

SPDK Vhost Performance Report Release 21.04

Testing Date: May 2021

Performed by: Karol Latecki (<u>karol.latecki@intel.com</u>) Maciej Wawryk (<u>maciejx.wawryk@intel.com</u>)

Acknowledgments:

James Harris (james.r.harris@intel.com) John Kariuki (john.k.kariuki@intel.com)

intel.

Contents

Contents	2
Audience and Purpose	3
Test setup	4 5 5
Introduction to the SPDK Vhost target SPDK Vhost target architecture	
Test Case 1: SPDK Vhost Core Scaling 9 4KB Random Read Results 12 4KB Random Write Results 12 4KB Random Read-Write Results 12 4KB Random Read-Write Results 12 Logical Volumes performance impact 14 LTO performance impact 15 Packed Ring performance impact 16 Test Case 2: Rate Limiting IOPS per VM 18	1 2 3 4 5 6 8
Test Case 2 Results 20 Conclusions 22	
Test Case 3: Performance per NVMe drive 22 Test Case 3 results 24 Conclusions 27	4
Summary	8
List of Tables	9
List of Figures	D

Audience and Purpose

This report is intended for people who are interested in looking at SPDK Vhost scsi and blk stack performance and comparison to its Linux kernel equivalents. It provides performance and efficiency comparisons between SPDK Vhost-scsi and Linux Kernel Vhost-scsi software stacks under various test cases.

The purpose of this report is not to imply a single correct approach, but rather to provide a baseline of well-tested configurations and procedures that produce repeatable and reproducible results. This report can also be viewed as information regarding best known method when performance testing SPDK Vhost-scsi and Vhost-blk stacks.

Test setup

Hardware configuration

Table 1: Hardware setup configuration

Item	Description					
Server Platform	Intel WolfPass R2224WFTZS					
Motherboard	S2600WFT					
CPU	2 CPU sockets, Intel(R) Xeon(R) Gold 6230N CPU @ 2.30GHz Number of cores 20 per socket, number of threads 40 per socket Both sockets populated Microcode: 0x4003003					
Memory	12 x 32GB Micron DDR4 36ASF4G72PZ-2G9E	2				
	Total 384 GBs					
	Memory channel population:					
	P1	P2				
		CPU1_DIMM_A1 CPU2_DIMM_A1				
	CPU1_DIMM_B1	CPU2_DIMM_B1				
	CPU1_DIMM_C1 CPU2_DIMM_C1					
	CPU1_DIMM_D1	CPU2_DIMM_D1				
	CPU1_DIMM_E1 CPU2_DIMM_E1					
	CPU1_DIMM_F1 CPU2_DIMM_F1					
Operating System	Fedora 33					
BIOS	SE5C620.86B.02.01.0013.121520200651					

Linux kernel version	5.10.19-200.fc33.x86_64
SPDK version	SPDK 21.04
Qemu version	QEMU emulator version 5.1.0 (qemu-5.1.0-9.fc33)
Storage	OS: 1x 120GB Intel SSDSC2BB120G4
	Storage : 24x Intel [®] P4610 [™] 1.6TBs (FW: VDV10170) (6 on CPU NUMA Node 0, 18 on CPU NUMA Node 1)

BIOS Settings

Table 2: Test platform BIOS settings

Item	Description
BIOS	VT-d = Enabled
	CPU Power and Performance Policy = <performance></performance>
	CPU C-state = No Limit
	CPU P-state = Enabled
	Enhanced Intel [®] Speedstep [®] Tech = Enabled
	Turbo Boost = Enabled
	Hyper Threading = Enabled

Virtual Machine Settings

Table 3: Guest VM configuration

Item	Description
CPU	2vCPU, pass through from physical host server. Explicit core usage enforced using "taskset –a –c" command. QEMU arguments for starting the VM: -cpu host -smp 1
Memory	 4 GB RAM. Memory is pre-allocated for each VM using Hugepages on host system and used from appropriate NUMA node, to match the CPU which was passed to the VM. QEMU arguments: -m 4096 -object memory-backend-file,id=mem,size=4096M,mem-path=/dev/hugepages,share=on,prealloc=yes,host-nodes=0,policy=bind
Operating System	Fedora 33
Linux kernel version	5.9.16-200.fc33.x86_64
Additional boot options in /etc/default/grub	 Multi queue enabled: scsi_mod.use_blk_mq=1 Spectre-meltdown patches disabled: spectre_v2=off nopti

intel

Kernel & BIOS Spectre-Meltdown information

Host server system uses 5.10.19 kernel version which is available from the DNF repository. The default Spectre-Meltdown mitigation patches for this kernel version have been left enabled.

The guest VM systems use 5.10.8 kernel version, which is available from the DNF repository. The default Spectre-Meltdown mitigation patches for this kernel version have been disabled on guest systems by adding the following in their /etc/default/grub file:

spectre_v2=off nopti mitigations=off

Introduction to the SPDK Vhost target

SPDK Vhost is a userspace target designed to extend the performance efficiencies of SPDK into QEMU/KVM virtualization environments. The SPDK Vhost-scsi target presents a broad range of SPDK-managed block devices into virtual machines. SPDK team has leveraged existing SPDK SCSI layer, DPDK Vhost library, QEMU Vhost-scsi and Vhost-user functionality in order to create the high performance SPDK userspace Vhost target.

SPDK Vhost target architecture

QEMU setups Vhost target via UNIX domain socket. The Vhost target transfers data to/from the guest VM via shared memory. QEMU pre-allocates huge pages for the guest VM to enable DMA by the Vhost target. The guest VM submits I/O directly to the Vhost target via virtqueues in shared memory as shown in Figure 1 on example of virtio-scsi. It should be noted that there is no QEMU intervention during the I/O submission process. The Vhost target then completes I/O to the guest VM via virtqueues in shared memory. There is a completion interrupt sent using eventfd which requires a system call and a guest VM exit.

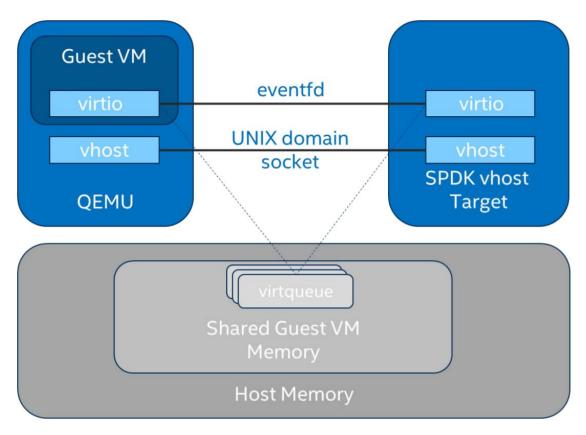


Figure 1: SPDK Vhost-scsi architecture

This report shows the performance comparisons between the traditional interrupt-driven kernel Vhostscsi and the accelerated polled-mode driven SPDK Vhost-scsi under 3 different test cases using local

NVMe storage. Additionally, the SPDK Vhost-blk stack is included in the report for further comparison with the SCSI stack.

Test Case 1: SPDK Vhost Core Scaling

This test case was performed in order to understand aggregate VM performance with SPDK Vhost I/O core scaling. We ran up to 36 virtual machines, each running following FIO workloads:

- 4KB 100% Random Read
- 4KB 100% Random Write
- 4KB Random 70% Read / 30 % Write

We increased the number of CPU cores used by SPDK Vhost target to process I/O from 1 up to 12 and measured the throughput (in IOPS) and latency. The number of VMs between test runs was not constant and was increased by 6 for each Vhost CPU added, up to a maximum of 36 VMs. VM number was not increased beyond 36 because of the platform capabilities in terms of available CPU cores.

FIO was run in client-server mode. FIO client was run on the host machine and distributed jobs to FIO servers run on each VM. This allowed us to start the FIO jobs across all VMs at the same time. The gtod_reduce=1 option was used to disable FIO latency measurements which allowed better IOPS and bandwidth results.

Results in the table and charts represent aggregate performance (IOPS and average latency) seen across all the VMs. The results are average of 3 runs.

Item	Description
Test case	Test SPDK Vhost target I/O core scaling performance
Test configuration	FIO Version: fio-3.19
	VM Configuration:
	 Common settings are described in the <u>Virtual Machine Settings</u> chapter. Number of VMs: variable (6 VMs per 1 Vhost CPU core, up to 36 VMs max). Each VM has a single Vhost device as a target for the FIO workload. This is achieved by sharing SPDK NVMe bdevs by using either a Split NVMe vbdev or Logical Volume bdev configuration.
	 SPDK Vhost target configuration: Test were run with both the Vhost-scsi and Vhost-blk stacks. The Vhost-scsi stack was run with Split NVMe bdevs and Logical Volume bdevs. Vhost-blk stack was run with Logical Volume bdevs. Tests were ran with 1,2,4,6,8,10 and 12 cores for each stack-bdev combination. Kernel Vhost target configuration: N/A

Table 4: SPDK Vhost Core Scaling test configuration

FIO configuration	[global] ioengine=libaio direct=1 thread=1 norandommap=1 time_based=1 gtod_reduce=1 ramp_time=60s runtime=240s numjobs=1 bs=4k rw=randrw rwmixread=100 (100% reads), 70 (70% reads, 30% writes), 0 (100% writes)
	iodepth= $\{1, 32, 64\}$

4KB Random Read Results

Table 5: SPDK Vhost core scaling results, 4KB 100% Random Reads IOPS, QD=64

# of CPU cores	# of VMs	Stack / Backend	IOPS (millions)
		SCSI / Split NVMe Bdev	1.84
1	6	SCSI / Lvol Bdev	1.55
		BLK / Lvol Bdev	1.55
		SCSI / Split NVMe Bdev	3.04
2	12	SCSI / Lvol Bdev	2.57
		BLK / Lvol Bdev	2.70
		SCSI / Split NVMe Bdev	4.92
4	24	SCSI / Lvol Bdev	4.13
		BLK / Lvol Bdev	4.07
	36	SCSI / Split NVMe Bdev	6.55
6		SCSI / Lvol Bdev	5.20
		BLK / Lvol Bdev	5.58
		SCSI / Split NVMe Bdev	7.14
8	36	SCSI / Lvol Bdev	6.61
		BLK / Lvol Bdev	6.98
		SCSI / Split NVMe Bdev	7.18
10	36	SCSI / Lvol Bdev	6.76
		BLK / Lvol Bdev	7.31
		SCSI / Split NVMe Bdev	7.46
12	36	SCSI / Lvol Bdev	7.63
		BLK / Lvol Bdev	8.35

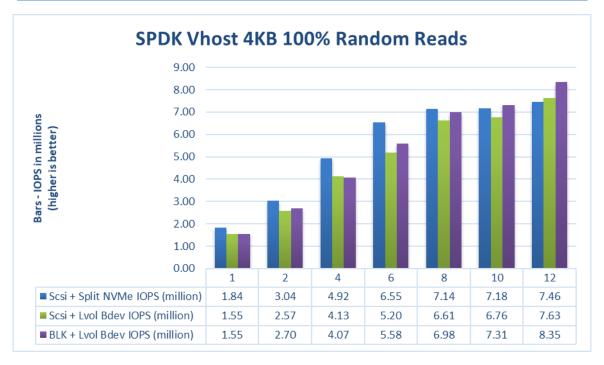


Figure 2: Comparison of performance between various SPDK Vhost stack-bdev combinations for 4KB Random Read QD=64 workload

intel

4KB Random Write Results

Table 6: SPDK Vhost core scaling results, 4KB 100% Random Write IOPS, QD=32

# of CPU cores	# of VMs	Stack / Backend	IOPS (millions)
		SCSI / Split NVMe Bdev	1.65
1	6	SCSI / Lvol Bdev	1.56
		BLK / Lvol Bdev	1.62
		SCSI / Split NVMe Bdev	3.03
2	12	SCSI / Lvol Bdev	2.89
		BLK / Lvol Bdev	3.13
		SCSI / Split NVMe Bdev	5.05
4	24	SCSI / Lvol Bdev	4.78
		BLK / Lvol Bdev	5.07
		SCSI / Split NVMe Bdev	6.78
6	36	SCSI / Lvol Bdev	6.37
		BLK / Lvol Bdev	6.89
		SCSI / Split NVMe Bdev	7.10
8	36	SCSI / Lvol Bdev	7.11
		BLK / Lvol Bdev	7.71
		SCSI / Split NVMe Bdev	5.87
10	36	SCSI / Lvol Bdev	5.83
		BLK / Lvol Bdev	6.23
		SCSI / Split NVMe Bdev	6.64
12	36	SCSI / Lvol Bdev	7.14
		BLK / Lvol Bdev	7.90

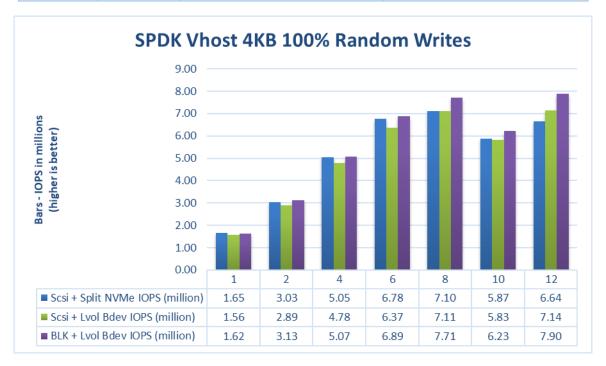


Figure 3: Comparison of performance between various SPDK Vhost stack-bdev combinations for 4KB Random Write QD=32 workload

4KB Random Read-Write Results

Table 7: SPDK Vhost core scaling results, 4KB Random 70% Read 30% Write IOPS, QD=64

# of CPU cores	# of VMs	Stack / Backend	IOPS (millions)
		SCSI / Split NVMe Bdev	1.64
1	6	SCSI / Lvol Bdev	1.51
		BLK / Lvol Bdev	1.53
		SCSI / Split NVMe Bdev	2.92
2	12	SCSI / Lvol Bdev	2.52
		BLK / Lvol Bdev	2.69
		SCSI / Split NVMe Bdev	5.00
4	24	SCSI / Lvol Bdev	4.01
		BLK / Lvol Bdev	4.31
	36	SCSI / Split NVMe Bdev	6.19
6		SCSI / Lvol Bdev	5.22
		BLK / Lvol Bdev	5.64
		SCSI / Split NVMe Bdev	6.51
8	36	SCSI / Lvol Bdev	6.20
		BLK / Lvol Bdev	6.59
		SCSI / Split NVMe Bdev	6.26
10	36	SCSI / Lvol Bdev	6.30
		BLK / Lvol Bdev	6.65
		SCSI / Split NVMe Bdev	6.53
12	36	SCSI / Lvol Bdev	6.42
		BLK / Lvol Bdev	7.17

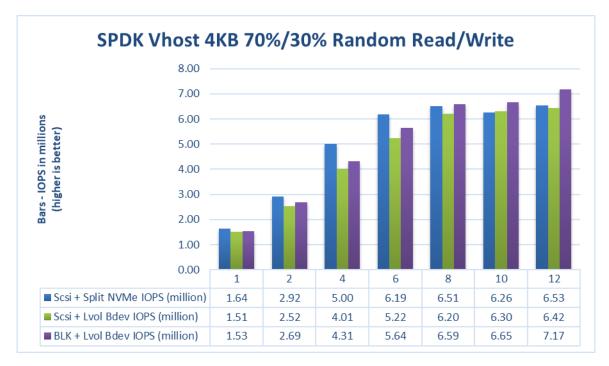


Figure 4: Comparison of performance between various SPDK Vhost stack-bdev combinations for 4KB Random 70% Read 30% Write QD=64 workload

intel

Logical Volumes performance impact

The SPDK Vhost SCSI tests were run using two bdev backends – Split NVMes and Logical Volumes. Both "Split NVMe Bdevs" and "Logical Volume Bdevs" allow to logically partition NVMe SSDs, the latter being more flexible in configuration. Here we measure the overhead of extra flexibility afforded by Logical Volumes.

Workload	# of CPU cores	# of VMs	Vhost SCSI + Split NVMe IOPS (millions)	Vhost SCSI + Lvol IOPS (millions)	Lvol Impact (%)
	1	6	1.84	1.55	-15.89%
	2	12	3.04	2.57	-15.59%
4//0.4000/	4	24	4.92	4.13	-16.12%
4KB 100% Random Read	6	36	6.55	5.20	-20.69%
Kandom Kead	8	36	7.14	6.61	-7.44%
	10	36	7.18	6.76	-5.75%
	12	36	7.46	7.63	2.23%
	1	6	1.65	1.56	-5.32%
	2	12	3.03	2.89	-4.39%
	4	24	5.05	4.78	-5.35%
4KB 100%	6	36	6.78	6.37	-6.00%
Random Write	8	36	7.10	7.11	0.04%
	10	36	5.87	5.83	-0.71%
	12	36	6.64	7.14	7.48%
	1	6	1.30	1.26	-3.59%
	2	12	2.37	2.20	-6.95%
4KB 70%	4	24	4.27	3.80	-10.92%
Random Read	6	36	5.36	4.89	-8.64%
30% Random Write	8	36	5.60	5.30	-5.31%
write	10	36	5.41	5.23	-3.31%
	12	36	5.64	5.63	-0.23%

Table 8: Logical Volumes performance impact for SPDK Vhost SCSI

LTO performance impact

Selected test cases were re-run with LTO (Link Time Optimization) enabled for SPDK compilation. This should positively impact overall SPDK performance. The following comparison was done using SPDK Vhost SCSI with Logical Volume bdevs.

Workload	# of CPU cores	# of VMs	IOPS (millions) LTO Disabled	IOPS (millions) LTO Enabled	LTO Impact (%)
	1	6	1.55	1.72	11.10%
	2	12	2.57	2.82	9.68%
	4	24	4.13	4.63	12.28%
4KB 100% Random Read	6	36	5.20	5.78	11.35%
Kanuom Keau	8	36	6.61	6.96	5.31%
	10	36	6.76	6.84	1.06%
	12	36	7.63	7.60	-0.34%
	1	6	1.56	1.54	-1.36%
	2	12	2.89	2.86	-1.10%
	4	24	4.78	4.65	-2.62%
4KB 100% Random Write	6	36	6.37	6.28	-1.51%
Kandoni write	8	36	7.11	7.03	-1.11%
	10	36	5.83	5.78	-0.81%
	12	36	7.14	6.97	-2.37%
	1	6	1.51	1.63	7.79%
	2	12	2.52	2.73	8.03%
4KB 70%	4	24	4.01	4.62	15.19%
Random Read 30% Random	6	36	5.22	5.77	10.37%
Write	8	36	6.20	6.40	3.09%
	10	36	6.30	6.32	0.44%
	12	36	6.42	6.61	2.87%

Table 9: LTO performance SPDK Vhost SCSI with Logical Volume bdevs

intel.

Packed Ring performance impact

Selected test cases were re-run to show benefits of using Packed Rings as an option when configuring SPDK Vhost BLK controllers. For this, an optional parameter "—packed_ring" must be used when creating a SPDK Vhost BLK controller. Packed Ring feature requires QEMU 4.2.0 or later.

Following results show comparison of running SPDK Vhost-Blk with Packed Ring enabled with fio latency measurements both enabled and disabled. Because other QEMU version was used, base results (Split Ring) were run again to produce a fresh base to compare to.

 Table 10: Packed Ring performance impact on SPDK Vhost BLK controllers. Fio gtod_reduce=disabled

Workload	# of CPU cores	# of VMs	IOPS (millions) Split Ring	IOPS (millions) Packed Ring	Avg. Latency (usec) Split Ring	Avg. Latency (usec) Packed Ring	Packed Ring IOPS impact (%)	Packed Ring Avg. Latency impact (%)
	1	6	1.56	1.55	246.24	248.24	-0.79%	0.81%
	2	12	2.73	2.77	281.06	277.43	1.36%	-1.29%
4KB 100%	4	24	4.43	4.43	346.56	342.03	0.10%	-1.31%
Random	6	36	5.58	5.64	412.49	407.89	1.07%	-1.12%
Read QD=64	8	36	6.83	6.87	336.42	334.51	0.50%	-0.57%
	10	36	7.11	7.17	331.48	326.49	0.86%	-1.50%
	12	36	7.76	7.87	296.71	293.41	1.44%	-1.11%
	1	6	1.51	1.69	129.85	113.32	12.27%	-12.73%
	2	12	2.87	2.94	133.74	130.86	2.20%	-2.15%
4KB 100%	4	24	4.64	4.71	162.68	161.79	1.52%	-0.55%
Random	6	36	6.29	6.26	182.61	184.10	-0.45%	0.81%
Write QD=32	8	36	7.11	7.15	163.28	160.56	0.49%	-1.66%
	10	36	5.87	7.28	199.18	159.72	24.03%	-19.81%
	12	36	7.31	7.74	156.87	314.90	0.70%	-0.97%
	1	6	1.53	1.53	247.49	250.06	0.40%	1.04%
4KB 70%	2	12	2.67	2.72	286.37	282.40	1.84%	-1.38%
Random	4	24	4.47	4.49	342.24	343.03	0.51%	0.23%
Read 30%	6	36	5.71	5.75	402.30	400.94	0.64%	-0.34%
Random	8	36	6.40	6.43	358.58	358.24	0.49%	-0.09%
Write QD=64	10	36	5.97	6.12	384.85	376.29	2.54%	-2.23%
	12	36	6.72	6.87	340.99	335.52	2.20%	-1.60%

Conclusions

- For SPDK Vhost SCSI performance with split NVMe bdevs, we measured 1.65 million IOPS on one Vhost core for the 4KB 100% Random Write workload. The single Vhost core IOPS for 4 KB Random Read and 4KB Random 70/30 Read/Write were 1.84 million and 1.64 million IOPS respectively. For all workloads, the IOPS scaled near linearly with addition of I/O processing cores up to 6 CPU cores. Peak performance was achieved at 8 CPU cores for all workloads. Further increasing the number of cores does not result in performance improvement or it is not significant.
- For SPDK Vhost SCSI with Logical Volume backend devices, we measured about 1.5 million IOPS on one Vhost core for all 3 workloads. Performance scaled near linearly with addition of I/O processing cores up to 8 CPU cores. Increasing the number of I/O processing cores further results in non-linear IOPS gains. Peak performance is reached at 12 CPU cores for all workloads.
- 3. For SPDK Vhost BLK with Logical Volume backend devices, we measured over 1.5 million IOPS on one Vhost core for all workloads. Performance scaled near linearly up to 8 CPU cores. Increasing the number of cores improves performance further, but the gains are not linear.
- 4. Using Logical Volumes has a noticeable impact on the overall performance. For Vhost tests using 6 or less CPUs (when Vhost is saturated with IO traffic from VMs) performance impact of Logical Volumes is between 10-20%. Further increasing SPDK Vhost CPU cores allow Logical Volumes to perform better and their performance impact is on par with Split NVMe Bdevs (less than 10% difference).
- LTO compilation option increased SPDK Vhost performance by up to 15% percent in the scaling phase (8 Vhost CPU cores or less) for Random Read and Random Read/Write workloads. Beyond 8 vhost cores, LTO benefit is up to 5% or is negligible. The reason for this behavior is described in point 6. For Random Write workload LTO did not improve performance.
- 6. For some workloads there is a slight performance drop when Vhost is run with 10 or 12 CPU cores. The platform has 80 CPU threads available, and 36 VMs use 72 CPU threads. Therefore, when 10 or 12 are used for the Vhost process there is not enough left to accommodate all the VMs. Some of the VMs share CPU threads, thus becoming less efficient.
- 7. Using Packed Ring option instead of default Split Ring mode for SPDK Vhost BLK controllers results in minor performance improvement.

intel

Test Case 2: Rate Limiting IOPS per VM

This test case was geared towards understanding how many VMs can be supported at a pre-defined Quality of Service of IOPS per Vhost device. Both read and write IOPS were rate limited for each Vhost device on each of the VMs and then VM density was compared between SPDK & the Linux Kernel. 10K IOPS were chosen as the rate limiter using linux cgroups2.

Each individual VM was running FIO with the following workloads:

- 4KB 100% Random Read
- 4KB 100% Random Write

The results in tables are average of 3 runs.

Table 11: Rate Limiting IOPS per VM test c	case configuration
--	--------------------

Item	Description
Test case	Test rate limiting IOPS/VM to 10000 IOPS
Test configuration	FIO Version: fio-3.19
	VM Configuration:
	 Common settings are described in the <u>Virtual Machine Settings</u> chapter. Number of VMs: 24 / 48 / 72
	 Each VM has a single Vhost device which is one of equal partitions of NVMe drive. Total number of partitions depends on run test case. For 24 VMs: 24xNVMe * 1 partition per NVMe = 24 partitions For 48 VMs: 24xNVMe * 2 partitions per NVMe = 48 partitions For 72 VMs: 24xNVMe * 3 partitions per NVMe = 72 partitions Devices on VMs were throttled to run at a maximum of 10k IOPS (read and write)
	 SPDK Vhost target configuration: Test were run with both Vhost-scsi and Vhost-blk stacks. The Vhost-scsi stack was run with Split NVMe bdevs and Logical Volume bdevs. The Vhost-blk stack was run with Logical Volume bdevs. Test were run with Vhost using 4 CPU cores (NUMA optimized).
	 Kernel Vhost-scsi configuration: Cgroups were used to limit the Vhost process to 4 cores. NUMA optimization were not explored.
FIO configuration run on each VM	[global] ioengine=libaio direct=1 rw=randrw

rwmixread=100 (100% reads), 0 (100% writes)
thread=1 norandommap=1 time_based=1 runtime=300s ramp_time=10s bs=4k iodepth=1 numjobs=1

intel

Test Case 2 Results

Table 12: 4KB 100% Random Reads QD=1 rate limiting test results

# of VMs	Stack	Backend bdev	IOPS (k)	Avg Lat. (usec)
	SPDK-SCSI	Split NVMe	239.96	99.39
	SPDK-SCSI	Logical Volume	239.96	99.40
24 VMs	SPDK-BLK	Logical Volume	239.97	99.40
	Kernel-SCSI	Partitioned NVMe	169.14	141.26
	SPDK-SCSI	Split NVMe	479.77	99.09
	SPDK-SCSI	Logical Volume	479.71	99.10
48 VMs	SPDK-BLK	Logical Volume	479.79	99.11
	Kernel-SCSI	Partitioned NVMe	172.31	281.76
	SPDK-SCSI	Split NVMe	679.16	104.87
	SPDK-SCSI	Logical Volume	671.36	106.10
72 VMs	SPDK-BLK	Logical Volume	686.88	103.76
	Kernel-SCSI	Partitioned NVMe	276.60	263.51

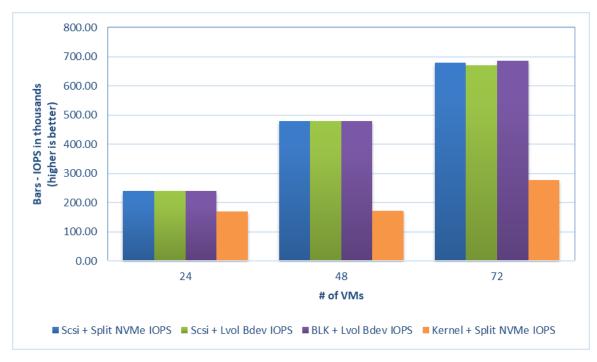


Figure 5: 4KB 100% Random Reads IOPS, QD=1, throttling = 10k IOPS

intel.

Table 13: 4KB 100% Random Writes QD=1 rate limiting test results

# of VMs	Stack	Backend bdev	IOPS (k)	Avg Lat. (usec)
	SPDK-SCSI	Split NVMe	239.98	99.40
	SPDK-SCSI	Logical Volume	239.99	99.38
24 VMs	SPDK-BLK	Logical Volume	240.00	99.41
	Kernel-SCSI	Partitioned NVMe	192.39	124.80
	SPDK-SCSI	Split NVMe	479.98	99.24
	SPDK-SCSI	Logical Volume	479.98	99.18
48 VMs	SPDK-BLK	Logical Volume	479.99	99.26
	Kernel-SCSI	Partitioned NVMe	175.61	274.21
	SPDK-SCSI	Split NVMe	719.96	99.11
	SPDK-SCSI	Logical Volume	719.94	99.19
72 VMs	SPDK-BLK	Logical Volume	719.95	99.21
	Kernel-SCSI	Partitioned NVMe	325.25	219.18

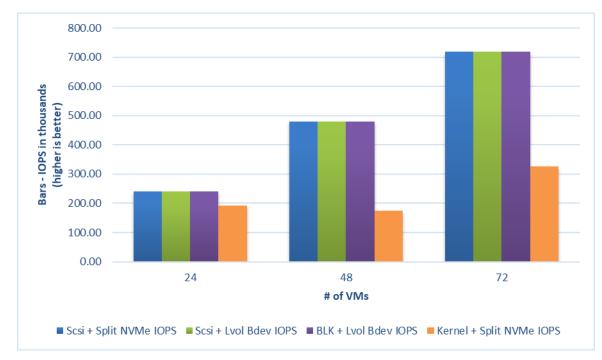


Figure 6: 4KB 100% Random Writes IOPS, QD=1, throttling = 10k IOPS

Conclusions

- 1. Using just 4 I/O processing cores, the SPDK vhost served 10,000 IOPS/VM to up to 48 VMs for 4 KB random read workload and 72 VMs for the 4 KB random write workload.
- 2. The Kernel Vhost was not able to serve IO at 10K IOPS/VM with just 4 I/O processing cores.
- 3. Average latencies were up to 2.8x times better for Random Read and up to 2.7x times better for Random Write workloads with the SPDK Vhost when compared to Kernel Vhost.

Note: The Kernel-Vhost process was not NUMA-optimized for this scenario.

Test Case 3: Performance per NVMe drive

This test case was performed in order to understand performance and efficiency of the Vhost scsi and blk process using SPDK vs. Linux Kernel with a single NVMe drive on 2 VMs. Each VM had a single Vhost device which is one of two equal partitions of an NVMe drive. Results in the table represent performance (IOPS, avg. latency & CPU %) seen from the VM. The VM was running FIO with the following workloads:

- 4KB 100% Random Read
- 4KB 100% Random Write
- 4KB Random 70% Read 30% Write

The results in tables are average of 3 runs.

Table 14: Performance	per NVMe o	lrive test cas	e configuration
			configuration

Item	Description
Test case	Test SPDK Vhost target I/O core scaling performance
Test configuration	FIO Version: fio-3.19
	VM Configuration:
	 Common settings are described in the <u>Virtual Machine Settings</u> chapter. 2 VMs were tested Each VM had a single Vhost device which was one of two equal partitions of
	a single NVMe drive.
	 SPDK Vhost target configuration: The SPDK Vhost process was run on a single, physical CPU core. The Vhost-scsi stack was run with Split NVMe bdevs and Logical Volume bdevs. The Vhost-blk stack was run with Logical Volume bdevs. Kernel Vhost target configuration: The Vhost process was run on a single, physical CPU core using cgroups.
FIO configuration	[global] ioengine=libaio direct=1 rw=randrw rwmixread=100 (100% reads), 70 (70% reads, 30% writes), 0 (100% writes) thread=1 norandommap=1 time_based=1 runtime=240s ramp_time=60s bs=4k iodepth=1 / 8 / 32 / 64 numjobs=1

intel Test Case 3 results

SPDK Vhost-Scsi

Table 15:Performance per NVMe drive IOPS and latency results, SPDK SCSI stack

Access pattern	Backend	QD	Throughput (IOPS)	Avg. latency (usec)
4k 100% Random Reads	Split NVMe	1	24644.35	80.59
4k 100% Random Reads	Split NVMe	8	171736.54	92.60
4k 100% Random Reads	Split NVMe	32	444989.30	143.54
4k 100% Random Reads	Split NVMe	64	576174.61	221.79
4k 100% Random Reads	Lvol	1	24670.33	80.66
4k 100% Random Reads	Lvol	8	170383.36	93.32
4k 100% Random Reads	Lvol	32	445830.32	143.15
4k 100% Random Reads	Lvol	64	576085.73	222.09
4k 100% Random Writes	Split NVMe	1	116696.16	16.36
4k 100% Random Writes	Split NVMe	8	413867.52	39.00
4k 100% Random Writes	Split NVMe	32	475329.87	134.74
4k 100% Random Writes	Split NVMe	64	465863.30	274.91
4k 100% Random Writes	Lvol	1	114138.68	16.86
4k 100% Random Writes	Lvol	8	423668.62	37.51
4k 100% Random Writes	Lvol	32	471603.83	135.58
4k 100% Random Writes	Lvol	64	473309.90	270.69
4k 70%/30% Random Read Writes	Split NVMe	1	31672.91	62.65
4k 70%/30% Random Read Writes	Split NVMe	8	169641.70	93.46
4k 70%/30% Random Read Writes	Split NVMe	32	340740.65	189.63
4k 70%/30% Random Read Writes	Split NVMe	64	401866.34	320.64
4k 70%/30% Random Read Writes	Lvol	1	31589.29	62.86
4k 70%/30% Random Read Writes	Lvol	8	160838.33	99.22
4k 70%/30% Random Read Writes	Lvol	32	323809.47	197.54
4k 70%/30% Random Read Writes	Lvol	64	413719.98	312.22

SPDK Vhost-Blk

 Table 16: Performance per NVMe drive IOPS and latency results, SPDK BLK stack

Access pattern	Backend	QD	Throughput (IOPS)	Avg. latency (usec)
4k 100% Random Reads	Lvol	1	24817.79	79.91
4k 100% Random Reads	Lvol	8	172770.59	91.97
4k 100% Random Reads	Lvol	32	450068.44	141.71
4k 100% Random Reads	Lvol	64	584463.26	218.98
4k 100% Random Writes	Lvol	1	107402.19	18.28
4k 100% Random Writes	Lvol	8	411668.40	39.40
4k 100% Random Writes	Lvol	32	473381.59	134.99
4k 100% Random Writes	Lvol	64	470660.92	272.56
4k 70%/30% Random Read Writes	Lvol	1	31670.46	62.77
4k 70%/30% Random Read Writes	Lvol	8	161639.65	98.56
4k 70%/30% Random Read Writes	Lvol	32	343738.67	186.13
4k 70%/30% Random Read Writes	Lvol	64	386573.60	332.44

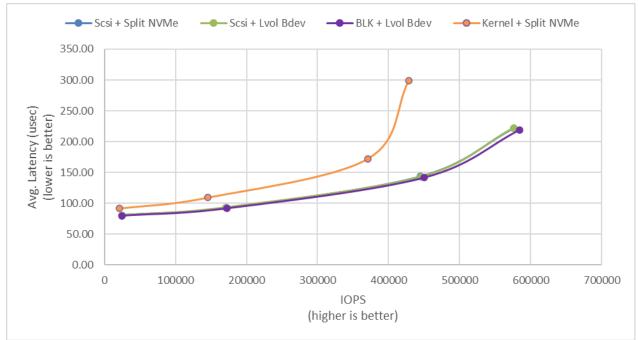

Kernel Vhost-Scsi

Table 17: Performance per NVMe drive IOPS and latency results, Kernel Vhost-Scsi

Access pattern	Backend	QD	Throughput (IOPS)	Avg. latency (usec)
4k 100% Random Reads	NVMe	1	20753.63	91.74
4k 100% Random Reads	NVMe	8	145636.32	109.50
4k 100% Random Reads	NVMe	32	370743.61	172.25
4k 100% Random Reads	NVMe	64	428334.42	298.63
4k 100% Random Writes	NVMe	1	70074.45	27.63
4k 100% Random Writes	NVMe	8	224220.38	71.57
4k 100% Random Writes	NVMe	32	416000.36	154.46
4k 100% Random Writes	NVMe	64	456087.25	280.47
4k 70%/30% Random Read Writes	NVMe	1	26208.38	75.57
4k 70%/30% Random Read Writes	NVMe	8	144852.53	109.94
4k 70%/30% Random Read Writes	NVMe	32	311034.47	205.49
4k 70%/30% Random Read Writes	NVMe	64	376818.91	338.77

SPDK Vhost Performance Report Release 21.04

intel

Figure 7: 4KB 100% Random Reads IOPS and latency

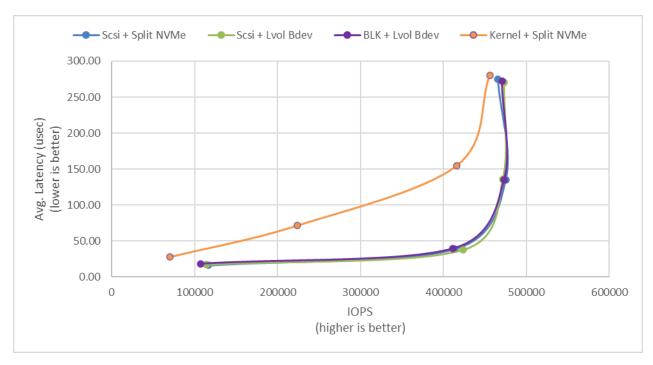
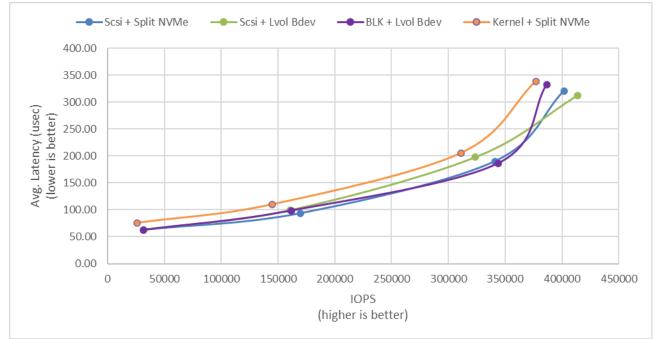



Figure 8: 4KB 100% Random Writes IOPS and latency

Figure 9: 4KB 70%/30% Random Read/Write IOPS and latency

Conclusions

1. SPDK Vhost-scsi with NVMe Split bdevs has lower latency and higher throughput than Kernel Vhost-scsi in all workload / queue depth combinations.

Summary

This report compared performance results while running Vhost-scsi using traditional interrupt-driven kernel Vhost-scsi against the accelerated polled-mode driven SPDK implementation. Various local ephemeral configurations were demonstrated, including rate limiting IOPS, performance per VM, and maximum performance from an underlying system when comparing kernel vs. SPDK Vhost-scsi target implementations.

In addition, performance impacts of using SPDK Logical Volume Bdevs and the SPDK Vhost-blk stack were presented.

This report provided information regarding methodologies and practices while benchmarking Vhost-scsi and Vhost-blk using both SPDK and the Linux Kernel. It should be noted that the performance data showcased in this report is based on specific hardware and software configurations and that performance results may vary depending on different hardware and software configurations.

List of Tables

Table 1: Hardware setup configuration 4
Table 2: Test platform BIOS settings
Table 3: Guest VM configuration 5
Table 4: SPDK Vhost Core Scaling test configuration 9
Table 5: SPDK Vhost core scaling results, 4KB 100% Random Reads IOPS, QD=6411
Table 6: SPDK Vhost core scaling results, 4KB 100% Random Write IOPS, QD=3212
Table 7: SPDK Vhost core scaling results, 4KB Random 70% Read 30% Write IOPS, QD=6413
Table 8: Logical Volumes performance impact for SPDK Vhost SCSI 14
Table 9: LTO performance SPDK Vhost SCSI with Logical Volume bdevs 15
Table 10: Packed Ring performance impact on SPDK Vhost BLK controllers. Fio gtod_reduce=disabled
Table 11: Rate Limiting IOPS per VM test case configuration 18
Table 12: 4KB 100% Random Reads QD=1 rate limiting test results
Table 13: 4KB 100% Random Writes QD=1 rate limiting test results
Table 14: Performance per NVMe drive test case configuration
Table 15:Performance per NVMe drive IOPS and latency results, SPDK SCSI stack
Table 16: Performance per NVMe drive IOPS and latency results, SPDK BLK stack 25
Table 17: Performance per NVMe drive IOPS and latency results, Kernel Vhost-Scsi 25

intel.

List of Figures

Figure 1: SPDK Vhost-scsi architecture
<i>Figure 2: Comparison of performance between various SPDK Vhost stack-bdev combinations for 4KB</i> <i>Random Read QD=64 workload</i> 11
<i>Figure 3: Comparison of performance between various SPDK Vhost stack-bdev combinations for 4KB</i> <i>Random Write QD=32 workload</i> 12
<i>Figure 4: Comparison of performance between various SPDK Vhost stack-bdev combinations for 4KB</i> <i>Random 70% Read 30% Write QD=64 workload</i> 13
Figure 5: 4KB 100% Random Reads IOPS, QD=1, throttling = 10k IOPS20
Figure 6: 4KB 100% Random Writes IOPS, QD=1, throttling = 10k IOPS21
Figure 7: 4KB 100% Random Reads IOPS and latency26
Figure 8: 4KB 100% Random Writes IOPS and latency26
Figure 9: 4KB 70%/30% Random Read/Write IOPS and latency27

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

§