
SPDK NVMe-oF Performance Report

Release 18.04

 1

SPDK NVMe-oF (Target & Initiator)

Performance Report

Release 18.04

Testing Date: June-July 2018

Performed by:

Vishal Verma (vishal4.verma@intel.com)

Acknowledgments:
John Kariuki (john.k.kariuki@intel.com)

James R Harris (james.r.harris@intel.com)
Benjamin Walker (benjamin.walker@intel.com)

mailto:vishal4.verma@intel.com
mailto:john.k.kariuki@intel.com

SPDK NVMe-oF Performance Report

Release 18.04

2

Revision History

Date Revision Comment

06/28/2018 V1.0 Complete performance runs

07/09/2018 V1.0 Review

07/16/2018 V2.0 Feedback

07/26/2018 V2.0 Review

08/10/2018 V3.0 Ready to publish

SPDK NVMe-oF Performance Report

Release 18.04

 3

Contents

Audience and Purpose ... 4

Test setup ... 4

Target Configuration .. 4
Initiator 1 Configuration ... 5
Initiator 2 Configuration ... 5
BIOS settings ... 6

Introduction to SPDK NVMe-oF (Target & Initiator) ... 7
Test Case 1: SPDK NVMe-oF Target I/O core scaling ... 9
Test Case 2: SPDK NVMe-oF Initiator I/O core scaling ... 16
Test Case 3: Linux Kernel vs. SPDK NVMe-oF Latency ... 22
Test Case 4: NVMe-oF Performance with increasing # of connections 27
Summary .. 32

SPDK NVMe-oF Performance Report

Release 18.04

4

Audience and Purpose

This report is intended for people who are interested in SPDK NVMe-oF target and initiator performance
and its comparison to the Linux kernel NVMe-oF target and initiator. The term target will be used to
refer to the storage server, while the terms initiator and host will be used to refer to the client. This
report provides performance and efficiency information on a set of underlying block devices in a set of
common scenarios.

The purpose of reporting these tests is not to imply that there is a single superior solution, but rather to
provide a baseline of well-tested configurations and procedures with repeatable and reproducible
results. This report can also be viewed as documenting the best known methods for performance testing
SPDK’s NVMe-oF components.

Test setup

Target Configuration

Item Description

Server Platform SuperMicro SYS-2029U-TN24R4T

CPU Intel® Xeon® Platinum 8176 Processor (38.5MB L3, 2.10 GHz)

https://ark.intel.com/products/120508/Intel-Xeon-Platinum-8176-Processor-38_5M-
Cache-2_10-GHz

Number of cores 28, number of threads 56

Memory Total 192 GBs over 12 channels (16 GB DDR 2667 MHz 2R DIMMS each)

Operating System Ubuntu 18.04 LTS

https://www.supermicro.com/products/system/2U/2029/SYS-2029U-TN24R4T.cfm
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz
https://ark.intel.com/products/120508/Intel-Xeon-Platinum-8176-Processor-38_5M-Cache-2_10-GHz
https://ark.intel.com/products/120508/Intel-Xeon-Platinum-8176-Processor-38_5M-Cache-2_10-GHz

SPDK NVMe-oF Performance Report

Release 18.04

 5

BIOS 2.0b

Linux kernel version 4.13.0-38-generic

SPDK version SPDK 18.04

Storage OS: 1x 200GB Intel SSD DC S3700

Storage Target: 16x Intel® P4600TM P4600x 1.6TB (FW: QDV10130)

(8 on each CPU socket)

NIC 2x 100GbE Mellanox ConnectX-4 NICs. Both ports connected

(1 on each CPU socket)

Initiator 1 Configuration

Item Description

Server Platform SuperMicro SYS-2028U TN24R4T+

CPU Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz (55MB Cache, 2.20 GHz)

https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-
2_20-GHz

Number of cores 22, number of threads 44 per socket (Both sockets populated)

Memory Total 256 GBs (2 DIMMs/channel. DDR4 16GB DIMMs) @ 2400 MHz

Operating System Ubuntu 18.04 LTS

BIOS 3.0a

Linux kernel version 4.13.0-38-generic

SPDK version SPDK 18.04

Storage OS: 1x 200GB Intel SSD DC S3700

NIC 1x 100GbE Mellanox ConnectX-4 NICs. Both ports connected

(connected to CPU socket 0)

Initiator 2 Configuration

Item Description

Server Platform SuperMicro SYS-2028U TN24R4T+

CPU Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz (55MB Cache, 2.20 GHz)

https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-
2_20-GHz

Number of cores 22, number of threads 44 per socket (Only 1 CPU socket populated)

Memory Total 128 GBs (2 DIMMs/channel. DDR4 16GB DIMMs) @ 2400 MHz

Operating System Ubuntu 18.04 LTS

BIOS 3.0a

https://10.34.119.162/cgi/url_redirect.cgi?url_name=sys_smbios
https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz
https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz
https://10.34.119.162/cgi/url_redirect.cgi?url_name=sys_smbios
https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz
https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz

SPDK NVMe-oF Performance Report

Release 18.04

6

Linux kernel version 4.13.0-38-generic

SPDK version SPDK 18.04

Storage OS: 1x 200GB Intel SSD DC S3700

NIC 1x 100GbE Mellanox ConnectX-4 NICs. Both ports connected

(connected to CPU socket 0)

BIOS settings

Item Description

BIOS
(Applied to all 3 systems)

Hyper threading Enabled
CPU Power and Performance Policy <Performance>
CPU C-state No Limit
CPU P-state Enabled
Enhanced Intel® Speedstep® Tech Enabled
Turbo Boost Enabled

SPDK NVMe-oF Performance Report

Release 18.04

 7

Introduction to SPDK NVMe-oF (Target & Initiator)

The NVMe over Fabrics (NVMe-oF) protocol extends the parallelism and efficiencies of the NVM
Express* (NVMe) block protocol over network fabrics such as RDMA (iWARP, RoCE), InfiniBand™, Fibre
Channel and Intel® Omni-Path. SPDK provides both a user space NVMe-oF target and initiator that
extends the software efficiencies of the rest of the SPDK stack over the network. The SPDK NVMe-oF
target uses the SPDK user-space, polled-mode NVMe driver to submit and complete I/O requests to
NVMe devices which reduces the software processing overhead. Likewise, it pins RDMA connections to
CPU cores to avoid synchronization and cache thrashing so that the data for those connections is kept as
close to the CPU cache as possible.

The SPDK NVMe-oF target and initiator uses the Infiniband/RDMA verbs API to access an RDMA-capable
NIC. These should work on all flavors of RDMA transports, but are currently tested against RoCEv2,
iWARP, and Omni-Path NICs. Similar to the SPDK NVMe driver, SPDK provides a user-space, lockless,
polled-mode NVMe-oF initiator. The host system uses the initiator to establish a connection and submit
I/O requests to an NVMe subsystem within an NVMe-oF target. NVMe subsystems contain namespaces,
each of which maps to a single block device exposed via SPDK’s bdev layer. SPDK’s bdev layer is a block
device abstraction layer and general purpose block storage stack akin to what is found in many
operating systems. Using the bdev interface completely decouples the storage media from the front-end
protocol used to access storage. Users can build their own virtual bdevs that provide complex storage
services and integrate them with the SPDK NVMe-oF target with no additional code changes. There can
be many subsystems within an NVMe-oF target and each subsystem may hold many namespaces.
Subsystems and namespaces can be configured dynamically via a JSON-RPC interface.

Figure 1 shows a high level schematic of the systems used for testing in the rest of this report. The set up
consists of three individual systems (two used as initiators and one used as the target). The NVMe-oF
target is connected to both initiator systems point-to-point using QSFP28 cables without any switches.
The target system has sixteen Intel P4600 SSDs which were used as block devices for NVMe-oF
subsystems and two 100GbE Mellanox ConnectX-4 NICs connected to provide up to 200GbE of network
bandwidth. Each Initiator system has one Mellanox ConnectX-4 100GbE NIC connected directly to the
target without any switch.

One goal of this report was to make clear the advantages and disadvantages inherent to the design of
the SPDK NVMe-oF components. These components are written using techniques such as run-to-
completion, polling, and asynchronous I/O. The report covers four real-world use cases.

For performance benchmarking the fio tool is used with two storage engines:
1) Linux Kernel libaio engine
2) SPDK bdev engine

Performance numbers are reported for aggregate I/O per second, average latency, and CPU utilization
as a percentage for various scenarios. Aggregate I/O per second and average latency data is reported
using fio and CPU utilization was collected using sar (systat).

http://www.nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605.pdf

SPDK NVMe-oF Performance Report

Release 18.04

8

Figure 1: High level NVMe-oF performance testing setup

SPDK NVMe-oF Performance Report

Release 18.04

 9

Test Case 1: SPDK NVMe-oF Target I/O core scaling

This test case is designed to illustrate how the SPDK NVMe-oF target scales the maximum number of I/O
per second performed when additional CPU cores are added. The SPDK NVMe-oF target is configured to
run with sixteen NVMe-oF subsystems. Each NVMe-oF subsystem contains a single namespace that
corresponds to a single Intel P4600 device. Each of the initiators were connected to eight individual
NVMe-oF subsystems, without overlap. The SPDK bdev fio plugin was run on the two initiators
simultaneously. The SPDK target was configured to use 1, 2, 3 and 4 cores while running each of the
following workloads on each initiator:

¶ 4KB 100% Random Read

¶ 4KB 100% Random Write

¶ 4KB Random 70% Read 30% Write

Item Description

Test Case Test SPDK NVMe-oF Target I/O core scaling

Test configuration Nvmf.conf:
NVMf Target Configuration File
[Global]
 ReactorMask 0x300000003 (This was modified depending on the number of cores tested)

[Rpc]
 Enable Yes
 Listen 127.0.0.1

[Nvmf]
 # 89 choosen for 1 admin queue and 88 I/O queues. Initiator had 88 CPU cores.
 MaxQueuesPerSession 89
 AcceptorPollRate 10000

[Nvme]
 TransportId "trtype:PCIe traddr:0000:60:00.0" Nvme0
 TransportId "trtype:PCIe traddr:0000:61:00.0" Nvme1
 TransportId "trtype:PCIe traddr:0000:62:00.0" Nvme2
 TransportId "trtype:PCIe traddr:0000:63:00.0" Nvme3
 TransportId "trtype:PCIe traddr:0000:64:00.0" Nvme4
 TransportId "trtype:PCIe traddr:0000:65:00.0" Nvme5
 TransportId "trtype:PCIe traddr:0000:66:00.0" Nvme6
 TransportId "trtype:PCIe traddr:0000:67:00.0" Nvme7
 TransportId "trtype:PCIe traddr:0000:b5:00.0" Nvme8
 TransportId "trtype:PCIe traddr:0000:b6:00.0" Nvme9
 TransportId "trtype:PCIe traddr:0000:b7:00.0" Nvme10
 TransportId "trtype:PCIe traddr:0000:b8:00.0" Nvme11
 TransportId "trtype:PCIe traddr:0000:b9:00.0" Nvme12
 TransportId "trtype:PCIe traddr:0000:ba:00.0" Nvme13
 TransportId "trtype:PCIe traddr:0000:bb:00.0" Nvme14
 TransportId "trtype:PCIe traddr:0000:bc:00.0" Nvme15
 RetryCount 4
 Timeout 0
 ActionOnTimeout None
 AdminPollRate 100000
 HotplugEnable No

[Subsystem1]
 NQN nqn.2016-06.io.spdk:cnode1
 Listen RDMA 192.168.200.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000001
 Namespace Nvme0n1 1

[Subsystem2]
 NQN nqn.2016-06.io.spdk:cnode2
 Listen RDMA 192.168.100.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000002
 Namespace Nvme1n1 1

[Subsystem3]
 NQN nqn.2016-06.io.spdk:cnode3

SPDK NVMe-oF Performance Report

Release 18.04

10

 Listen RDMA 192.168.100.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000003
 Namespace Nvme2n1 1

[Subsystem4]
 NQN nqn.2016-06.io.spdk:cnode4
Listen RDMA 192.168.100.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000004
 Namespace Nvme3n1 1

[Subsystem5]
 NQN nqn.2016-06.io.spdk:cnode5
 Listen RDMA 192.168.101.2:4421
 AllowAnyHost Yes
 SN SPDK00000000000005
 Namespace Nvme4n1 1

[Subsystem6]
 NQN nqn.2016-06.io.spdk:cnode6
 Listen RDMA 192.168.101.2:4421
 AllowAnyHost Yes
 SN SPDK00000000000006
 Namespace Nvme5n1 1

[Subsystem7]
 NQN nqn.2016-06.io.spdk:cnode7
 Listen RDMA 192.168.101.2:4421
 AllowAnyHost Yes
 SN SPDK00000000000007
 Namespace Nvme6n1 1

[Subsystem8]
 NQN nqn.2016-06.io.spdk:cnode8
 Listen RDMA 192.168.101.2:4421
 AllowAnyHost Yes
 SN SPDK00000000000008
 Namespace Nvme7n1 1

[Subsystem9]
 NQN nqn.2016-06.io.spdk:cnode9
 Listen RDMA 192.168.200.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000009
 Namespace Nvme8n1 1

[Subsystem10]
 NQN nqn.2016-06.io.spdk:cnode10
 Listen RDMA 192.168.200.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000010
 Namespace Nvme9n1 1

[Subsystem11]
 NQN nqn.2016-06.io.spdk:cnode11
 Listen RDMA 192.168.200.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000011
 Namespace Nvme10n1 1
[Subsystem12]
 NQN nqn.2016-06.io.spdk:cnode12
 Listen RDMA 192.168.200.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000012
 Namespace Nvme11n1 1

[Subsystem13]
 NQN nqn.2016-06.io.spdk:cnode13
 Listen RDMA 192.168.201.2:4421
 AllowAnyHost Yes
 SN SPDK00000000000013
 Namespace Nvme12n1 1

[Subsystem14]
 NQN nqn.2016-06.io.spdk:cnode14
 Listen RDMA 192.168.201.2:4421
 AllowAnyHost Yes
 SN SPDK00000000000014
 Namespace Nvme13n1 1

[Subsystem15]
 NQN nqn.2016-06.io.spdk:cnode15
 Listen RDMA 192.168.201.2:4421
 AllowAnyHost Yes
 SN SPDK00000000000015
 Namespace Nvme14n1 1

[Subsystem16]
 NQN nqn.2016-06.io.spdk:cnode16
 Listen RDMA 192.168.201.2:4421
 AllowAnyHost Yes

SPDK NVMe-oF Performance Report

Release 18.04

 11

 SN SPDK00000000000016
 Namespace Nvme15n1 1

BDEV.conf

[Nvme]
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode1" Nvme0
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode2" Nvme1
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode3" Nvme2
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode4" Nvme3
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode5" Nvme4
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode6" Nvme5
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode7" Nvme6
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode8" Nvme7

FIO config on initiator
[global]
ioengine=examples/bdev/fio_plugin/fio_plugin
spdk_conf=bdev.conf
thread=1
group_reporting=1
direct=1

norandommap=1
bs=4k
rw=randrw
rwmixread={100,70,0}
iodepth=32
time_based=1
ramp_time=60
runtime=300

[filename1]
filename=Nvme0n1

[filename2]
filename=Nvme1n1

[filename3]
filename=Nvme2n1

[filename4]
filename=Nvme3n1

[filename5]
filename=Nvme4n1

[filename6]
filename=Nvme5n1

[filename7]
filename=Nvme6n1

[filename8]
filename=Nvme7n1

Results in the table represent aggregate performance (IOPS & avg. latency) observed:

Test Result: 4K 100% Random Read IOPS

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core
1268.3 402.6

2 cores
2749.3 186.0

3 cores
3673.7 139.1

4 cores
4164.0 122.7

SPDK NVMe-oF Performance Report

Release 18.04

12

Figure 2: SPDK NVMe-oF Target I/O core scaling: IOPS vs. Latency while running 4KB 100% Random read workload

Drives were not pre-conditioned while running 100% Random write I/O Test. This artificially increases
the number of IOPS that the storage devices are capable of, allowing the target to fully saturate the
network.

Test Result: 4K 100% Random Writes IOPS

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core
1090 469.05

2 cores
2346 216.3

3 cores
3525.3 143.79

4 cores
4242 114.8

SPDK NVMe-oF Performance Report

Release 18.04

 13

Figure 3: SPDK NVMe-oF Target I/O core scaling: IOPS vs. Latency while running 4KB 100% Random write workload

Test Result: 4K 70% Read 30% Write IOPS

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core
1195.0 427.8

2 cores
2203.7 231.7

3 cores
2369.0 215.9

4 cores
2390.3 213.9

SPDK NVMe-oF Performance Report

Release 18.04

14

Figure 4: SPDK NVMe-oF Target I/O core scaling: IOPS vs. Latency while running 4KB Random 70% read 30% write workload

Conclusion:

1. For 100% Reads and 100% Writes, throughput scales up and latency decreases almost linearly
with the scaling of SPDK NVMe-oF Target I/O cores until hitting network bottleneck.

2. For 4K Random 70% Reads, 30% Writes performance doesn’t scale from 2 to 3 and 4 cores due
to some other bottleneck. It was observed that while running this test case locally without
involving any network it can hit > 4M aggregate IOPS. But, while running this over the network,
it could only achieve 2.3-2.4M IOPS max. This points to some other platform or network
bottleneck while running this workload.

Large I/O Block Size sequential performance

128K block size I/O tests were performed with 100% sequential IO at queue depth 8 to each NVMe-oF
namespace. The remainder of the configuration is identical to the tests above.

Aggregate IOPS, bandwidth, and average latency is as follows:

SPDK NVMe-oF Performance Report

Release 18.04

 15

Test Result: 128K 100% Sequential Reads

of Cores Bandwidth (MBPS)

IOPS in K Avg. Latency (usec)

1 core
23936 187 682

2 cores
23936 187 683.3

3 cores
23936 187 683

4 cores
23936 187 683

Test Result: 128K 100% Sequential Writes

of Cores Bandwidth (MBPS)

IOPS in K Avg. Latency (usec)

1 core
23040 180 707.9

2 cores
23040 180 708

3 cores
23040 180 707

4 cores
23040 180 707.4

Test Result: 128K 70% Reads 30% Writes

of Cores Bandwidth (MBPS)

IOPS in K Avg. Latency (usec)

1 core
29440 230 555.21

2 cores
29440 230 554

3 cores
29440 230 553

4 cores
29440 231 553

Conclusion:

1. A single CPU core saturated the network bandwidth. The SPDK NVMe-oF target running on 1
core does close to 23-24 GBps 100% Reads/Writes and ~29GBps 70-30 reads/writes, which is
close to 2x 100GbE NICs network bandwidth. Therefore, adding more CPU cores did not result in
increased performance because the network was the bottleneck.

SPDK NVMe-oF Performance Report

Release 18.04

16

Test Case 2: SPDK NVMe-oF Initiator I/O core scaling

This test case was performed in order to understand the performance of the SPDK NVMe-oF initiator as
the number of available CPU cores is increased. The SPDK NVMe-oF target was configured similarly to
the test cases above using four cores. The SPDK bdev fio plugin ran workloads targeting eight individual
NVMe-oF namespaces on each of the two initiators, without overlap. The fio cpumask was varied in
order to run 1, 2, 3 and 4 core tests while running following workloads from both the initiators:

¶ 4KB 100% Random Read

¶ 4KB 100% Random Write

¶ 4KB Random 70% Read 30% Write

1 core: 1 initiator was used.

2 cores: 2 separate initiators, each running a single core.

3 cores: 2 separate initiators, one with a single core and other with two cores.

4 cores: 2 separate initiators, each running two cores.

Item Description

Test Case Test SPDK NVMe-oF Target I/O core scaling

Test configuration Nvmf.conf:
Same as used in Test Case 1

BDEV.conf

[Nvme]
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode1" Nvme0
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode2" Nvme1
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode3" Nvme2
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode4" Nvme3
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode5" Nvme4
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode6" Nvme5
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode7" Nvme6
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode8" Nvme7

FIO config on initiator 1 core:
 iodepth = 512 is a global parameter meaning it will be spread over 16 drives which are being handled by single FIO thread. So each nvme drive will
get 512/16 = 32 iodepth

[global]
ioengine=examples/bdev/fio_plugin/fio_plugin
spdk_conf=bdev.conf
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrw
rwmixread={100,70,0}iodepth=512
time_based=1
ramp_time=60
runtime=300

[filename1]
filename=Nvme0n1

SPDK NVMe-oF Performance Report

Release 18.04

 17

filename=Nvme1n1
filename=Nvme2n1
filename=Nvme3n1
filename=Nvme4n1
filename=Nvme5n1
filename=Nvme6n1
filename=Nvme7n1
filename=Nvme8n1
filename=Nvme9n1
filename=Nvme10n1
filename=Nvme11n1
filename=Nvme12n1
filename=Nvme13n1
filename=Nvme14n1
filename=Nvme15n1

2core:
 [global]
ioengine=examples/bdev/fio_plugin/fio_plugin
spdk_conf=bdev.conf
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrw
rwmixread={0,100,70}
iodepth=256
time_based=1
ramp_time=60
runtime=300

[filename1]
filename=Nvme0n1
filename=Nvme1n1
filename=Nvme2n1
filename=Nvme3n1
filename=Nvme4n1
filename=Nvme5n1
filename=Nvme6n1
filename=Nvme7n1

3core:
1st initiator:
[global]
ioengine=examples/bdev/fio_plugin/fio_plugin
spdk_conf=bdev.conf
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrw
rwmixread={100,70,0}
iodepth=256
time_based=1
ramp_time=60
runtime=300

[filename1]
filename=Nvme0n1
filename=Nvme1n1
filename=Nvme2n1
filename=Nvme3n1
filename=Nvme4n1
filename=Nvme5n1
filename=Nvme6n1
filename=Nvme7n1

2nd initiator:
[global]
ioengine=examples/bdev/fio_plugin/fio_plugin
spdk_conf=bdev.conf
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrw
rwmixread={0,100,70}
iodepth=128
time_based=1
ramp_time=60
runtime=300

[filename1]
filename=Nvme0n1
filename=Nvme1n1
filename=Nvme2n1

SPDK NVMe-oF Performance Report

Release 18.04

18

filename=Nvme3n1

[filename2]
filename=Nvme4n1
filename=Nvme5n1
filename=Nvme6n1
filename=Nvme7n1

4core:
[global]
ioengine=examples/bdev/fio_plugin/fio_plugin
spdk_conf=bdev.conf
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrw
rwmixread={100,70,0}
iodepth=128
time_based=1
ramp_time=60
runtime=300

[filename1]
filename=Nvme0n1
filename=Nvme1n1
filename=Nvme2n1
filename=Nvme3n1

[filename2]
filename=Nvme4n1
filename=Nvme5n1
filename=Nvme6n1
filename=Nvme7n1

Results in the table represent aggregate performance (IOPS & Avg. latency) observed:

Test Result: 4K 100% Random Read

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core
1263 306.4

2 cores
2555 189.83

3 cores
3529 131.37

4 cores
4091 124.36

SPDK NVMe-oF Performance Report

Release 18.04

 19

Figure 5: SPDK NVMe-oF Initiator I/O core scaling: IOPS vs. Latency while running 4KB 100% Random read workload

Note: Drives were not pre-conditioned while running the 100% random write I/O test. This helps scale
throughput and thereby avoids storage bottlenecks especially when testing the 3 and 4 cores case until
hitting 2x 100GbE bottleneck.

Test Result: 4K 100% Random Write

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core
1257.0 120.7

2 cores
2716.6 112.6

3 cores
3820.3 100.18

4 cores
4242.0 114.8

SPDK NVMe-oF Performance Report

Release 18.04

20

Figure 6: SPDK NVMe-oF Initiator I/O core scaling: IOPS vs. Latency while running 4KB 100% Random write workload

Test Result: 4K 70% Random Read 30% Random Write

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core
1363.00 308.56

2 cores
2018.00 252.19

3 cores
2381.67 211.91

4 cores
2124.33 240.71

SPDK NVMe-oF Performance Report

Release 18.04

 21

Figure 7: SPDK NVMe-oF Initiator I/O core scaling: IOPS vs. Latency while running 4KB Random 70% read 30% write workload

Conclusion:

1. For 100% Reads and 100% Writes, throughput scales up and latency decreases almost linearly
with the addition of CPU cores until hitting network limit.

2. For 4K Random 70% Reads, 30% Writes performance doesn’t scale linearly due to some other
bottleneck. See test case #1 for additional discussion.

SPDK NVMe-oF Performance Report

Release 18.04

22

Test Case 3: Linux Kernel vs. SPDK NVMe-oF Latency

This test case was designed to compare the latency of the SPDK NVMe-oF target and initiator vs. the
Linux Kernel NVMe-oF target and initiator using a single NVMe-oF subsystem. Average I/O latency and
99th percentile latency is reported. The SPDK NVMe-oF target was configured to run on a single NVMe-
oF subsystem with a single namespace backed by a null block device, running on a single core. A null
block device (bdev) was chosen as the backend block device to avoid media latency during these tests.

Linux Kernel NVMe-oF Target vs. SPDK Kernel NVMe-oF Target

Item Description

Test Case NVMe-oF Target Latency

Test configuration SPDK
Nvmf.conf:
NVMf Target Configuration File
[Global]
 ReactorMask 0x1

[Rpc]
 Enable Yes
 Listen 127.0.0.1

[Nvmf]
 MaxQueuesPerSession 89
 AcceptorPollRate 10000

[Null]
 Dev Nvme0n1 102400 4096

[Subsystem1]
 NQN nqn.2016-06.io.spdk:cnode1
 Listen RDMA 192.168.200.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000001
 Namespace Nvme0n1 1

BDEV.conf
 [Nvme]
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode1" Nvme0

Linux Kernel
 Nvmetcli tool was used to configure Kernel NVMe-oF target.
 Backend used was /dev/nullb0

NVMe-oF Initiator
 Nvme-cli tool. Default # of I/O queues per subsystem

FIO configuration Linux Kernel Initiator

[global]
ioengine=libaio
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrw
rwmixread={100,70,0}
iodepth=1
time_based=1
ramp_time=30
runtime=300
numjobs=1

[filename1]
filename=/dev/nvme0n1

This following data was collected using Kernel initiator against both SPDK & Kernel Nvme-oF target.

SPDK NVMe-oF Performance Report

Release 18.04

 23

Figure 8: Average I/O Latency Comparisons b/w SPDK vs. Kernel NVMe-oF Target for various workloads (Kernel Initiator)

SPDK NVMe-oF Target

Access Pattern Average Latency (usec)

IOPS p99 (usec)

4K 100% Random Reads
IOPS

16.06

60000 16.1

4K 100% Random Writes
IOPS

13.34 71000 13.5

4K 100% Random 70%
Reads 30% Writes IOPS

15.64 62000 15.6

Linux Kernel NVMe-oF Target

Access Pattern Average Latency (usec)

IOPS p99 (usec)

4K 100% Random Reads
IOPS

23.09

42000 23.6

4K 100% Random Writes
IOPS

27.02 35000 64

4K 100% Random 70%
Reads 30% Writes IOPS

28.13 32800 95

Conclusion:

SPDK NVMe-oF Performance Report

Release 18.04

24

1. SPDK NVMe-oF Target average round trip I/O latency (reads/writes) is up to 13usec faster than
the Linux kernel NVMe-oF target. This is entirely software overhead.

Linux Kernel NVMe-oF Initiator vs. SPDK NVMe-oF Initiator

Item Description

Test Case NVMe-oF Initiator Latency

Test configuration SPDK
Nvmf.conf:
NVMf Target Configuration File
[Global]
 ReactorMask 0x1

[Rpc]
 Enable Yes
 Listen 127.0.0.1

[Nvmf]
 MaxQueuesPerSession 89
 AcceptorPollRate 10000

[Null]
 Dev Nvme0n1 102400 4096

[Subsystem1]
 NQN nqn.2016-06.io.spdk:cnode1
 Listen RDMA 192.168.200.2:4420
 AllowAnyHost Yes
 SN SPDK00000000000001
 Namespace Nvme0n1 1

BDEV.conf
 [Nvme]
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode1" Nvme0

Kernel NVMe-oF Initiator
 Nvme-cli tool. Default # of I/O queues per subsystem

FIO configuration Linux Kernel

[global]
ioengine=libaio
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrw
rwmixread={100,70,0}
iodepth=1
time_based=1
ramp_time=30
runtime=300
numjobs=1

[filename1]
filename=/dev/nvme0n1

SPDK

[global]
ioengine=examples/bdev/fio_plugin/fio_plugin
spdk_conf=bdev.conf
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrw
rwmixread={0,100,70}
iodepth=1
time_based=1
ramp_time=60
runtime=300

[filename1]
filename=Nvme0n1

SPDK NVMe-oF Performance Report

Release 18.04

 25

This following data was collected using Kernel & SPDK initiator against an SPDK target.

Figure 9: Average I/O Latency Comparisons b/w SPDK vs. Kernel NVMe-oF Initiator for various workloads (SPDK Target)

Linux Kernel NVMe-oF Initiator

Access Pattern Average Latency (usec)

IOPS p99 (usec)

4K 100% Random Reads
IOPS

16.06

60000 16.1

4K 100% Random Writes
IOPS

13.34 71000 13.5

4K 100% Random 70%
Reads 30% Writes IOPS

15.64 62000 15.6

SPDK NVMe-oF Initiator

Access Pattern Average Latency (usec)

IOPS p99 (usec)

4K 100% Random Reads
IOPS

4.8

200000 4.83

4K 100% Random Writes
IOPS

5.79 167000 5.9

4K 100% Random 70%
Reads 30% Writes IOPS

5.08 187100 5.1

SPDK NVMe-oF Performance Report

Release 18.04

26

Conclusion:
1. SPDK NVMe-oF Initiator average round trip I/O latency (reads/writes) is up to 3x as fast as

Kernel NVMe-oF Initiator using null bdev backend.

SPDK NVMe-oF Performance Report

Release 18.04

 27

Test Case 4: NVMe-oF Performance with increasing # of
connections

This test case was performed in order to understand throughput and latency capabilities of SPDK NVMe-
oF Target vs. Linux Kernel NVMe-oF Target under increasing number of connections per subsystem.
Number of connections (or I/O queue pairs) per NVMe-oF subsystem were varied and corresponding
aggregated IOPS and number of CPU cores metrics were reported. Number of CPU cores metric was
calculated from %CPU utilization measured using sar (systat package in linux). SPDK NVMe-oF Target
was configured to run on 4 cores, 16 NVMe-oF subsystems (1 per Intel P4600) and 2 initiators were used
both running I/Os to 8 separate subsystems using Kernel NVMe-oF initiator.

¶ 4KB 100% Random Read

¶ 4KB 100% Random Write

¶ 4KB Random 70% Read 30% Write

Item Description

Test Case NVMe-oF Target performance under varying # of connections

Test configuration SPDK
 Nvmf.conf:
 Same as used in Test Case 1

 BDEV.conf

 [Nvme]
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode1" Nvme0
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode2" Nvme1
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode3" Nvme2
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.100.2 trsvcid:4420 subnqn:nqn.2016-06.io.spdk:cnode4" Nvme3
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode5" Nvme4
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode6" Nvme5
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode7" Nvme6
 TransportId "trtype:RDMA adrfam:IPv4 traddr:192.168.101.2 trsvcid:4421 subnqn:nqn.2016-06.io.spdk:cnode8" Nvme7

Linux Kernel
 Nvmetcli tool was used to configure Kernel NVMe-oF target

NVMe-oF Initiator
 Nvme-cli tool. Default # of I/O queues per subsystem

FIO configuration Kernel

[global]
ioengine=libaio
thread=1
group_reporting=1
direct=1
norandommap=1
bs=4k
rw=randrrw
rwmixread={100,70,0}
iodepth=32
time_based=1
ramp_time=30
runtime=300
numjobs={1,4,16}

[filename1]
filename=/dev/nvme0n1

[filename2]
filename=/dev/nvme1n1

SPDK NVMe-oF Performance Report

Release 18.04

28

[filename3]
filename=/dev/nvme2n1

[filename4]
filename=/dev/nvme3n1

[filename5]
filename=/dev/nvme4n1

[filename6]
filename=/dev/nvme5n1

[filename7]
filename=/dev/nvme6n1

[filename8]
filename=/dev/nvme7n1

Number of CPU cores used while running SPDK Nvme-oF target were 4, whereas for the case of linux
Kernel Nvme-oF target there was no cpu core limitation applied.

Numbers in the graph represent relative performance which are in terms of IOPS/core which was
calculated based on total aggregate IOPS divided by total CPU cores used while running that specific
workload. For the case of Kernel Nvme-of target, total CPU cores was calculated from % CPU utilization
which was measured using sar utility in linux.

Figure 10: Relative Performance Comparison b/w Kernel vs. SPDK NVMe-oF Target for 4K 100% Random Reads (Kernel

Initiator)

SPDK NVMe-oF Performance Report

Release 18.04

 29

Figure 11: Relative Performance Comparison b/w Kernel vs. SPDK NVMe-oF Target for 4K 100% Random Writes

Note: Drives were not pre-conditioned while running 100% Random write I/O Test

For 4K Random 70% reads, 30% writes workload it was noticed that performance didn’t increase when
going from 4 to 16 connections per subsystem. This was due to storage/platfrom bottleneck noticed as
described in test case 1 and 2.

Figure 12: Relative Performance Comparison b/w Kernel vs. SPDK NVMe-oF Target for 4K Random 70% Reads 30% Writes

SPDK NVMe-oF Performance Report

Release 18.04

30

Linux Kernel NVMe-oF Target: 4K 100% Random Reads

of Connections Average Latency (usec)

IOPS # of CPU cores utilized

1 216 2362 10

4 820.5 2494 18

16 3684.1 2223 22.4

Linux Kernel NVMe-oF Target: 4K 100% Random Writes

of Connections Average Latency (usec)

IOPS # of CPU cores utilized

1 152 3352 11.2

4 498 4106 25.2

16 1909 4289 28

Linux Kernel NVMe-oF Target: 4K 70% Random Read 30% Random Write

of Connections Average Latency (usec)

IOPS # of CPU cores utilized

1 209 2439 10

4 647.3 3160 21

16 2877.5 2846 23.5

4K 100% Random read performance was best when # of connections was 4 per subsystem with
iodepth=32 per subsystem.

SPDK NVMe-oF Target: 4K 100% Random Reads

of Connections Average Latency (usec)

IOPS # of CPU cores utilized

1 227 2241 4

4 835 2449 4

16 3524 2324 4

SPDK NVMe-oF Target: 4K 100% Random Writes

of Connections Average Latency (usec)

IOPS # of CPU cores utilized

1 157 3350 4

4 470 4526 4

16 1811 4522 4

SPDK NVMe-oF Target: 4K 70% Random Read 30% Random Write

of Connections Average Latency (usec)

IOPS # of CPU cores utilized

1 210.8 2421 4

SPDK NVMe-oF Performance Report

Release 18.04

 31

4 720.7 2839 4

16 3130 2617 4

4K 70% Random Reads 30% Random Write performance was best when # of connections was 4 and
iodepth = 4 per subsystem. This seem to be the optimum configuration while achieving max
performance as was seen for 4K 100% Random Reads case as well.

Conclusion:

1. SPDK NVMe-oF target performs up to 7.3x better w.r.t IOPS/core than linux kernel NVMe-oF
target while running 4K 100% random write workload with increasing number of connections
(16) per NVMe-oF subsystem.

2. SPDK NVMe-oF target performs up to 5.8x and 5.4x better than linux kernel NVMe-oF target
while running 4K 100% random reads and 4K random 70% reads 30% writes respectively.

SPDK NVMe-oF Performance Report

Release 18.04

32

Summary

This report showcased performance results with SPDK NVMe-oF target and initiator under various test
cases, including I/O core scaling, average I/O latency, and performance with increasing number of
connections per subsystems. It compared performance results while running Linux Kernel NVMe-oF
(Target/Initiator) against the accelerated polled-mode driven SPDK NVMe-oF (Target/Initiator)
implementation. It showcased that throughput scales up and latency decreases almost linearly with the
scaling of SPDK NVMe-oF target and initiator I/O cores until hitting network bottleneck for 4KB random
100% read and 100% write I/O workloads. It was also observed that SPDK NVMe-oF initiator is 3x faster
than Kernel NVMe-oF initiator with null bdev based backend. Also, SPDK NVMe-oF target performed up
to 7.3x better w.r.t IOPS/core than linux Kernel NVMe-oF target while running 4K 100% random write
workload with increasing number of connections (16) per NVMe-oF subsystem

This report provides information regarding methodologies and practices while benchmarking NVMe-oF
using SPDK, as well as the Linux Kernel. It should be noted that the performance data showcased in this
report is based on specific hardware and software configurations and that performance results may vary
depending on different hardware and software configurations.

SPDK NVMe-oF Performance Report

Release 18.04

 33

DISCLAIMERS

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis

concerning Intel products described herein.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

For more information go to http://www.intel.com/performance

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute

the instructions in the correct sequence. AES-NI is available on select Intel® processors. For availability, consult your

reseller or system manufacturer. For more information, see http://software.intel.com/en-us/articles/intel-

advanced-encryption-standard-instructions-aes-ni/

The benchmark results may need to be revised as additional testing is conducted. The results depend on the
specific platform configurations and workloads utilized in the testing, and may not be applicable to any particular
user's components, computer system or workloads. The results are not necessarily representative of other
benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Intel and the Intel logo are trademarks of Intel Corporation in the US and other countries

Copyright © 2018 Intel Corporation. All rights reserved.

§

