTICELOG("Create IB device %s(%p/%p) succeed.\n", ibv_get_device_name(context->device),
2575 : device, context);
2576 :
2577 0 : return 0;
2578 : }
2579 :
2580 : static void
2581 0 : free_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2582 : {
2583 0 : if (rtransport->poll_fds) {
2584 0 : free(rtransport->poll_fds);
2585 0 : rtransport->poll_fds = NULL;
2586 : }
2587 0 : rtransport->npoll_fds = 0;
2588 0 : }
2589 :
2590 : static int
2591 0 : generate_poll_fds(struct spdk_nvmf_rdma_transport *rtransport)
2592 : {
2593 : /* Set up poll descriptor array to monitor events from RDMA and IB
2594 : * in a single poll syscall
2595 : */
2596 0 : int device_count = 0;
2597 0 : int i = 0;
2598 : struct spdk_nvmf_rdma_device *device, *tmp;
2599 :
2600 0 : TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2601 0 : device_count++;
2602 : }
2603 :
2604 0 : rtransport->npoll_fds = device_count + 1;
2605 :
2606 0 : rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
2607 0 : if (rtransport->poll_fds == NULL) {
2608 0 : SPDK_ERRLOG("poll_fds allocation failed\n");
2609 0 : return -ENOMEM;
2610 : }
2611 :
2612 0 : rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
2613 0 : rtransport->poll_fds[i++].events = POLLIN;
2614 :
2615 0 : TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
2616 0 : rtransport->poll_fds[i].fd = device->context->async_fd;
2617 0 : rtransport->poll_fds[i++].events = POLLIN;
2618 : }
2619 :
2620 0 : return 0;
2621 : }
2622 :
2623 : static struct spdk_nvmf_transport *
2624 0 : nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
2625 : {
2626 : int rc;
2627 : struct spdk_nvmf_rdma_transport *rtransport;
2628 0 : struct spdk_nvmf_rdma_device *device;
2629 : struct ibv_context **contexts;
2630 : size_t data_wr_pool_size;
2631 : uint32_t i;
2632 : int flag;
2633 : uint32_t sge_count;
2634 : uint32_t min_shared_buffers;
2635 : uint32_t min_in_capsule_data_size;
2636 0 : int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
2637 :
2638 0 : rtransport = calloc(1, sizeof(*rtransport));
2639 0 : if (!rtransport) {
2640 0 : return NULL;
2641 : }
2642 :
2643 0 : TAILQ_INIT(&rtransport->devices);
2644 0 : TAILQ_INIT(&rtransport->ports);
2645 0 : TAILQ_INIT(&rtransport->poll_groups);
2646 0 : TAILQ_INIT(&rtransport->retry_ports);
2647 :
2648 0 : rtransport->transport.ops = &spdk_nvmf_transport_rdma;
2649 0 : rtransport->rdma_opts.num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
2650 0 : rtransport->rdma_opts.max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
2651 0 : rtransport->rdma_opts.no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
2652 0 : rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2653 0 : rtransport->rdma_opts.no_wr_batching = SPDK_NVMF_RDMA_DEFAULT_NO_WR_BATCHING;
2654 0 : if (opts->transport_specific != NULL &&
2655 0 : spdk_json_decode_object_relaxed(opts->transport_specific, rdma_transport_opts_decoder,
2656 : SPDK_COUNTOF(rdma_transport_opts_decoder),
2657 0 : &rtransport->rdma_opts)) {
2658 0 : SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
2659 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2660 0 : return NULL;
2661 : }
2662 :
2663 0 : SPDK_INFOLOG(rdma, "*** RDMA Transport Init ***\n"
2664 : " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n"
2665 : " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
2666 : " in_capsule_data_size=%d, max_aq_depth=%d,\n"
2667 : " num_shared_buffers=%d, num_cqe=%d, max_srq_depth=%d, no_srq=%d,"
2668 : " acceptor_backlog=%d, no_wr_batching=%d abort_timeout_sec=%d\n",
2669 : opts->max_queue_depth,
2670 : opts->max_io_size,
2671 : opts->max_qpairs_per_ctrlr - 1,
2672 : opts->io_unit_size,
2673 : opts->in_capsule_data_size,
2674 : opts->max_aq_depth,
2675 : opts->num_shared_buffers,
2676 : rtransport->rdma_opts.num_cqe,
2677 : rtransport->rdma_opts.max_srq_depth,
2678 : rtransport->rdma_opts.no_srq,
2679 : rtransport->rdma_opts.acceptor_backlog,
2680 : rtransport->rdma_opts.no_wr_batching,
2681 : opts->abort_timeout_sec);
2682 :
2683 : /* I/O unit size cannot be larger than max I/O size */
2684 0 : if (opts->io_unit_size > opts->max_io_size) {
2685 0 : opts->io_unit_size = opts->max_io_size;
2686 : }
2687 :
2688 0 : if (rtransport->rdma_opts.acceptor_backlog <= 0) {
2689 0 : SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n",
2690 : SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG);
2691 0 : rtransport->rdma_opts.acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG;
2692 : }
2693 :
2694 0 : if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
2695 0 : SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
2696 : "the minimum number required to guarantee that forward progress can be made (%d)\n",
2697 : opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
2698 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2699 0 : return NULL;
2700 : }
2701 :
2702 : /* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
2703 0 : if (opts->buf_cache_size < UINT32_MAX) {
2704 0 : min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
2705 0 : if (min_shared_buffers > opts->num_shared_buffers) {
2706 0 : SPDK_ERRLOG("There are not enough buffers to satisfy"
2707 : "per-poll group caches for each thread. (%" PRIu32 ")"
2708 : "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
2709 0 : SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
2710 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2711 0 : return NULL;
2712 : }
2713 : }
2714 :
2715 0 : sge_count = opts->max_io_size / opts->io_unit_size;
2716 0 : if (sge_count > NVMF_DEFAULT_TX_SGE) {
2717 0 : SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
2718 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2719 0 : return NULL;
2720 : }
2721 :
2722 0 : min_in_capsule_data_size = sizeof(struct spdk_nvme_sgl_descriptor) * SPDK_NVMF_MAX_SGL_ENTRIES;
2723 0 : if (opts->in_capsule_data_size < min_in_capsule_data_size) {
2724 0 : SPDK_WARNLOG("In capsule data size is set to %u, this is minimum size required to support msdbd=16\n",
2725 : min_in_capsule_data_size);
2726 0 : opts->in_capsule_data_size = min_in_capsule_data_size;
2727 : }
2728 :
2729 0 : rtransport->event_channel = rdma_create_event_channel();
2730 0 : if (rtransport->event_channel == NULL) {
2731 0 : SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
2732 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2733 0 : return NULL;
2734 : }
2735 :
2736 0 : flag = fcntl(rtransport->event_channel->fd, F_GETFL);
2737 0 : if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2738 0 : SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
2739 : rtransport->event_channel->fd, spdk_strerror(errno));
2740 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2741 0 : return NULL;
2742 : }
2743 :
2744 0 : data_wr_pool_size = opts->data_wr_pool_size;
2745 0 : if (data_wr_pool_size < SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count()) {
2746 0 : data_wr_pool_size = SPDK_NVMF_MAX_SGL_ENTRIES * 2 * spdk_env_get_core_count();
2747 0 : SPDK_NOTICELOG("data_wr_pool_size is changed to %zu to guarantee enough cache for handling "
2748 : "at least one IO in each core\n", data_wr_pool_size);
2749 : }
2750 0 : rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", data_wr_pool_size,
2751 : sizeof(struct spdk_nvmf_rdma_request_data), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
2752 : SPDK_ENV_SOCKET_ID_ANY);
2753 0 : if (!rtransport->data_wr_pool) {
2754 0 : if (spdk_mempool_lookup("spdk_nvmf_rdma_wr_data") != NULL) {
2755 0 : SPDK_ERRLOG("Unable to allocate work request pool for poll group: already exists\n");
2756 0 : SPDK_ERRLOG("Probably running in multiprocess environment, which is "
2757 : "unsupported by the nvmf library\n");
2758 : } else {
2759 0 : SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
2760 : }
2761 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2762 0 : return NULL;
2763 : }
2764 :
2765 0 : contexts = rdma_get_devices(NULL);
2766 0 : if (contexts == NULL) {
2767 0 : SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2768 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2769 0 : return NULL;
2770 : }
2771 :
2772 0 : i = 0;
2773 0 : rc = 0;
2774 0 : while (contexts[i] != NULL) {
2775 0 : rc = create_ib_device(rtransport, contexts[i], &device);
2776 0 : if (rc < 0) {
2777 0 : break;
2778 : }
2779 0 : i++;
2780 0 : max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
2781 0 : device->is_ready = true;
2782 : }
2783 0 : rdma_free_devices(contexts);
2784 :
2785 0 : if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
2786 : /* divide and round up. */
2787 0 : opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
2788 :
2789 : /* round up to the nearest 4k. */
2790 0 : opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
2791 :
2792 0 : opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
2793 0 : SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
2794 : opts->io_unit_size);
2795 : }
2796 :
2797 0 : if (rc < 0) {
2798 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2799 0 : return NULL;
2800 : }
2801 :
2802 0 : rc = generate_poll_fds(rtransport);
2803 0 : if (rc < 0) {
2804 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2805 0 : return NULL;
2806 : }
2807 :
2808 0 : rtransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_rdma_accept, &rtransport->transport,
2809 : opts->acceptor_poll_rate);
2810 0 : if (!rtransport->accept_poller) {
2811 0 : nvmf_rdma_destroy(&rtransport->transport, NULL, NULL);
2812 0 : return NULL;
2813 : }
2814 :
2815 0 : return &rtransport->transport;
2816 : }
2817 :
2818 : static void
2819 0 : destroy_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
2820 : struct spdk_nvmf_rdma_device *device)
2821 : {
2822 0 : TAILQ_REMOVE(&rtransport->devices, device, link);
2823 0 : spdk_rdma_free_mem_map(&device->map);
2824 0 : if (device->pd) {
2825 0 : if (!g_nvmf_hooks.get_ibv_pd) {
2826 0 : ibv_dealloc_pd(device->pd);
2827 : }
2828 : }
2829 0 : SPDK_DEBUGLOG(rdma, "IB device [%p] is destroyed.\n", device);
2830 0 : free(device);
2831 0 : }
2832 :
2833 : static void
2834 0 : nvmf_rdma_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
2835 : {
2836 : struct spdk_nvmf_rdma_transport *rtransport;
2837 0 : assert(w != NULL);
2838 :
2839 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2840 0 : spdk_json_write_named_uint32(w, "max_srq_depth", rtransport->rdma_opts.max_srq_depth);
2841 0 : spdk_json_write_named_bool(w, "no_srq", rtransport->rdma_opts.no_srq);
2842 0 : if (rtransport->rdma_opts.no_srq == true) {
2843 0 : spdk_json_write_named_int32(w, "num_cqe", rtransport->rdma_opts.num_cqe);
2844 : }
2845 0 : spdk_json_write_named_int32(w, "acceptor_backlog", rtransport->rdma_opts.acceptor_backlog);
2846 0 : spdk_json_write_named_bool(w, "no_wr_batching", rtransport->rdma_opts.no_wr_batching);
2847 0 : }
2848 :
2849 : static int
2850 0 : nvmf_rdma_destroy(struct spdk_nvmf_transport *transport,
2851 : spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
2852 : {
2853 : struct spdk_nvmf_rdma_transport *rtransport;
2854 : struct spdk_nvmf_rdma_port *port, *port_tmp;
2855 : struct spdk_nvmf_rdma_device *device, *device_tmp;
2856 :
2857 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2858 :
2859 0 : TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, port_tmp) {
2860 0 : TAILQ_REMOVE(&rtransport->retry_ports, port, link);
2861 0 : free(port);
2862 : }
2863 :
2864 0 : TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
2865 0 : TAILQ_REMOVE(&rtransport->ports, port, link);
2866 0 : rdma_destroy_id(port->id);
2867 0 : free(port);
2868 : }
2869 :
2870 0 : free_poll_fds(rtransport);
2871 :
2872 0 : if (rtransport->event_channel != NULL) {
2873 0 : rdma_destroy_event_channel(rtransport->event_channel);
2874 : }
2875 :
2876 0 : TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
2877 0 : destroy_ib_device(rtransport, device);
2878 : }
2879 :
2880 0 : if (rtransport->data_wr_pool != NULL) {
2881 0 : if (spdk_mempool_count(rtransport->data_wr_pool) != transport->opts.data_wr_pool_size) {
2882 0 : SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
2883 : spdk_mempool_count(rtransport->data_wr_pool),
2884 : transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
2885 : }
2886 : }
2887 :
2888 0 : spdk_mempool_free(rtransport->data_wr_pool);
2889 :
2890 0 : spdk_poller_unregister(&rtransport->accept_poller);
2891 0 : free(rtransport);
2892 :
2893 0 : if (cb_fn) {
2894 0 : cb_fn(cb_arg);
2895 : }
2896 0 : return 0;
2897 : }
2898 :
2899 : static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
2900 : struct spdk_nvme_transport_id *trid,
2901 : bool peer);
2902 :
2903 : static bool nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport);
2904 :
2905 : static int
2906 0 : nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
2907 : struct spdk_nvmf_listen_opts *listen_opts)
2908 : {
2909 : struct spdk_nvmf_rdma_transport *rtransport;
2910 : struct spdk_nvmf_rdma_device *device;
2911 : struct spdk_nvmf_rdma_port *port, *tmp_port;
2912 0 : struct addrinfo *res;
2913 0 : struct addrinfo hints;
2914 : int family;
2915 : int rc;
2916 : long int port_val;
2917 0 : bool is_retry = false;
2918 :
2919 0 : if (!strlen(trid->trsvcid)) {
2920 0 : SPDK_ERRLOG("Service id is required\n");
2921 0 : return -EINVAL;
2922 : }
2923 :
2924 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
2925 0 : assert(rtransport->event_channel != NULL);
2926 :
2927 0 : port = calloc(1, sizeof(*port));
2928 0 : if (!port) {
2929 0 : SPDK_ERRLOG("Port allocation failed\n");
2930 0 : return -ENOMEM;
2931 : }
2932 :
2933 0 : port->trid = trid;
2934 :
2935 0 : switch (trid->adrfam) {
2936 0 : case SPDK_NVMF_ADRFAM_IPV4:
2937 0 : family = AF_INET;
2938 0 : break;
2939 0 : case SPDK_NVMF_ADRFAM_IPV6:
2940 0 : family = AF_INET6;
2941 0 : break;
2942 0 : default:
2943 0 : SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam);
2944 0 : free(port);
2945 0 : return -EINVAL;
2946 : }
2947 :
2948 0 : memset(&hints, 0, sizeof(hints));
2949 0 : hints.ai_family = family;
2950 0 : hints.ai_flags = AI_NUMERICSERV;
2951 0 : hints.ai_socktype = SOCK_STREAM;
2952 0 : hints.ai_protocol = 0;
2953 :
2954 : /* Range check the trsvcid. Fail in 3 cases:
2955 : * < 0: means that spdk_strtol hit an error
2956 : * 0: this results in ephemeral port which we don't want
2957 : * > 65535: port too high
2958 : */
2959 0 : port_val = spdk_strtol(trid->trsvcid, 10);
2960 0 : if (port_val <= 0 || port_val > 65535) {
2961 0 : SPDK_ERRLOG("invalid trsvcid %s\n", trid->trsvcid);
2962 0 : free(port);
2963 0 : return -EINVAL;
2964 : }
2965 :
2966 0 : rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res);
2967 0 : if (rc) {
2968 0 : SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
2969 0 : free(port);
2970 0 : return -(abs(rc));
2971 : }
2972 :
2973 0 : rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
2974 0 : if (rc < 0) {
2975 0 : SPDK_ERRLOG("rdma_create_id() failed\n");
2976 0 : freeaddrinfo(res);
2977 0 : free(port);
2978 0 : return rc;
2979 : }
2980 :
2981 0 : rc = rdma_bind_addr(port->id, res->ai_addr);
2982 0 : freeaddrinfo(res);
2983 :
2984 0 : if (rc < 0) {
2985 0 : TAILQ_FOREACH(tmp_port, &rtransport->retry_ports, link) {
2986 0 : if (spdk_nvme_transport_id_compare(tmp_port->trid, trid) == 0) {
2987 0 : is_retry = true;
2988 0 : break;
2989 : }
2990 : }
2991 0 : if (!is_retry) {
2992 0 : SPDK_ERRLOG("rdma_bind_addr() failed\n");
2993 : }
2994 0 : rdma_destroy_id(port->id);
2995 0 : free(port);
2996 0 : return rc;
2997 : }
2998 :
2999 0 : if (!port->id->verbs) {
3000 0 : SPDK_ERRLOG("ibv_context is null\n");
3001 0 : rdma_destroy_id(port->id);
3002 0 : free(port);
3003 0 : return -1;
3004 : }
3005 :
3006 0 : rc = rdma_listen(port->id, rtransport->rdma_opts.acceptor_backlog);
3007 0 : if (rc < 0) {
3008 0 : SPDK_ERRLOG("rdma_listen() failed\n");
3009 0 : rdma_destroy_id(port->id);
3010 0 : free(port);
3011 0 : return rc;
3012 : }
3013 :
3014 0 : TAILQ_FOREACH(device, &rtransport->devices, link) {
3015 0 : if (device->context == port->id->verbs && device->is_ready) {
3016 0 : port->device = device;
3017 0 : break;
3018 : }
3019 : }
3020 0 : if (!port->device) {
3021 0 : SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
3022 : port->id->verbs);
3023 0 : rdma_destroy_id(port->id);
3024 0 : free(port);
3025 0 : nvmf_rdma_rescan_devices(rtransport);
3026 0 : return -EINVAL;
3027 : }
3028 :
3029 0 : SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n",
3030 : trid->traddr, trid->trsvcid);
3031 :
3032 0 : TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
3033 0 : return 0;
3034 : }
3035 :
3036 : static void
3037 0 : nvmf_rdma_stop_listen_ex(struct spdk_nvmf_transport *transport,
3038 : const struct spdk_nvme_transport_id *trid, bool need_retry)
3039 : {
3040 : struct spdk_nvmf_rdma_transport *rtransport;
3041 : struct spdk_nvmf_rdma_port *port, *tmp;
3042 :
3043 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3044 :
3045 0 : if (!need_retry) {
3046 0 : TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp) {
3047 0 : if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3048 0 : TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3049 0 : free(port);
3050 : }
3051 : }
3052 : }
3053 :
3054 0 : TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
3055 0 : if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) {
3056 0 : SPDK_DEBUGLOG(rdma, "Port %s:%s removed. need retry: %d\n",
3057 : port->trid->traddr, port->trid->trsvcid, need_retry);
3058 0 : TAILQ_REMOVE(&rtransport->ports, port, link);
3059 0 : rdma_destroy_id(port->id);
3060 0 : port->id = NULL;
3061 0 : port->device = NULL;
3062 0 : if (need_retry) {
3063 0 : TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3064 : } else {
3065 0 : free(port);
3066 : }
3067 0 : break;
3068 : }
3069 : }
3070 0 : }
3071 :
3072 : static void
3073 0 : nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
3074 : const struct spdk_nvme_transport_id *trid)
3075 : {
3076 0 : nvmf_rdma_stop_listen_ex(transport, trid, false);
3077 0 : }
3078 :
3079 : static void _nvmf_rdma_register_poller_in_group(void *c);
3080 : static void _nvmf_rdma_remove_poller_in_group(void *c);
3081 :
3082 : static bool
3083 0 : nvmf_rdma_all_pollers_management_done(void *c)
3084 : {
3085 0 : struct poller_manage_ctx *ctx = c;
3086 : int counter;
3087 :
3088 0 : counter = __atomic_sub_fetch(ctx->inflight_op_counter, 1, __ATOMIC_SEQ_CST);
3089 0 : SPDK_DEBUGLOG(rdma, "nvmf_rdma_all_pollers_management_done called. counter: %d, poller: %p\n",
3090 : counter, ctx->rpoller);
3091 :
3092 0 : if (counter == 0) {
3093 0 : free((void *)ctx->inflight_op_counter);
3094 : }
3095 0 : free(ctx);
3096 :
3097 0 : return counter == 0;
3098 : }
3099 :
3100 : static int
3101 0 : nvmf_rdma_manage_poller(struct spdk_nvmf_rdma_transport *rtransport,
3102 : struct spdk_nvmf_rdma_device *device, bool *has_inflight, bool is_add)
3103 : {
3104 : struct spdk_nvmf_rdma_poll_group *rgroup;
3105 : struct spdk_nvmf_rdma_poller *rpoller;
3106 : struct spdk_nvmf_poll_group *poll_group;
3107 : struct poller_manage_ctx *ctx;
3108 : bool found;
3109 : int *inflight_counter;
3110 : spdk_msg_fn do_fn;
3111 :
3112 0 : *has_inflight = false;
3113 0 : do_fn = is_add ? _nvmf_rdma_register_poller_in_group : _nvmf_rdma_remove_poller_in_group;
3114 0 : inflight_counter = calloc(1, sizeof(int));
3115 0 : if (!inflight_counter) {
3116 0 : SPDK_ERRLOG("Failed to allocate inflight counter when removing pollers\n");
3117 0 : return -ENOMEM;
3118 : }
3119 :
3120 0 : TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3121 0 : (*inflight_counter)++;
3122 : }
3123 :
3124 0 : TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3125 0 : found = false;
3126 0 : TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3127 0 : if (rpoller->device == device) {
3128 0 : found = true;
3129 0 : break;
3130 : }
3131 : }
3132 0 : if (found == is_add) {
3133 0 : __atomic_fetch_sub(inflight_counter, 1, __ATOMIC_SEQ_CST);
3134 0 : continue;
3135 : }
3136 :
3137 0 : ctx = calloc(1, sizeof(struct poller_manage_ctx));
3138 0 : if (!ctx) {
3139 0 : SPDK_ERRLOG("Failed to allocate poller_manage_ctx when removing pollers\n");
3140 0 : if (!*has_inflight) {
3141 0 : free(inflight_counter);
3142 : }
3143 0 : return -ENOMEM;
3144 : }
3145 :
3146 0 : ctx->rtransport = rtransport;
3147 0 : ctx->rgroup = rgroup;
3148 0 : ctx->rpoller = rpoller;
3149 0 : ctx->device = device;
3150 0 : ctx->thread = spdk_get_thread();
3151 0 : ctx->inflight_op_counter = inflight_counter;
3152 0 : *has_inflight = true;
3153 :
3154 0 : poll_group = rgroup->group.group;
3155 0 : if (poll_group->thread != spdk_get_thread()) {
3156 0 : spdk_thread_send_msg(poll_group->thread, do_fn, ctx);
3157 : } else {
3158 0 : do_fn(ctx);
3159 : }
3160 : }
3161 :
3162 0 : if (!*has_inflight) {
3163 0 : free(inflight_counter);
3164 : }
3165 :
3166 0 : return 0;
3167 : }
3168 :
3169 : static void nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3170 : struct spdk_nvmf_rdma_device *device);
3171 :
3172 : static struct spdk_nvmf_rdma_device *
3173 0 : nvmf_rdma_find_ib_device(struct spdk_nvmf_rdma_transport *rtransport,
3174 : struct ibv_context *context)
3175 : {
3176 : struct spdk_nvmf_rdma_device *device, *tmp_device;
3177 :
3178 0 : TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp_device) {
3179 0 : if (device->need_destroy) {
3180 0 : continue;
3181 : }
3182 :
3183 0 : if (strcmp(device->context->device->dev_name, context->device->dev_name) == 0) {
3184 0 : return device;
3185 : }
3186 : }
3187 :
3188 0 : return NULL;
3189 : }
3190 :
3191 : static bool
3192 0 : nvmf_rdma_check_devices_context(struct spdk_nvmf_rdma_transport *rtransport,
3193 : struct ibv_context *context)
3194 : {
3195 0 : struct spdk_nvmf_rdma_device *old_device, *new_device;
3196 0 : int rc = 0;
3197 0 : bool has_inflight;
3198 :
3199 0 : old_device = nvmf_rdma_find_ib_device(rtransport, context);
3200 :
3201 0 : if (old_device) {
3202 0 : if (old_device->context != context && !old_device->need_destroy && old_device->is_ready) {
3203 : /* context may not have time to be cleaned when rescan. exactly one context
3204 : * is valid for a device so this context must be invalid and just remove it. */
3205 0 : SPDK_WARNLOG("Device %p has a invalid context %p\n", old_device, old_device->context);
3206 0 : old_device->need_destroy = true;
3207 0 : nvmf_rdma_handle_device_removal(rtransport, old_device);
3208 : }
3209 0 : return false;
3210 : }
3211 :
3212 0 : rc = create_ib_device(rtransport, context, &new_device);
3213 : /* TODO: update transport opts. */
3214 0 : if (rc < 0) {
3215 0 : SPDK_ERRLOG("Failed to create ib device for context: %s(%p)\n",
3216 : ibv_get_device_name(context->device), context);
3217 0 : return false;
3218 : }
3219 :
3220 0 : rc = nvmf_rdma_manage_poller(rtransport, new_device, &has_inflight, true);
3221 0 : if (rc < 0) {
3222 0 : SPDK_ERRLOG("Failed to add poller for device context: %s(%p)\n",
3223 : ibv_get_device_name(context->device), context);
3224 0 : return false;
3225 : }
3226 :
3227 0 : if (has_inflight) {
3228 0 : new_device->is_ready = true;
3229 : }
3230 :
3231 0 : return true;
3232 : }
3233 :
3234 : static bool
3235 0 : nvmf_rdma_rescan_devices(struct spdk_nvmf_rdma_transport *rtransport)
3236 : {
3237 : struct spdk_nvmf_rdma_device *device;
3238 0 : struct ibv_device **ibv_device_list = NULL;
3239 0 : struct ibv_context **contexts = NULL;
3240 0 : int i = 0;
3241 0 : int num_dev = 0;
3242 0 : bool new_create = false, has_new_device = false;
3243 0 : struct ibv_context *tmp_verbs = NULL;
3244 :
3245 : /* do not rescan when any device is destroying, or context may be freed when
3246 : * regenerating the poll fds.
3247 : */
3248 0 : TAILQ_FOREACH(device, &rtransport->devices, link) {
3249 0 : if (device->need_destroy) {
3250 0 : return false;
3251 : }
3252 : }
3253 :
3254 0 : ibv_device_list = ibv_get_device_list(&num_dev);
3255 :
3256 : /* There is a bug in librdmacm. If verbs init failed in rdma_get_devices, it'll be
3257 : * marked as dead verbs and never be init again. So we need to make sure the
3258 : * verbs is available before we call rdma_get_devices. */
3259 0 : if (num_dev >= 0) {
3260 0 : for (i = 0; i < num_dev; i++) {
3261 0 : tmp_verbs = ibv_open_device(ibv_device_list[i]);
3262 0 : if (!tmp_verbs) {
3263 0 : SPDK_WARNLOG("Failed to init ibv device %p, err %d. Skip rescan.\n", ibv_device_list[i], errno);
3264 0 : break;
3265 : }
3266 0 : if (nvmf_rdma_find_ib_device(rtransport, tmp_verbs) == NULL) {
3267 0 : SPDK_DEBUGLOG(rdma, "Find new verbs init ibv device %p(%s).\n", ibv_device_list[i],
3268 : tmp_verbs->device->dev_name);
3269 0 : has_new_device = true;
3270 : }
3271 0 : ibv_close_device(tmp_verbs);
3272 : }
3273 0 : ibv_free_device_list(ibv_device_list);
3274 0 : if (!tmp_verbs || !has_new_device) {
3275 0 : return false;
3276 : }
3277 : }
3278 :
3279 0 : contexts = rdma_get_devices(NULL);
3280 :
3281 0 : for (i = 0; contexts && contexts[i] != NULL; i++) {
3282 0 : new_create |= nvmf_rdma_check_devices_context(rtransport, contexts[i]);
3283 : }
3284 :
3285 0 : if (new_create) {
3286 0 : free_poll_fds(rtransport);
3287 0 : generate_poll_fds(rtransport);
3288 : }
3289 :
3290 0 : if (contexts) {
3291 0 : rdma_free_devices(contexts);
3292 : }
3293 :
3294 0 : return new_create;
3295 : }
3296 :
3297 : static bool
3298 0 : nvmf_rdma_retry_listen_port(struct spdk_nvmf_rdma_transport *rtransport)
3299 : {
3300 : struct spdk_nvmf_rdma_port *port, *tmp_port;
3301 0 : int rc = 0;
3302 0 : bool new_create = false;
3303 :
3304 0 : if (TAILQ_EMPTY(&rtransport->retry_ports)) {
3305 0 : return false;
3306 : }
3307 :
3308 0 : new_create = nvmf_rdma_rescan_devices(rtransport);
3309 :
3310 0 : TAILQ_FOREACH_SAFE(port, &rtransport->retry_ports, link, tmp_port) {
3311 0 : rc = nvmf_rdma_listen(&rtransport->transport, port->trid, NULL);
3312 :
3313 0 : TAILQ_REMOVE(&rtransport->retry_ports, port, link);
3314 0 : if (rc) {
3315 0 : if (new_create) {
3316 0 : SPDK_ERRLOG("Found new IB device but port %s:%s is still failed(%d) to listen.\n",
3317 : port->trid->traddr, port->trid->trsvcid, rc);
3318 : }
3319 0 : TAILQ_INSERT_TAIL(&rtransport->retry_ports, port, link);
3320 0 : break;
3321 : } else {
3322 0 : SPDK_NOTICELOG("Port %s:%s come back\n", port->trid->traddr, port->trid->trsvcid);
3323 0 : free(port);
3324 : }
3325 : }
3326 :
3327 0 : return true;
3328 : }
3329 :
3330 : static void
3331 0 : nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
3332 : struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
3333 : {
3334 : struct spdk_nvmf_request *req, *tmp;
3335 : struct spdk_nvmf_rdma_request *rdma_req, *req_tmp;
3336 : struct spdk_nvmf_rdma_resources *resources;
3337 :
3338 : /* First process requests which are waiting for response to be sent */
3339 0 : STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_send_queue, state_link, req_tmp) {
3340 0 : if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3341 0 : break;
3342 : }
3343 : }
3344 :
3345 : /* We process I/O in the data transfer pending queue at the highest priority. */
3346 0 : STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
3347 0 : if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3348 0 : break;
3349 : }
3350 : }
3351 :
3352 : /* Then RDMA writes since reads have stronger restrictions than writes */
3353 0 : STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
3354 0 : if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3355 0 : break;
3356 : }
3357 : }
3358 :
3359 : /* Then we handle request waiting on memory buffers. */
3360 0 : STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
3361 0 : rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3362 0 : if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
3363 0 : break;
3364 : }
3365 : }
3366 :
3367 0 : resources = rqpair->resources;
3368 0 : while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
3369 0 : rdma_req = STAILQ_FIRST(&resources->free_queue);
3370 0 : STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
3371 0 : rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
3372 0 : STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
3373 :
3374 0 : if (rqpair->srq != NULL) {
3375 0 : rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
3376 0 : rdma_req->recv->qpair->qd++;
3377 : } else {
3378 0 : rqpair->qd++;
3379 : }
3380 :
3381 0 : rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
3382 0 : rdma_req->state = RDMA_REQUEST_STATE_NEW;
3383 0 : if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3384 0 : break;
3385 : }
3386 : }
3387 0 : if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
3388 0 : rqpair->poller->stat.pending_free_request++;
3389 : }
3390 0 : }
3391 :
3392 : static void
3393 0 : nvmf_rdma_poller_process_pending_buf_queue(struct spdk_nvmf_rdma_transport *rtransport,
3394 : struct spdk_nvmf_rdma_poller *rpoller)
3395 : {
3396 : struct spdk_nvmf_request *req, *tmp;
3397 : struct spdk_nvmf_rdma_request *rdma_req;
3398 :
3399 0 : STAILQ_FOREACH_SAFE(req, &rpoller->group->group.pending_buf_queue, buf_link, tmp) {
3400 0 : rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
3401 0 : if (nvmf_rdma_request_process(rtransport, rdma_req) == false) {
3402 0 : break;
3403 : }
3404 : }
3405 0 : }
3406 :
3407 : static inline bool
3408 0 : nvmf_rdma_can_ignore_last_wqe_reached(struct spdk_nvmf_rdma_device *device)
3409 : {
3410 : /* iWARP transport and SoftRoCE driver don't support LAST_WQE_REACHED ibv async event */
3411 0 : return nvmf_rdma_is_rxe_device(device) ||
3412 0 : device->context->device->transport_type == IBV_TRANSPORT_IWARP;
3413 : }
3414 :
3415 : static void
3416 0 : nvmf_rdma_destroy_drained_qpair(struct spdk_nvmf_rdma_qpair *rqpair)
3417 : {
3418 0 : struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
3419 : struct spdk_nvmf_rdma_transport, transport);
3420 :
3421 0 : nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
3422 :
3423 : /* nvmf_rdma_close_qpair is not called */
3424 0 : if (!rqpair->to_close) {
3425 0 : return;
3426 : }
3427 :
3428 : /* device is already destroyed and we should force destroy this qpair. */
3429 0 : if (rqpair->poller && rqpair->poller->need_destroy) {
3430 0 : nvmf_rdma_qpair_destroy(rqpair);
3431 0 : return;
3432 : }
3433 :
3434 : /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
3435 0 : if (rqpair->current_send_depth != 0) {
3436 0 : return;
3437 : }
3438 :
3439 0 : if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
3440 0 : return;
3441 : }
3442 :
3443 0 : if (rqpair->srq != NULL && rqpair->last_wqe_reached == false &&
3444 0 : !nvmf_rdma_can_ignore_last_wqe_reached(rqpair->device)) {
3445 0 : return;
3446 : }
3447 :
3448 0 : assert(rqpair->qpair.state == SPDK_NVMF_QPAIR_ERROR);
3449 :
3450 0 : nvmf_rdma_qpair_destroy(rqpair);
3451 : }
3452 :
3453 : static int
3454 0 : nvmf_rdma_disconnect(struct rdma_cm_event *evt, bool *event_acked)
3455 : {
3456 : struct spdk_nvmf_qpair *qpair;
3457 : struct spdk_nvmf_rdma_qpair *rqpair;
3458 :
3459 0 : if (evt->id == NULL) {
3460 0 : SPDK_ERRLOG("disconnect request: missing cm_id\n");
3461 0 : return -1;
3462 : }
3463 :
3464 0 : qpair = evt->id->context;
3465 0 : if (qpair == NULL) {
3466 0 : SPDK_ERRLOG("disconnect request: no active connection\n");
3467 0 : return -1;
3468 : }
3469 :
3470 0 : rdma_ack_cm_event(evt);
3471 0 : *event_acked = true;
3472 :
3473 0 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
3474 :
3475 0 : spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair);
3476 :
3477 0 : spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3478 :
3479 0 : return 0;
3480 : }
3481 :
3482 : #ifdef DEBUG
3483 : static const char *CM_EVENT_STR[] = {
3484 : "RDMA_CM_EVENT_ADDR_RESOLVED",
3485 : "RDMA_CM_EVENT_ADDR_ERROR",
3486 : "RDMA_CM_EVENT_ROUTE_RESOLVED",
3487 : "RDMA_CM_EVENT_ROUTE_ERROR",
3488 : "RDMA_CM_EVENT_CONNECT_REQUEST",
3489 : "RDMA_CM_EVENT_CONNECT_RESPONSE",
3490 : "RDMA_CM_EVENT_CONNECT_ERROR",
3491 : "RDMA_CM_EVENT_UNREACHABLE",
3492 : "RDMA_CM_EVENT_REJECTED",
3493 : "RDMA_CM_EVENT_ESTABLISHED",
3494 : "RDMA_CM_EVENT_DISCONNECTED",
3495 : "RDMA_CM_EVENT_DEVICE_REMOVAL",
3496 : "RDMA_CM_EVENT_MULTICAST_JOIN",
3497 : "RDMA_CM_EVENT_MULTICAST_ERROR",
3498 : "RDMA_CM_EVENT_ADDR_CHANGE",
3499 : "RDMA_CM_EVENT_TIMEWAIT_EXIT"
3500 : };
3501 : #endif /* DEBUG */
3502 :
3503 : static void
3504 0 : nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport,
3505 : struct spdk_nvmf_rdma_port *port)
3506 : {
3507 : struct spdk_nvmf_rdma_poll_group *rgroup;
3508 : struct spdk_nvmf_rdma_poller *rpoller;
3509 : struct spdk_nvmf_rdma_qpair *rqpair;
3510 :
3511 0 : TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) {
3512 0 : TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
3513 0 : RB_FOREACH(rqpair, qpairs_tree, &rpoller->qpairs) {
3514 0 : if (rqpair->listen_id == port->id) {
3515 0 : spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3516 : }
3517 : }
3518 : }
3519 : }
3520 0 : }
3521 :
3522 : static bool
3523 0 : nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport,
3524 : struct rdma_cm_event *event)
3525 : {
3526 : const struct spdk_nvme_transport_id *trid;
3527 : struct spdk_nvmf_rdma_port *port;
3528 : struct spdk_nvmf_rdma_transport *rtransport;
3529 0 : bool event_acked = false;
3530 :
3531 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3532 0 : TAILQ_FOREACH(port, &rtransport->ports, link) {
3533 0 : if (port->id == event->id) {
3534 0 : SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid);
3535 0 : rdma_ack_cm_event(event);
3536 0 : event_acked = true;
3537 0 : trid = port->trid;
3538 0 : break;
3539 : }
3540 : }
3541 :
3542 0 : if (event_acked) {
3543 0 : nvmf_rdma_disconnect_qpairs_on_port(rtransport, port);
3544 :
3545 0 : nvmf_rdma_stop_listen(transport, trid);
3546 0 : nvmf_rdma_listen(transport, trid, NULL);
3547 : }
3548 :
3549 0 : return event_acked;
3550 : }
3551 :
3552 : static void
3553 0 : nvmf_rdma_handle_device_removal(struct spdk_nvmf_rdma_transport *rtransport,
3554 : struct spdk_nvmf_rdma_device *device)
3555 : {
3556 : struct spdk_nvmf_rdma_port *port, *port_tmp;
3557 : int rc;
3558 0 : bool has_inflight;
3559 :
3560 0 : rc = nvmf_rdma_manage_poller(rtransport, device, &has_inflight, false);
3561 0 : if (rc) {
3562 0 : SPDK_ERRLOG("Failed to handle device removal, rc %d\n", rc);
3563 0 : return;
3564 : }
3565 :
3566 0 : if (!has_inflight) {
3567 : /* no pollers, destroy the device */
3568 0 : device->ready_to_destroy = true;
3569 0 : spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_remove_destroyed_device, rtransport);
3570 : }
3571 :
3572 0 : TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
3573 0 : if (port->device == device) {
3574 0 : SPDK_NOTICELOG("Port %s:%s on device %s is being removed.\n",
3575 : port->trid->traddr,
3576 : port->trid->trsvcid,
3577 : ibv_get_device_name(port->device->context->device));
3578 :
3579 : /* keep NVMF listener and only destroy structures of the
3580 : * RDMA transport. when the device comes back we can retry listening
3581 : * and the application's workflow will not be interrupted.
3582 : */
3583 0 : nvmf_rdma_stop_listen_ex(&rtransport->transport, port->trid, true);
3584 : }
3585 : }
3586 : }
3587 :
3588 : static void
3589 0 : nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport,
3590 : struct rdma_cm_event *event)
3591 : {
3592 : struct spdk_nvmf_rdma_port *port, *tmp_port;
3593 : struct spdk_nvmf_rdma_transport *rtransport;
3594 :
3595 0 : port = event->id->context;
3596 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3597 :
3598 0 : rdma_ack_cm_event(event);
3599 :
3600 : /* if device removal happens during ctrl qpair disconnecting, it's possible that we receive
3601 : * an DEVICE_REMOVAL event on qpair but the id->qp is just NULL. So we should make sure that
3602 : * we are handling a port event here.
3603 : */
3604 0 : TAILQ_FOREACH(tmp_port, &rtransport->ports, link) {
3605 0 : if (port == tmp_port && port->device && !port->device->need_destroy) {
3606 0 : port->device->need_destroy = true;
3607 0 : nvmf_rdma_handle_device_removal(rtransport, port->device);
3608 : }
3609 : }
3610 0 : }
3611 :
3612 : static void
3613 0 : nvmf_process_cm_events(struct spdk_nvmf_transport *transport, uint32_t max_events)
3614 : {
3615 : struct spdk_nvmf_rdma_transport *rtransport;
3616 0 : struct rdma_cm_event *event;
3617 : uint32_t i;
3618 : int rc;
3619 0 : bool event_acked;
3620 :
3621 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3622 :
3623 0 : if (rtransport->event_channel == NULL) {
3624 0 : return;
3625 : }
3626 :
3627 0 : for (i = 0; i < max_events; i++) {
3628 0 : event_acked = false;
3629 0 : rc = rdma_get_cm_event(rtransport->event_channel, &event);
3630 0 : if (rc) {
3631 0 : if (errno != EAGAIN && errno != EWOULDBLOCK) {
3632 0 : SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
3633 : }
3634 0 : break;
3635 : }
3636 :
3637 0 : SPDK_DEBUGLOG(rdma, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
3638 :
3639 0 : spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
3640 :
3641 0 : switch (event->event) {
3642 0 : case RDMA_CM_EVENT_ADDR_RESOLVED:
3643 : case RDMA_CM_EVENT_ADDR_ERROR:
3644 : case RDMA_CM_EVENT_ROUTE_RESOLVED:
3645 : case RDMA_CM_EVENT_ROUTE_ERROR:
3646 : /* No action required. The target never attempts to resolve routes. */
3647 0 : break;
3648 0 : case RDMA_CM_EVENT_CONNECT_REQUEST:
3649 0 : rc = nvmf_rdma_connect(transport, event);
3650 0 : if (rc < 0) {
3651 0 : SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
3652 0 : break;
3653 : }
3654 0 : break;
3655 0 : case RDMA_CM_EVENT_CONNECT_RESPONSE:
3656 : /* The target never initiates a new connection. So this will not occur. */
3657 0 : break;
3658 0 : case RDMA_CM_EVENT_CONNECT_ERROR:
3659 : /* Can this happen? The docs say it can, but not sure what causes it. */
3660 0 : break;
3661 0 : case RDMA_CM_EVENT_UNREACHABLE:
3662 : case RDMA_CM_EVENT_REJECTED:
3663 : /* These only occur on the client side. */
3664 0 : break;
3665 0 : case RDMA_CM_EVENT_ESTABLISHED:
3666 : /* TODO: Should we be waiting for this event anywhere? */
3667 0 : break;
3668 0 : case RDMA_CM_EVENT_DISCONNECTED:
3669 0 : rc = nvmf_rdma_disconnect(event, &event_acked);
3670 0 : if (rc < 0) {
3671 0 : SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3672 0 : break;
3673 : }
3674 0 : break;
3675 0 : case RDMA_CM_EVENT_DEVICE_REMOVAL:
3676 : /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL
3677 : * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s.
3678 : * Once these events are sent to SPDK, we should release all IB resources and
3679 : * don't make attempts to call any ibv_query/modify/create functions. We can only call
3680 : * ibv_destroy* functions to release user space memory allocated by IB. All kernel
3681 : * resources are already cleaned. */
3682 0 : if (event->id->qp) {
3683 : /* If rdma_cm event has a valid `qp` pointer then the event refers to the
3684 : * corresponding qpair. Otherwise the event refers to a listening device. */
3685 0 : rc = nvmf_rdma_disconnect(event, &event_acked);
3686 0 : if (rc < 0) {
3687 0 : SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
3688 0 : break;
3689 : }
3690 : } else {
3691 0 : nvmf_rdma_handle_cm_event_port_removal(transport, event);
3692 0 : event_acked = true;
3693 : }
3694 0 : break;
3695 0 : case RDMA_CM_EVENT_MULTICAST_JOIN:
3696 : case RDMA_CM_EVENT_MULTICAST_ERROR:
3697 : /* Multicast is not used */
3698 0 : break;
3699 0 : case RDMA_CM_EVENT_ADDR_CHANGE:
3700 0 : event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event);
3701 0 : break;
3702 0 : case RDMA_CM_EVENT_TIMEWAIT_EXIT:
3703 : /* For now, do nothing. The target never re-uses queue pairs. */
3704 0 : break;
3705 0 : default:
3706 0 : SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
3707 0 : break;
3708 : }
3709 0 : if (!event_acked) {
3710 0 : rdma_ack_cm_event(event);
3711 : }
3712 : }
3713 : }
3714 :
3715 : static void
3716 0 : nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair)
3717 : {
3718 0 : rqpair->last_wqe_reached = true;
3719 0 : nvmf_rdma_destroy_drained_qpair(rqpair);
3720 0 : }
3721 :
3722 : static void
3723 0 : nvmf_rdma_qpair_process_ibv_event(void *ctx)
3724 : {
3725 0 : struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx;
3726 :
3727 0 : if (event_ctx->rqpair) {
3728 0 : STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3729 0 : if (event_ctx->cb_fn) {
3730 0 : event_ctx->cb_fn(event_ctx->rqpair);
3731 : }
3732 : }
3733 0 : free(event_ctx);
3734 0 : }
3735 :
3736 : static int
3737 0 : nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair,
3738 : spdk_nvmf_rdma_qpair_ibv_event fn)
3739 : {
3740 : struct spdk_nvmf_rdma_ibv_event_ctx *ctx;
3741 0 : struct spdk_thread *thr = NULL;
3742 : int rc;
3743 :
3744 0 : if (rqpair->qpair.group) {
3745 0 : thr = rqpair->qpair.group->thread;
3746 0 : } else if (rqpair->destruct_channel) {
3747 0 : thr = spdk_io_channel_get_thread(rqpair->destruct_channel);
3748 : }
3749 :
3750 0 : if (!thr) {
3751 0 : SPDK_DEBUGLOG(rdma, "rqpair %p has no thread\n", rqpair);
3752 0 : return -EINVAL;
3753 : }
3754 :
3755 0 : ctx = calloc(1, sizeof(*ctx));
3756 0 : if (!ctx) {
3757 0 : return -ENOMEM;
3758 : }
3759 :
3760 0 : ctx->rqpair = rqpair;
3761 0 : ctx->cb_fn = fn;
3762 0 : STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link);
3763 :
3764 0 : rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx);
3765 0 : if (rc) {
3766 0 : STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link);
3767 0 : free(ctx);
3768 : }
3769 :
3770 0 : return rc;
3771 : }
3772 :
3773 : static int
3774 0 : nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
3775 : {
3776 : int rc;
3777 0 : struct spdk_nvmf_rdma_qpair *rqpair = NULL;
3778 0 : struct ibv_async_event event;
3779 :
3780 0 : rc = ibv_get_async_event(device->context, &event);
3781 :
3782 0 : if (rc) {
3783 : /* In non-blocking mode -1 means there are no events available */
3784 0 : return rc;
3785 : }
3786 :
3787 0 : switch (event.event_type) {
3788 0 : case IBV_EVENT_QP_FATAL:
3789 : case IBV_EVENT_QP_LAST_WQE_REACHED:
3790 : case IBV_EVENT_QP_REQ_ERR:
3791 : case IBV_EVENT_QP_ACCESS_ERR:
3792 : case IBV_EVENT_COMM_EST:
3793 : case IBV_EVENT_PATH_MIG:
3794 : case IBV_EVENT_PATH_MIG_ERR:
3795 0 : rqpair = event.element.qp->qp_context;
3796 0 : if (!rqpair) {
3797 : /* Any QP event for NVMe-RDMA initiator may be returned. */
3798 0 : SPDK_NOTICELOG("Async QP event for unknown QP: %s\n",
3799 : ibv_event_type_str(event.event_type));
3800 0 : break;
3801 : }
3802 :
3803 0 : switch (event.event_type) {
3804 0 : case IBV_EVENT_QP_FATAL:
3805 0 : SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
3806 0 : spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3807 : (uintptr_t)rqpair, event.event_type);
3808 0 : rqpair->ibv_in_error_state = true;
3809 0 : spdk_nvmf_qpair_disconnect(&rqpair->qpair);
3810 0 : break;
3811 0 : case IBV_EVENT_QP_LAST_WQE_REACHED:
3812 : /* This event only occurs for shared receive queues. */
3813 0 : SPDK_DEBUGLOG(rdma, "Last WQE reached event received for rqpair %p\n", rqpair);
3814 0 : rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached);
3815 0 : if (rc) {
3816 0 : SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc);
3817 0 : rqpair->last_wqe_reached = true;
3818 : }
3819 0 : break;
3820 0 : case IBV_EVENT_QP_REQ_ERR:
3821 : case IBV_EVENT_QP_ACCESS_ERR:
3822 : case IBV_EVENT_COMM_EST:
3823 : case IBV_EVENT_PATH_MIG:
3824 : case IBV_EVENT_PATH_MIG_ERR:
3825 0 : SPDK_NOTICELOG("Async QP event: %s\n",
3826 : ibv_event_type_str(event.event_type));
3827 0 : spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
3828 : (uintptr_t)rqpair, event.event_type);
3829 0 : rqpair->ibv_in_error_state = true;
3830 0 : break;
3831 0 : default:
3832 0 : break;
3833 : }
3834 0 : break;
3835 0 : case IBV_EVENT_DEVICE_FATAL:
3836 0 : SPDK_ERRLOG("Device Fatal event[%s] received on %s. device: %p\n",
3837 : ibv_event_type_str(event.event_type), ibv_get_device_name(device->context->device), device);
3838 0 : device->need_destroy = true;
3839 0 : break;
3840 0 : case IBV_EVENT_CQ_ERR:
3841 : case IBV_EVENT_PORT_ACTIVE:
3842 : case IBV_EVENT_PORT_ERR:
3843 : case IBV_EVENT_LID_CHANGE:
3844 : case IBV_EVENT_PKEY_CHANGE:
3845 : case IBV_EVENT_SM_CHANGE:
3846 : case IBV_EVENT_SRQ_ERR:
3847 : case IBV_EVENT_SRQ_LIMIT_REACHED:
3848 : case IBV_EVENT_CLIENT_REREGISTER:
3849 : case IBV_EVENT_GID_CHANGE:
3850 : case IBV_EVENT_SQ_DRAINED:
3851 : default:
3852 0 : SPDK_NOTICELOG("Async event: %s\n",
3853 : ibv_event_type_str(event.event_type));
3854 0 : spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
3855 0 : break;
3856 : }
3857 0 : ibv_ack_async_event(&event);
3858 :
3859 0 : return 0;
3860 : }
3861 :
3862 : static void
3863 0 : nvmf_process_ib_events(struct spdk_nvmf_rdma_device *device, uint32_t max_events)
3864 : {
3865 0 : int rc = 0;
3866 0 : uint32_t i = 0;
3867 :
3868 0 : for (i = 0; i < max_events; i++) {
3869 0 : rc = nvmf_process_ib_event(device);
3870 0 : if (rc) {
3871 0 : break;
3872 : }
3873 : }
3874 :
3875 0 : SPDK_DEBUGLOG(rdma, "Device %s: %u events processed\n", device->context->device->name, i);
3876 0 : }
3877 :
3878 : static int
3879 0 : nvmf_rdma_accept(void *ctx)
3880 : {
3881 0 : int nfds, i = 0;
3882 0 : struct spdk_nvmf_transport *transport = ctx;
3883 : struct spdk_nvmf_rdma_transport *rtransport;
3884 : struct spdk_nvmf_rdma_device *device, *tmp;
3885 : uint32_t count;
3886 : short revents;
3887 : bool do_retry;
3888 :
3889 0 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
3890 0 : do_retry = nvmf_rdma_retry_listen_port(rtransport);
3891 :
3892 0 : count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
3893 :
3894 0 : if (nfds <= 0) {
3895 0 : return do_retry ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3896 : }
3897 :
3898 : /* The first poll descriptor is RDMA CM event */
3899 0 : if (rtransport->poll_fds[i++].revents & POLLIN) {
3900 0 : nvmf_process_cm_events(transport, NVMF_RDMA_MAX_EVENTS_PER_POLL);
3901 0 : nfds--;
3902 : }
3903 :
3904 0 : if (nfds == 0) {
3905 0 : return SPDK_POLLER_BUSY;
3906 : }
3907 :
3908 : /* Second and subsequent poll descriptors are IB async events */
3909 0 : TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
3910 0 : revents = rtransport->poll_fds[i++].revents;
3911 0 : if (revents & POLLIN) {
3912 0 : if (spdk_likely(!device->need_destroy)) {
3913 0 : nvmf_process_ib_events(device, NVMF_RDMA_MAX_EVENTS_PER_POLL);
3914 0 : if (spdk_unlikely(device->need_destroy)) {
3915 0 : nvmf_rdma_handle_device_removal(rtransport, device);
3916 : }
3917 : }
3918 0 : nfds--;
3919 0 : } else if (revents & POLLNVAL || revents & POLLHUP) {
3920 0 : SPDK_ERRLOG("Receive unknown revent %x on device %p\n", (int)revents, device);
3921 0 : nfds--;
3922 : }
3923 : }
3924 : /* check all flagged fd's have been served */
3925 0 : assert(nfds == 0);
3926 :
3927 0 : return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
3928 : }
3929 :
3930 : static void
3931 0 : nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem,
3932 : struct spdk_nvmf_ctrlr_data *cdata)
3933 : {
3934 0 : cdata->nvmf_specific.msdbd = NVMF_DEFAULT_MSDBD;
3935 :
3936 : /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled
3937 : since in-capsule data only works with NVME drives that support SGL memory layout */
3938 0 : if (transport->opts.dif_insert_or_strip) {
3939 0 : cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16;
3940 : }
3941 :
3942 0 : if (cdata->nvmf_specific.ioccsz > ((sizeof(struct spdk_nvme_cmd) + 0x1000) / 16)) {
3943 0 : SPDK_WARNLOG("RDMA is configured to support up to 16 SGL entries while in capsule"
3944 : " data is greater than 4KiB.\n");
3945 0 : SPDK_WARNLOG("When used in conjunction with the NVMe-oF initiator from the Linux "
3946 : "kernel between versions 5.4 and 5.12 data corruption may occur for "
3947 : "writes that are not a multiple of 4KiB in size.\n");
3948 : }
3949 0 : }
3950 :
3951 : static void
3952 0 : nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
3953 : struct spdk_nvme_transport_id *trid,
3954 : struct spdk_nvmf_discovery_log_page_entry *entry)
3955 : {
3956 0 : entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
3957 0 : entry->adrfam = trid->adrfam;
3958 0 : entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
3959 :
3960 0 : spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
3961 0 : spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
3962 :
3963 0 : entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
3964 0 : entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
3965 0 : entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
3966 0 : }
3967 :
3968 : static int
3969 0 : nvmf_rdma_poller_create(struct spdk_nvmf_rdma_transport *rtransport,
3970 : struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device,
3971 : struct spdk_nvmf_rdma_poller **out_poller)
3972 : {
3973 : struct spdk_nvmf_rdma_poller *poller;
3974 0 : struct spdk_rdma_srq_init_attr srq_init_attr;
3975 0 : struct spdk_nvmf_rdma_resource_opts opts;
3976 : int num_cqe;
3977 :
3978 0 : poller = calloc(1, sizeof(*poller));
3979 0 : if (!poller) {
3980 0 : SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
3981 0 : return -1;
3982 : }
3983 :
3984 0 : poller->device = device;
3985 0 : poller->group = rgroup;
3986 0 : *out_poller = poller;
3987 :
3988 0 : RB_INIT(&poller->qpairs);
3989 0 : STAILQ_INIT(&poller->qpairs_pending_send);
3990 0 : STAILQ_INIT(&poller->qpairs_pending_recv);
3991 :
3992 0 : TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
3993 0 : SPDK_DEBUGLOG(rdma, "Create poller %p on device %p in poll group %p.\n", poller, device, rgroup);
3994 0 : if (rtransport->rdma_opts.no_srq == false && device->num_srq < device->attr.max_srq) {
3995 0 : if ((int)rtransport->rdma_opts.max_srq_depth > device->attr.max_srq_wr) {
3996 0 : SPDK_WARNLOG("Requested SRQ depth %u, max supported by dev %s is %d\n",
3997 : rtransport->rdma_opts.max_srq_depth, device->context->device->name, device->attr.max_srq_wr);
3998 : }
3999 0 : poller->max_srq_depth = spdk_min((int)rtransport->rdma_opts.max_srq_depth, device->attr.max_srq_wr);
4000 :
4001 0 : device->num_srq++;
4002 0 : memset(&srq_init_attr, 0, sizeof(srq_init_attr));
4003 0 : srq_init_attr.pd = device->pd;
4004 0 : srq_init_attr.stats = &poller->stat.qp_stats.recv;
4005 0 : srq_init_attr.srq_init_attr.attr.max_wr = poller->max_srq_depth;
4006 0 : srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
4007 0 : poller->srq = spdk_rdma_srq_create(&srq_init_attr);
4008 0 : if (!poller->srq) {
4009 0 : SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
4010 0 : return -1;
4011 : }
4012 :
4013 0 : opts.qp = poller->srq;
4014 0 : opts.map = device->map;
4015 0 : opts.qpair = NULL;
4016 0 : opts.shared = true;
4017 0 : opts.max_queue_depth = poller->max_srq_depth;
4018 0 : opts.in_capsule_data_size = rtransport->transport.opts.in_capsule_data_size;
4019 :
4020 0 : poller->resources = nvmf_rdma_resources_create(&opts);
4021 0 : if (!poller->resources) {
4022 0 : SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
4023 0 : return -1;
4024 : }
4025 : }
4026 :
4027 : /*
4028 : * When using an srq, we can limit the completion queue at startup.
4029 : * The following formula represents the calculation:
4030 : * num_cqe = num_recv + num_data_wr + num_send_wr.
4031 : * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
4032 : */
4033 0 : if (poller->srq) {
4034 0 : num_cqe = poller->max_srq_depth * 3;
4035 : } else {
4036 0 : num_cqe = rtransport->rdma_opts.num_cqe;
4037 : }
4038 :
4039 0 : poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
4040 0 : if (!poller->cq) {
4041 0 : SPDK_ERRLOG("Unable to create completion queue\n");
4042 0 : return -1;
4043 : }
4044 0 : poller->num_cqe = num_cqe;
4045 0 : return 0;
4046 : }
4047 :
4048 : static void
4049 0 : _nvmf_rdma_register_poller_in_group(void *c)
4050 : {
4051 0 : struct spdk_nvmf_rdma_poller *poller;
4052 0 : struct poller_manage_ctx *ctx = c;
4053 : struct spdk_nvmf_rdma_device *device;
4054 : int rc;
4055 :
4056 0 : rc = nvmf_rdma_poller_create(ctx->rtransport, ctx->rgroup, ctx->device, &poller);
4057 0 : if (rc < 0 && poller) {
4058 0 : nvmf_rdma_poller_destroy(poller);
4059 : }
4060 :
4061 0 : device = ctx->device;
4062 0 : if (nvmf_rdma_all_pollers_management_done(ctx)) {
4063 0 : device->is_ready = true;
4064 : }
4065 0 : }
4066 :
4067 : static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
4068 :
4069 : static struct spdk_nvmf_transport_poll_group *
4070 5 : nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport,
4071 : struct spdk_nvmf_poll_group *group)
4072 : {
4073 : struct spdk_nvmf_rdma_transport *rtransport;
4074 : struct spdk_nvmf_rdma_poll_group *rgroup;
4075 5 : struct spdk_nvmf_rdma_poller *poller;
4076 : struct spdk_nvmf_rdma_device *device;
4077 : int rc;
4078 :
4079 5 : rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
4080 :
4081 5 : rgroup = calloc(1, sizeof(*rgroup));
4082 5 : if (!rgroup) {
4083 0 : return NULL;
4084 : }
4085 :
4086 5 : TAILQ_INIT(&rgroup->pollers);
4087 :
4088 5 : TAILQ_FOREACH(device, &rtransport->devices, link) {
4089 0 : rc = nvmf_rdma_poller_create(rtransport, rgroup, device, &poller);
4090 0 : if (rc < 0) {
4091 0 : nvmf_rdma_poll_group_destroy(&rgroup->group);
4092 0 : return NULL;
4093 : }
4094 : }
4095 :
4096 5 : TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
4097 5 : if (rtransport->conn_sched.next_admin_pg == NULL) {
4098 1 : rtransport->conn_sched.next_admin_pg = rgroup;
4099 1 : rtransport->conn_sched.next_io_pg = rgroup;
4100 : }
4101 :
4102 5 : return &rgroup->group;
4103 : }
4104 :
4105 : static uint32_t
4106 12 : nvmf_poll_group_get_io_qpair_count(struct spdk_nvmf_poll_group *pg)
4107 : {
4108 : uint32_t count;
4109 :
4110 : /* Just assume that unassociated qpairs will eventually be io
4111 : * qpairs. This is close enough for the use cases for this
4112 : * function.
4113 : */
4114 12 : pthread_mutex_lock(&pg->mutex);
4115 12 : count = pg->stat.current_io_qpairs + pg->current_unassociated_qpairs;
4116 12 : pthread_mutex_unlock(&pg->mutex);
4117 :
4118 12 : return count;
4119 : }
4120 :
4121 : static struct spdk_nvmf_transport_poll_group *
4122 14 : nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4123 : {
4124 : struct spdk_nvmf_rdma_transport *rtransport;
4125 : struct spdk_nvmf_rdma_poll_group **pg;
4126 : struct spdk_nvmf_transport_poll_group *result;
4127 : uint32_t count;
4128 :
4129 14 : rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
4130 :
4131 14 : if (TAILQ_EMPTY(&rtransport->poll_groups)) {
4132 2 : return NULL;
4133 : }
4134 :
4135 12 : if (qpair->qid == 0) {
4136 6 : pg = &rtransport->conn_sched.next_admin_pg;
4137 : } else {
4138 : struct spdk_nvmf_rdma_poll_group *pg_min, *pg_start, *pg_current;
4139 : uint32_t min_value;
4140 :
4141 6 : pg = &rtransport->conn_sched.next_io_pg;
4142 6 : pg_min = *pg;
4143 6 : pg_start = *pg;
4144 6 : pg_current = *pg;
4145 6 : min_value = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4146 :
4147 : while (1) {
4148 6 : count = nvmf_poll_group_get_io_qpair_count(pg_current->group.group);
4149 :
4150 6 : if (count < min_value) {
4151 0 : min_value = count;
4152 0 : pg_min = pg_current;
4153 : }
4154 :
4155 6 : pg_current = TAILQ_NEXT(pg_current, link);
4156 6 : if (pg_current == NULL) {
4157 2 : pg_current = TAILQ_FIRST(&rtransport->poll_groups);
4158 : }
4159 :
4160 6 : if (pg_current == pg_start || min_value == 0) {
4161 : break;
4162 : }
4163 : }
4164 6 : *pg = pg_min;
4165 : }
4166 :
4167 12 : assert(*pg != NULL);
4168 :
4169 12 : result = &(*pg)->group;
4170 :
4171 12 : *pg = TAILQ_NEXT(*pg, link);
4172 12 : if (*pg == NULL) {
4173 4 : *pg = TAILQ_FIRST(&rtransport->poll_groups);
4174 : }
4175 :
4176 12 : return result;
4177 : }
4178 :
4179 : static void
4180 0 : nvmf_rdma_poller_destroy(struct spdk_nvmf_rdma_poller *poller)
4181 : {
4182 : struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair;
4183 : int rc;
4184 :
4185 0 : TAILQ_REMOVE(&poller->group->pollers, poller, link);
4186 0 : RB_FOREACH_SAFE(qpair, qpairs_tree, &poller->qpairs, tmp_qpair) {
4187 0 : nvmf_rdma_qpair_destroy(qpair);
4188 : }
4189 :
4190 0 : if (poller->srq) {
4191 0 : if (poller->resources) {
4192 0 : nvmf_rdma_resources_destroy(poller->resources);
4193 : }
4194 0 : spdk_rdma_srq_destroy(poller->srq);
4195 0 : SPDK_DEBUGLOG(rdma, "Destroyed RDMA shared queue %p\n", poller->srq);
4196 : }
4197 :
4198 0 : if (poller->cq) {
4199 0 : rc = ibv_destroy_cq(poller->cq);
4200 0 : if (rc != 0) {
4201 0 : SPDK_ERRLOG("Destroy cq return %d, error: %s\n", rc, strerror(errno));
4202 : }
4203 : }
4204 :
4205 0 : if (poller->destroy_cb) {
4206 0 : poller->destroy_cb(poller->destroy_cb_ctx);
4207 0 : poller->destroy_cb = NULL;
4208 : }
4209 :
4210 0 : free(poller);
4211 0 : }
4212 :
4213 : static void
4214 5 : nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4215 : {
4216 : struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup;
4217 : struct spdk_nvmf_rdma_poller *poller, *tmp;
4218 : struct spdk_nvmf_rdma_transport *rtransport;
4219 :
4220 5 : rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4221 5 : if (!rgroup) {
4222 0 : return;
4223 : }
4224 :
4225 5 : TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
4226 0 : nvmf_rdma_poller_destroy(poller);
4227 : }
4228 :
4229 5 : if (rgroup->group.transport == NULL) {
4230 : /* Transport can be NULL when nvmf_rdma_poll_group_create()
4231 : * calls this function directly in a failure path. */
4232 0 : free(rgroup);
4233 0 : return;
4234 : }
4235 :
4236 5 : rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
4237 :
4238 5 : next_rgroup = TAILQ_NEXT(rgroup, link);
4239 5 : TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
4240 5 : if (next_rgroup == NULL) {
4241 1 : next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
4242 : }
4243 5 : if (rtransport->conn_sched.next_admin_pg == rgroup) {
4244 5 : rtransport->conn_sched.next_admin_pg = next_rgroup;
4245 : }
4246 5 : if (rtransport->conn_sched.next_io_pg == rgroup) {
4247 5 : rtransport->conn_sched.next_io_pg = next_rgroup;
4248 : }
4249 :
4250 5 : free(rgroup);
4251 : }
4252 :
4253 : static void
4254 0 : nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
4255 : {
4256 0 : if (rqpair->cm_id != NULL) {
4257 0 : nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
4258 : }
4259 0 : }
4260 :
4261 : static int
4262 0 : nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
4263 : struct spdk_nvmf_qpair *qpair)
4264 : {
4265 : struct spdk_nvmf_rdma_poll_group *rgroup;
4266 : struct spdk_nvmf_rdma_qpair *rqpair;
4267 : struct spdk_nvmf_rdma_device *device;
4268 : struct spdk_nvmf_rdma_poller *poller;
4269 : int rc;
4270 :
4271 0 : rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4272 0 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4273 :
4274 0 : device = rqpair->device;
4275 :
4276 0 : TAILQ_FOREACH(poller, &rgroup->pollers, link) {
4277 0 : if (poller->device == device) {
4278 0 : break;
4279 : }
4280 : }
4281 :
4282 0 : if (!poller) {
4283 0 : SPDK_ERRLOG("No poller found for device.\n");
4284 0 : return -1;
4285 : }
4286 :
4287 0 : if (poller->need_destroy) {
4288 0 : SPDK_ERRLOG("Poller is destroying.\n");
4289 0 : return -1;
4290 : }
4291 :
4292 0 : rqpair->poller = poller;
4293 0 : rqpair->srq = rqpair->poller->srq;
4294 :
4295 0 : rc = nvmf_rdma_qpair_initialize(qpair);
4296 0 : if (rc < 0) {
4297 0 : SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
4298 0 : rqpair->poller = NULL;
4299 0 : rqpair->srq = NULL;
4300 0 : return -1;
4301 : }
4302 :
4303 0 : RB_INSERT(qpairs_tree, &poller->qpairs, rqpair);
4304 :
4305 0 : rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
4306 0 : if (rc) {
4307 : /* Try to reject, but we probably can't */
4308 0 : nvmf_rdma_qpair_reject_connection(rqpair);
4309 0 : return -1;
4310 : }
4311 :
4312 0 : return 0;
4313 : }
4314 :
4315 : static int
4316 0 : nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
4317 : struct spdk_nvmf_qpair *qpair)
4318 : {
4319 : struct spdk_nvmf_rdma_qpair *rqpair;
4320 :
4321 0 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4322 0 : assert(group->transport->tgt != NULL);
4323 :
4324 0 : rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt);
4325 :
4326 0 : if (!rqpair->destruct_channel) {
4327 0 : SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair);
4328 0 : return 0;
4329 : }
4330 :
4331 : /* Sanity check that we get io_channel on the correct thread */
4332 0 : if (qpair->group) {
4333 0 : assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel));
4334 : }
4335 :
4336 0 : return 0;
4337 : }
4338 :
4339 : static int
4340 0 : nvmf_rdma_request_free(struct spdk_nvmf_request *req)
4341 : {
4342 0 : struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
4343 0 : struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4344 : struct spdk_nvmf_rdma_transport, transport);
4345 0 : struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4346 : struct spdk_nvmf_rdma_qpair, qpair);
4347 :
4348 : /*
4349 : * AER requests are freed when a qpair is destroyed. The recv corresponding to that request
4350 : * needs to be returned to the shared receive queue or the poll group will eventually be
4351 : * starved of RECV structures.
4352 : */
4353 0 : if (rqpair->srq && rdma_req->recv) {
4354 : int rc;
4355 0 : struct ibv_recv_wr *bad_recv_wr;
4356 :
4357 0 : spdk_rdma_srq_queue_recv_wrs(rqpair->srq, &rdma_req->recv->wr);
4358 0 : rc = spdk_rdma_srq_flush_recv_wrs(rqpair->srq, &bad_recv_wr);
4359 0 : if (rc) {
4360 0 : SPDK_ERRLOG("Unable to re-post rx descriptor\n");
4361 : }
4362 : }
4363 :
4364 0 : _nvmf_rdma_request_free(rdma_req, rtransport);
4365 0 : return 0;
4366 : }
4367 :
4368 : static int
4369 0 : nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
4370 : {
4371 0 : struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport,
4372 : struct spdk_nvmf_rdma_transport, transport);
4373 0 : struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req,
4374 : struct spdk_nvmf_rdma_request, req);
4375 0 : struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
4376 : struct spdk_nvmf_rdma_qpair, qpair);
4377 :
4378 0 : if (spdk_unlikely(rqpair->ibv_in_error_state)) {
4379 : /* The connection is dead. Move the request directly to the completed state. */
4380 0 : rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4381 : } else {
4382 : /* The connection is alive, so process the request as normal */
4383 0 : rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
4384 : }
4385 :
4386 0 : nvmf_rdma_request_process(rtransport, rdma_req);
4387 :
4388 0 : return 0;
4389 : }
4390 :
4391 : static void
4392 0 : nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair,
4393 : spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
4394 : {
4395 0 : struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4396 :
4397 0 : rqpair->to_close = true;
4398 :
4399 : /* This happens only when the qpair is disconnected before
4400 : * it is added to the poll group. Since there is no poll group,
4401 : * the RDMA qp has not been initialized yet and the RDMA CM
4402 : * event has not yet been acknowledged, so we need to reject it.
4403 : */
4404 0 : if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
4405 0 : nvmf_rdma_qpair_reject_connection(rqpair);
4406 0 : nvmf_rdma_qpair_destroy(rqpair);
4407 0 : return;
4408 : }
4409 :
4410 0 : if (rqpair->rdma_qp) {
4411 0 : spdk_rdma_qp_disconnect(rqpair->rdma_qp);
4412 : }
4413 :
4414 0 : nvmf_rdma_destroy_drained_qpair(rqpair);
4415 :
4416 0 : if (cb_fn) {
4417 0 : cb_fn(cb_arg);
4418 : }
4419 : }
4420 :
4421 : static struct spdk_nvmf_rdma_qpair *
4422 0 : get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
4423 : {
4424 0 : struct spdk_nvmf_rdma_qpair find;
4425 :
4426 0 : find.qp_num = wc->qp_num;
4427 :
4428 0 : return RB_FIND(qpairs_tree, &rpoller->qpairs, &find);
4429 : }
4430 :
4431 : #ifdef DEBUG
4432 : static int
4433 0 : nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
4434 : {
4435 0 : return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
4436 0 : rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
4437 : }
4438 : #endif
4439 :
4440 : static void
4441 0 : _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
4442 : int rc)
4443 : {
4444 : struct spdk_nvmf_rdma_recv *rdma_recv;
4445 : struct spdk_nvmf_rdma_wr *bad_rdma_wr;
4446 :
4447 0 : SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
4448 0 : while (bad_recv_wr != NULL) {
4449 0 : bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
4450 0 : rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4451 :
4452 0 : rdma_recv->qpair->current_recv_depth++;
4453 0 : bad_recv_wr = bad_recv_wr->next;
4454 0 : SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
4455 0 : spdk_nvmf_qpair_disconnect(&rdma_recv->qpair->qpair);
4456 : }
4457 0 : }
4458 :
4459 : static void
4460 0 : _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
4461 : {
4462 0 : SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
4463 0 : while (bad_recv_wr != NULL) {
4464 0 : bad_recv_wr = bad_recv_wr->next;
4465 0 : rqpair->current_recv_depth++;
4466 : }
4467 0 : spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4468 0 : }
4469 :
4470 : static void
4471 0 : _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
4472 : struct spdk_nvmf_rdma_poller *rpoller)
4473 : {
4474 : struct spdk_nvmf_rdma_qpair *rqpair;
4475 0 : struct ibv_recv_wr *bad_recv_wr;
4476 : int rc;
4477 :
4478 0 : if (rpoller->srq) {
4479 0 : rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_recv_wr);
4480 0 : if (spdk_unlikely(rc)) {
4481 0 : _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
4482 : }
4483 : } else {
4484 0 : while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
4485 0 : rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
4486 0 : rc = spdk_rdma_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
4487 0 : if (spdk_unlikely(rc)) {
4488 0 : _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
4489 : }
4490 0 : STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
4491 : }
4492 : }
4493 0 : }
4494 :
4495 : static void
4496 0 : _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
4497 : struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
4498 : {
4499 : struct spdk_nvmf_rdma_wr *bad_rdma_wr;
4500 0 : struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL;
4501 :
4502 0 : SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
4503 0 : for (; bad_wr != NULL; bad_wr = bad_wr->next) {
4504 0 : bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
4505 0 : assert(rqpair->current_send_depth > 0);
4506 0 : rqpair->current_send_depth--;
4507 0 : switch (bad_rdma_wr->type) {
4508 0 : case RDMA_WR_TYPE_DATA:
4509 0 : cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4510 0 : if (bad_wr->opcode == IBV_WR_RDMA_READ) {
4511 0 : assert(rqpair->current_read_depth > 0);
4512 0 : rqpair->current_read_depth--;
4513 : }
4514 0 : break;
4515 0 : case RDMA_WR_TYPE_SEND:
4516 0 : cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4517 0 : break;
4518 0 : default:
4519 0 : SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
4520 0 : prev_rdma_req = cur_rdma_req;
4521 0 : continue;
4522 : }
4523 :
4524 0 : if (prev_rdma_req == cur_rdma_req) {
4525 : /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
4526 : /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
4527 0 : continue;
4528 : }
4529 :
4530 0 : switch (cur_rdma_req->state) {
4531 0 : case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
4532 0 : cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
4533 0 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, cur_rdma_req, state_link);
4534 0 : cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
4535 0 : break;
4536 0 : case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
4537 : case RDMA_REQUEST_STATE_COMPLETING:
4538 0 : cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4539 0 : break;
4540 0 : default:
4541 0 : SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
4542 : cur_rdma_req->state, rqpair);
4543 0 : continue;
4544 : }
4545 :
4546 0 : nvmf_rdma_request_process(rtransport, cur_rdma_req);
4547 0 : prev_rdma_req = cur_rdma_req;
4548 : }
4549 :
4550 0 : if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) {
4551 : /* Disconnect the connection. */
4552 0 : spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4553 : }
4554 :
4555 0 : }
4556 :
4557 : static void
4558 0 : _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
4559 : struct spdk_nvmf_rdma_poller *rpoller)
4560 : {
4561 : struct spdk_nvmf_rdma_qpair *rqpair;
4562 0 : struct ibv_send_wr *bad_wr = NULL;
4563 : int rc;
4564 :
4565 0 : while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
4566 0 : rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
4567 0 : rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
4568 :
4569 : /* bad wr always points to the first wr that failed. */
4570 0 : if (spdk_unlikely(rc)) {
4571 0 : _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
4572 : }
4573 0 : STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
4574 : }
4575 0 : }
4576 :
4577 : static const char *
4578 0 : nvmf_rdma_wr_type_str(enum spdk_nvmf_rdma_wr_type wr_type)
4579 : {
4580 0 : switch (wr_type) {
4581 0 : case RDMA_WR_TYPE_RECV:
4582 0 : return "RECV";
4583 0 : case RDMA_WR_TYPE_SEND:
4584 0 : return "SEND";
4585 0 : case RDMA_WR_TYPE_DATA:
4586 0 : return "DATA";
4587 0 : default:
4588 0 : SPDK_ERRLOG("Unknown WR type %d\n", wr_type);
4589 0 : SPDK_UNREACHABLE();
4590 : }
4591 : }
4592 :
4593 : static inline void
4594 0 : nvmf_rdma_log_wc_status(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_wc *wc)
4595 : {
4596 0 : enum spdk_nvmf_rdma_wr_type wr_type = ((struct spdk_nvmf_rdma_wr *)wc->wr_id)->type;
4597 :
4598 0 : if (wc->status == IBV_WC_WR_FLUSH_ERR) {
4599 : /* If qpair is in ERR state, we will receive completions for all posted and not completed
4600 : * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
4601 0 : SPDK_DEBUGLOG(rdma,
4602 : "Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n",
4603 : rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id,
4604 : nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4605 : } else {
4606 0 : SPDK_ERRLOG("Error on CQ %p, (qp state %d, in_error %d) request 0x%lu, type %s, status: (%d): %s\n",
4607 : rqpair->poller->cq, rqpair->qpair.state, rqpair->ibv_in_error_state, wc->wr_id,
4608 : nvmf_rdma_wr_type_str(wr_type), wc->status, ibv_wc_status_str(wc->status));
4609 : }
4610 0 : }
4611 :
4612 : static int
4613 0 : nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
4614 : struct spdk_nvmf_rdma_poller *rpoller)
4615 : {
4616 0 : struct ibv_wc wc[32];
4617 : struct spdk_nvmf_rdma_wr *rdma_wr;
4618 : struct spdk_nvmf_rdma_request *rdma_req;
4619 : struct spdk_nvmf_rdma_recv *rdma_recv;
4620 : struct spdk_nvmf_rdma_qpair *rqpair, *tmp_rqpair;
4621 : int reaped, i;
4622 0 : int count = 0;
4623 : int rc;
4624 0 : bool error = false;
4625 0 : uint64_t poll_tsc = spdk_get_ticks();
4626 :
4627 0 : if (spdk_unlikely(rpoller->need_destroy)) {
4628 : /* If qpair is closed before poller destroy, nvmf_rdma_destroy_drained_qpair may not
4629 : * be called because we cannot poll anything from cq. So we call that here to force
4630 : * destroy the qpair after to_close turning true.
4631 : */
4632 0 : RB_FOREACH_SAFE(rqpair, qpairs_tree, &rpoller->qpairs, tmp_rqpair) {
4633 0 : nvmf_rdma_destroy_drained_qpair(rqpair);
4634 : }
4635 0 : return 0;
4636 : }
4637 :
4638 : /* Poll for completing operations. */
4639 0 : reaped = ibv_poll_cq(rpoller->cq, 32, wc);
4640 0 : if (spdk_unlikely(reaped < 0)) {
4641 0 : SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
4642 : errno, spdk_strerror(errno));
4643 0 : return -1;
4644 0 : } else if (reaped == 0) {
4645 0 : rpoller->stat.idle_polls++;
4646 : }
4647 :
4648 0 : rpoller->stat.polls++;
4649 0 : rpoller->stat.completions += reaped;
4650 :
4651 0 : for (i = 0; i < reaped; i++) {
4652 :
4653 0 : rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
4654 :
4655 0 : switch (rdma_wr->type) {
4656 0 : case RDMA_WR_TYPE_SEND:
4657 0 : rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp_wr);
4658 0 : rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4659 :
4660 0 : if (spdk_likely(!wc[i].status)) {
4661 0 : count++;
4662 0 : assert(wc[i].opcode == IBV_WC_SEND);
4663 0 : assert(nvmf_rdma_req_is_completing(rdma_req));
4664 : }
4665 :
4666 0 : rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4667 : /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */
4668 0 : assert(rqpair->current_send_depth >= (uint32_t)rdma_req->num_outstanding_data_wr + 1);
4669 0 : rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
4670 0 : rdma_req->num_outstanding_data_wr = 0;
4671 :
4672 0 : nvmf_rdma_request_process(rtransport, rdma_req);
4673 0 : break;
4674 0 : case RDMA_WR_TYPE_RECV:
4675 : /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */
4676 0 : rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
4677 0 : if (rpoller->srq != NULL) {
4678 0 : rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
4679 : /* It is possible that there are still some completions for destroyed QP
4680 : * associated with SRQ. We just ignore these late completions and re-post
4681 : * receive WRs back to SRQ.
4682 : */
4683 0 : if (spdk_unlikely(NULL == rdma_recv->qpair)) {
4684 0 : struct ibv_recv_wr *bad_wr;
4685 :
4686 0 : rdma_recv->wr.next = NULL;
4687 0 : spdk_rdma_srq_queue_recv_wrs(rpoller->srq, &rdma_recv->wr);
4688 0 : rc = spdk_rdma_srq_flush_recv_wrs(rpoller->srq, &bad_wr);
4689 0 : if (rc) {
4690 0 : SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
4691 : }
4692 0 : continue;
4693 : }
4694 : }
4695 0 : rqpair = rdma_recv->qpair;
4696 :
4697 0 : assert(rqpair != NULL);
4698 0 : if (spdk_likely(!wc[i].status)) {
4699 0 : assert(wc[i].opcode == IBV_WC_RECV);
4700 0 : if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
4701 0 : spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4702 0 : break;
4703 : }
4704 : }
4705 :
4706 0 : rdma_recv->wr.next = NULL;
4707 0 : rqpair->current_recv_depth++;
4708 0 : rdma_recv->receive_tsc = poll_tsc;
4709 0 : rpoller->stat.requests++;
4710 0 : STAILQ_INSERT_HEAD(&rqpair->resources->incoming_queue, rdma_recv, link);
4711 0 : rqpair->qpair.queue_depth++;
4712 0 : break;
4713 0 : case RDMA_WR_TYPE_DATA:
4714 0 : rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data_wr);
4715 0 : rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
4716 :
4717 0 : assert(rdma_req->num_outstanding_data_wr > 0);
4718 :
4719 0 : rqpair->current_send_depth--;
4720 0 : rdma_req->num_outstanding_data_wr--;
4721 0 : if (spdk_likely(!wc[i].status)) {
4722 0 : assert(wc[i].opcode == IBV_WC_RDMA_READ);
4723 0 : rqpair->current_read_depth--;
4724 : /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
4725 0 : if (rdma_req->num_outstanding_data_wr == 0) {
4726 0 : if (spdk_unlikely(rdma_req->num_remaining_data_wr)) {
4727 : /* Only part of RDMA_READ operations was submitted, process the rest */
4728 0 : nvmf_rdma_request_reset_transfer_in(rdma_req, rtransport);
4729 0 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
4730 0 : rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
4731 0 : nvmf_rdma_request_process(rtransport, rdma_req);
4732 0 : break;
4733 : }
4734 0 : rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
4735 0 : nvmf_rdma_request_process(rtransport, rdma_req);
4736 : }
4737 : } else {
4738 : /* If the data transfer fails still force the queue into the error state,
4739 : * if we were performing an RDMA_READ, we need to force the request into a
4740 : * completed state since it wasn't linked to a send. However, in the RDMA_WRITE
4741 : * case, we should wait for the SEND to complete. */
4742 0 : if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
4743 0 : rqpair->current_read_depth--;
4744 0 : if (rdma_req->num_outstanding_data_wr == 0) {
4745 0 : rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
4746 : }
4747 : }
4748 : }
4749 0 : break;
4750 0 : default:
4751 0 : SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
4752 0 : continue;
4753 : }
4754 :
4755 : /* Handle error conditions */
4756 0 : if (spdk_unlikely(wc[i].status)) {
4757 0 : rqpair->ibv_in_error_state = true;
4758 0 : nvmf_rdma_log_wc_status(rqpair, &wc[i]);
4759 :
4760 0 : error = true;
4761 :
4762 0 : if (spdk_nvmf_qpair_is_active(&rqpair->qpair)) {
4763 : /* Disconnect the connection. */
4764 0 : spdk_nvmf_qpair_disconnect(&rqpair->qpair);
4765 : } else {
4766 0 : nvmf_rdma_destroy_drained_qpair(rqpair);
4767 : }
4768 0 : continue;
4769 : }
4770 :
4771 0 : nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
4772 :
4773 0 : if (spdk_unlikely(!spdk_nvmf_qpair_is_active(&rqpair->qpair))) {
4774 0 : nvmf_rdma_destroy_drained_qpair(rqpair);
4775 : }
4776 : }
4777 :
4778 0 : if (spdk_unlikely(error == true)) {
4779 0 : return -1;
4780 : }
4781 :
4782 0 : if (reaped == 0) {
4783 : /* In some cases we may not receive any CQE but we still may have pending IO requests waiting for
4784 : * a resource (e.g. a WR from the data_wr_pool).
4785 : * We need to start processing of such requests if no CQE reaped */
4786 0 : nvmf_rdma_poller_process_pending_buf_queue(rtransport, rpoller);
4787 : }
4788 :
4789 : /* submit outstanding work requests. */
4790 0 : _poller_submit_recvs(rtransport, rpoller);
4791 0 : _poller_submit_sends(rtransport, rpoller);
4792 :
4793 0 : return count;
4794 : }
4795 :
4796 : static void
4797 0 : _nvmf_rdma_remove_destroyed_device(void *c)
4798 : {
4799 0 : struct spdk_nvmf_rdma_transport *rtransport = c;
4800 : struct spdk_nvmf_rdma_device *device, *device_tmp;
4801 : int rc;
4802 :
4803 0 : TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
4804 0 : if (device->ready_to_destroy) {
4805 0 : destroy_ib_device(rtransport, device);
4806 : }
4807 : }
4808 :
4809 0 : free_poll_fds(rtransport);
4810 0 : rc = generate_poll_fds(rtransport);
4811 : /* cannot handle fd allocation error here */
4812 0 : if (rc != 0) {
4813 0 : SPDK_ERRLOG("Failed to generate poll fds after remove ib device.\n");
4814 : }
4815 0 : }
4816 :
4817 : static void
4818 0 : _nvmf_rdma_remove_poller_in_group_cb(void *c)
4819 : {
4820 0 : struct poller_manage_ctx *ctx = c;
4821 0 : struct spdk_nvmf_rdma_transport *rtransport = ctx->rtransport;
4822 0 : struct spdk_nvmf_rdma_device *device = ctx->device;
4823 0 : struct spdk_thread *thread = ctx->thread;
4824 :
4825 0 : if (nvmf_rdma_all_pollers_management_done(c)) {
4826 : /* destroy device when last poller is destroyed */
4827 0 : device->ready_to_destroy = true;
4828 0 : spdk_thread_send_msg(thread, _nvmf_rdma_remove_destroyed_device, rtransport);
4829 : }
4830 0 : }
4831 :
4832 : static void
4833 0 : _nvmf_rdma_remove_poller_in_group(void *c)
4834 : {
4835 0 : struct poller_manage_ctx *ctx = c;
4836 :
4837 0 : ctx->rpoller->need_destroy = true;
4838 0 : ctx->rpoller->destroy_cb_ctx = ctx;
4839 0 : ctx->rpoller->destroy_cb = _nvmf_rdma_remove_poller_in_group_cb;
4840 :
4841 : /* qp will be disconnected after receiving a RDMA_CM_EVENT_DEVICE_REMOVAL event. */
4842 0 : if (RB_EMPTY(&ctx->rpoller->qpairs)) {
4843 0 : nvmf_rdma_poller_destroy(ctx->rpoller);
4844 : }
4845 0 : }
4846 :
4847 : static int
4848 0 : nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
4849 : {
4850 : struct spdk_nvmf_rdma_transport *rtransport;
4851 : struct spdk_nvmf_rdma_poll_group *rgroup;
4852 : struct spdk_nvmf_rdma_poller *rpoller, *tmp;
4853 0 : int count = 0, rc, rc2 = 0;
4854 :
4855 0 : rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
4856 0 : rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
4857 :
4858 0 : TAILQ_FOREACH_SAFE(rpoller, &rgroup->pollers, link, tmp) {
4859 0 : rc = nvmf_rdma_poller_poll(rtransport, rpoller);
4860 0 : if (spdk_unlikely(rc < 0)) {
4861 0 : if (rc2 == 0) {
4862 0 : rc2 = rc;
4863 : }
4864 0 : continue;
4865 : }
4866 0 : count += rc;
4867 : }
4868 :
4869 0 : return rc2 ? rc2 : count;
4870 : }
4871 :
4872 : static int
4873 0 : nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
4874 : struct spdk_nvme_transport_id *trid,
4875 : bool peer)
4876 : {
4877 : struct sockaddr *saddr;
4878 : uint16_t port;
4879 :
4880 0 : spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA);
4881 :
4882 0 : if (peer) {
4883 0 : saddr = rdma_get_peer_addr(id);
4884 : } else {
4885 0 : saddr = rdma_get_local_addr(id);
4886 : }
4887 0 : switch (saddr->sa_family) {
4888 0 : case AF_INET: {
4889 0 : struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
4890 :
4891 0 : trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
4892 0 : inet_ntop(AF_INET, &saddr_in->sin_addr,
4893 0 : trid->traddr, sizeof(trid->traddr));
4894 0 : if (peer) {
4895 0 : port = ntohs(rdma_get_dst_port(id));
4896 : } else {
4897 0 : port = ntohs(rdma_get_src_port(id));
4898 : }
4899 0 : snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4900 0 : break;
4901 : }
4902 0 : case AF_INET6: {
4903 0 : struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
4904 0 : trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
4905 0 : inet_ntop(AF_INET6, &saddr_in->sin6_addr,
4906 0 : trid->traddr, sizeof(trid->traddr));
4907 0 : if (peer) {
4908 0 : port = ntohs(rdma_get_dst_port(id));
4909 : } else {
4910 0 : port = ntohs(rdma_get_src_port(id));
4911 : }
4912 0 : snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
4913 0 : break;
4914 : }
4915 0 : default:
4916 0 : return -1;
4917 :
4918 : }
4919 :
4920 0 : return 0;
4921 : }
4922 :
4923 : static int
4924 0 : nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
4925 : struct spdk_nvme_transport_id *trid)
4926 : {
4927 : struct spdk_nvmf_rdma_qpair *rqpair;
4928 :
4929 0 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4930 :
4931 0 : return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
4932 : }
4933 :
4934 : static int
4935 0 : nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
4936 : struct spdk_nvme_transport_id *trid)
4937 : {
4938 : struct spdk_nvmf_rdma_qpair *rqpair;
4939 :
4940 0 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4941 :
4942 0 : return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
4943 : }
4944 :
4945 : static int
4946 0 : nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
4947 : struct spdk_nvme_transport_id *trid)
4948 : {
4949 : struct spdk_nvmf_rdma_qpair *rqpair;
4950 :
4951 0 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
4952 :
4953 0 : return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
4954 : }
4955 :
4956 : void
4957 0 : spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
4958 : {
4959 0 : g_nvmf_hooks = *hooks;
4960 0 : }
4961 :
4962 : static void
4963 0 : nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req,
4964 : struct spdk_nvmf_rdma_request *rdma_req_to_abort,
4965 : struct spdk_nvmf_rdma_qpair *rqpair)
4966 : {
4967 0 : rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
4968 0 : rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
4969 :
4970 0 : STAILQ_INSERT_TAIL(&rqpair->pending_rdma_send_queue, rdma_req_to_abort, state_link);
4971 0 : rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING;
4972 :
4973 0 : req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
4974 0 : }
4975 :
4976 : static int
4977 0 : _nvmf_rdma_qpair_abort_request(void *ctx)
4978 : {
4979 0 : struct spdk_nvmf_request *req = ctx;
4980 0 : struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF(
4981 : req->req_to_abort, struct spdk_nvmf_rdma_request, req);
4982 0 : struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
4983 : struct spdk_nvmf_rdma_qpair, qpair);
4984 : int rc;
4985 :
4986 0 : spdk_poller_unregister(&req->poller);
4987 :
4988 0 : switch (rdma_req_to_abort->state) {
4989 0 : case RDMA_REQUEST_STATE_EXECUTING:
4990 0 : rc = nvmf_ctrlr_abort_request(req);
4991 0 : if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
4992 0 : return SPDK_POLLER_BUSY;
4993 : }
4994 0 : break;
4995 :
4996 0 : case RDMA_REQUEST_STATE_NEED_BUFFER:
4997 0 : STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue,
4998 : &rdma_req_to_abort->req, spdk_nvmf_request, buf_link);
4999 :
5000 0 : nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5001 0 : break;
5002 :
5003 0 : case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
5004 0 : STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort,
5005 : spdk_nvmf_rdma_request, state_link);
5006 :
5007 0 : nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5008 0 : break;
5009 :
5010 0 : case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
5011 0 : STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort,
5012 : spdk_nvmf_rdma_request, state_link);
5013 :
5014 0 : nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5015 0 : break;
5016 :
5017 0 : case RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING:
5018 : /* Remove req from the list here to re-use common function */
5019 0 : STAILQ_REMOVE(&rqpair->pending_rdma_send_queue, rdma_req_to_abort,
5020 : spdk_nvmf_rdma_request, state_link);
5021 :
5022 0 : nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort, rqpair);
5023 0 : break;
5024 :
5025 0 : case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
5026 0 : if (spdk_get_ticks() < req->timeout_tsc) {
5027 0 : req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0);
5028 0 : return SPDK_POLLER_BUSY;
5029 : }
5030 0 : break;
5031 :
5032 0 : default:
5033 0 : break;
5034 : }
5035 :
5036 0 : spdk_nvmf_request_complete(req);
5037 0 : return SPDK_POLLER_BUSY;
5038 : }
5039 :
5040 : static void
5041 0 : nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
5042 : struct spdk_nvmf_request *req)
5043 : {
5044 : struct spdk_nvmf_rdma_qpair *rqpair;
5045 : struct spdk_nvmf_rdma_transport *rtransport;
5046 : struct spdk_nvmf_transport *transport;
5047 : uint16_t cid;
5048 : uint32_t i, max_req_count;
5049 0 : struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL, *rdma_req;
5050 :
5051 0 : rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
5052 0 : rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
5053 0 : transport = &rtransport->transport;
5054 :
5055 0 : cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
5056 0 : max_req_count = rqpair->srq == NULL ? rqpair->max_queue_depth : rqpair->poller->max_srq_depth;
5057 :
5058 0 : for (i = 0; i < max_req_count; i++) {
5059 0 : rdma_req = &rqpair->resources->reqs[i];
5060 : /* When SRQ == NULL, rqpair has its own requests and req.qpair pointer always points to the qpair
5061 : * When SRQ != NULL all rqpairs share common requests and qpair pointer is assigned when we start to
5062 : * process a request. So in both cases all requests which are not in FREE state have valid qpair ptr */
5063 0 : if (rdma_req->state != RDMA_REQUEST_STATE_FREE && rdma_req->req.cmd->nvme_cmd.cid == cid &&
5064 0 : rdma_req->req.qpair == qpair) {
5065 0 : rdma_req_to_abort = rdma_req;
5066 0 : break;
5067 : }
5068 : }
5069 :
5070 0 : if (rdma_req_to_abort == NULL) {
5071 0 : spdk_nvmf_request_complete(req);
5072 0 : return;
5073 : }
5074 :
5075 0 : req->req_to_abort = &rdma_req_to_abort->req;
5076 0 : req->timeout_tsc = spdk_get_ticks() +
5077 0 : transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
5078 0 : req->poller = NULL;
5079 :
5080 0 : _nvmf_rdma_qpair_abort_request(req);
5081 : }
5082 :
5083 : static void
5084 0 : nvmf_rdma_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
5085 : struct spdk_json_write_ctx *w)
5086 : {
5087 : struct spdk_nvmf_rdma_poll_group *rgroup;
5088 : struct spdk_nvmf_rdma_poller *rpoller;
5089 :
5090 0 : assert(w != NULL);
5091 :
5092 0 : rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
5093 :
5094 0 : spdk_json_write_named_uint64(w, "pending_data_buffer", rgroup->stat.pending_data_buffer);
5095 :
5096 0 : spdk_json_write_named_array_begin(w, "devices");
5097 :
5098 0 : TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
5099 0 : spdk_json_write_object_begin(w);
5100 0 : spdk_json_write_named_string(w, "name",
5101 0 : ibv_get_device_name(rpoller->device->context->device));
5102 0 : spdk_json_write_named_uint64(w, "polls",
5103 : rpoller->stat.polls);
5104 0 : spdk_json_write_named_uint64(w, "idle_polls",
5105 : rpoller->stat.idle_polls);
5106 0 : spdk_json_write_named_uint64(w, "completions",
5107 : rpoller->stat.completions);
5108 0 : spdk_json_write_named_uint64(w, "requests",
5109 : rpoller->stat.requests);
5110 0 : spdk_json_write_named_uint64(w, "request_latency",
5111 : rpoller->stat.request_latency);
5112 0 : spdk_json_write_named_uint64(w, "pending_free_request",
5113 : rpoller->stat.pending_free_request);
5114 0 : spdk_json_write_named_uint64(w, "pending_rdma_read",
5115 : rpoller->stat.pending_rdma_read);
5116 0 : spdk_json_write_named_uint64(w, "pending_rdma_write",
5117 : rpoller->stat.pending_rdma_write);
5118 0 : spdk_json_write_named_uint64(w, "pending_rdma_send",
5119 : rpoller->stat.pending_rdma_send);
5120 0 : spdk_json_write_named_uint64(w, "total_send_wrs",
5121 : rpoller->stat.qp_stats.send.num_submitted_wrs);
5122 0 : spdk_json_write_named_uint64(w, "send_doorbell_updates",
5123 : rpoller->stat.qp_stats.send.doorbell_updates);
5124 0 : spdk_json_write_named_uint64(w, "total_recv_wrs",
5125 : rpoller->stat.qp_stats.recv.num_submitted_wrs);
5126 0 : spdk_json_write_named_uint64(w, "recv_doorbell_updates",
5127 : rpoller->stat.qp_stats.recv.doorbell_updates);
5128 0 : spdk_json_write_object_end(w);
5129 : }
5130 :
5131 0 : spdk_json_write_array_end(w);
5132 0 : }
5133 :
5134 : const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
5135 : .name = "RDMA",
5136 : .type = SPDK_NVME_TRANSPORT_RDMA,
5137 : .opts_init = nvmf_rdma_opts_init,
5138 : .create = nvmf_rdma_create,
5139 : .dump_opts = nvmf_rdma_dump_opts,
5140 : .destroy = nvmf_rdma_destroy,
5141 :
5142 : .listen = nvmf_rdma_listen,
5143 : .stop_listen = nvmf_rdma_stop_listen,
5144 : .cdata_init = nvmf_rdma_cdata_init,
5145 :
5146 : .listener_discover = nvmf_rdma_discover,
5147 :
5148 : .poll_group_create = nvmf_rdma_poll_group_create,
5149 : .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group,
5150 : .poll_group_destroy = nvmf_rdma_poll_group_destroy,
5151 : .poll_group_add = nvmf_rdma_poll_group_add,
5152 : .poll_group_remove = nvmf_rdma_poll_group_remove,
5153 : .poll_group_poll = nvmf_rdma_poll_group_poll,
5154 :
5155 : .req_free = nvmf_rdma_request_free,
5156 : .req_complete = nvmf_rdma_request_complete,
5157 :
5158 : .qpair_fini = nvmf_rdma_close_qpair,
5159 : .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid,
5160 : .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid,
5161 : .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid,
5162 : .qpair_abort_request = nvmf_rdma_qpair_abort_request,
5163 :
5164 : .poll_group_dump_stat = nvmf_rdma_poll_group_dump_stat,
5165 : };
5166 :
5167 2 : SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma);
5168 2 : SPDK_LOG_REGISTER_COMPONENT(rdma)
|