
SPDK NVMe BDEV Performance Report

Release 24.05

 1

SPDK NVMe BDEV

Performance Report

Release 24.05

Testing Date: May 2024

Performed by:

Karol Latecki (karol.latecki@intel.com)

Jaroslaw Chachulski (jaroslawx.chachulski@intel.com)

Acknowledgments:

Krzysztof Karas (krzysztof.karas@intel.com)

mailto:krzysztof.karas@intel.com

SPDK NVMe BDEV Performance Report

Release 24.05

2

Contents

Contents ... 2

Audience and Purpose ... 3

Test setup ... 4

Hardware configuration .. 4
BIOS Settings ... 5
SSD Preconditioning .. 5

Introduction to SPDK Block Device Layer ... 6

Test Case 1: SPDK NVMe BDEV IOPS/Core Test ... 9

SPDK NVMe BDEV Single Core Throughput ... 10
Bdevperf vs. fio IOPS/Core results ... 12
NVMe BDEV vs. Polled-Mode Driver IOPS/Core .. 12
Conclusions .. 13

Test Case 2: SPDK NVMe BDEV I/O Cores Scaling .. 14

Results .. 15
Conclusions .. 16

Test Case 3: SPDK NVMe BDEV Latency .. 17

Average and tail latency comparison .. 19
Linux Kernel libaio Histograms .. 21
Linux Kernel io_uring Histograms .. 22
SPDK fio Bdev Histograms .. 23
Performance vs. increasing Queue Depth ... 24
Conclusions .. 26

Test Case 4: IOPS vs. Latency at different queue depths ... 27

4KiB Random Read Results ... 29
4KiB Random Write Results .. 30
4KiB Random 70%/30% Read/Write Results ... 31
Conclusions .. 32

Summary .. 34

List of tables .. 35

List of figures ... 36

References .. 37

SPDK NVMe BDEV Performance Report

Release 24.05

 3

Audience and Purpose

This report is intended for people who are interested in comparing the performance of the SPDK block
device layer vs the Linux Kernel (6.1.6-200.fc37.x86_64) block device layer. It provides performance and
efficiency information between the two block layers under various test workloads.

The purpose of the report is not to imply a single “correct” approach, but rather to provide a baseline of
well-tested configurations and procedures with repeatable and reproducible results. This report can be
viewed as information regarding best known method/practice when performance testing the SPDK
NVMe block device.

SPDK NVMe BDEV Performance Report

Release 24.05

4

Test setup

Hardware configuration

Table 1: Hardware setup configuration

Item Description
Server Platform Ultra SuperServer SYS-220U-TNR

Motherboard Server board X12DPU-6

CPU 2 CPU sockets, Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz

Number of cores 28 per socket, number of threads 56 per socket
Both sockets populated

Microcode: 0xd0003d1

Memory 16 x 32GB SK Hynix DDR4 HMA84GR7DJR4N-XN; Total 512 GBs.

Memory channel population:

P1 P2

CPU1_DIMM_A1 CPU2_DIMM_A1

CPU1_DIMM_B1 CPU2_DIMM_B1

CPU1_DIMM_C1 CPU2_DIMM_C1

CPU1_DIMM_D1 CPU2_DIMM_D1

CPU1_DIMM_E1 CPU2_DIMM_E1

CPU1_DIMM_F1 CPU2_DIMM_F1

CPU1_DIMM_G1 CPU2_DIMM_G1

CPU1_DIMM_H1 CPU2_DIMM_H1

Operating System Fedora 37

BIOS 1.8

Linux kernel version 6.1.6-200.fc37.x86_64

Spectre-meltdown mitigations enabled

SPDK version SPDK 24.05

Fio version 3.28

Storage OS: 1x 250GB Crucial CT250MX500SSD1

Storage:
22x Kioxia® KCM61VUL3T20 3.2TBs (FW: 0105) (10 on CPU NUMA Node 0, 12 on CPU
NUMA Node 1)

https://www.supermicro.com/en/products/system/Ultra/2U/SYS-220U-TNR
https://www.supermicro.com/en/products/motherboard/X12DPU-6
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html

SPDK NVMe BDEV Performance Report

Release 24.05

 5

BIOS Settings

Table 2: Test setup BIOS settings

Item Description
BIOS VT-d = Enabled

CPU Power and Performance Policy = <Performance>
CPU C-state = No Limit
CPU P-state = Enabled
Enhanced Intel® Speedstep® Tech = Enabled
Turbo Boost = Enabled
Hyper Threading = Enabled

Table 3: Test System NVMe storage setup

Item Description
PCIe Riser cards “Ultra” Riser Card: AOC-2UR68G4-i2XT

• PCIe Slot 1 – x16, CPU2

• PCIe Slot 2 – x8, CPU2

• PCIe Slot 3 – x8, CPU2
Right-facing riser card: RSC-WR-6

• PCIe Slot 4 – x16, CPU1
Left-facing riser card: RSC-W2-66G4

• PCIe Slot 5 – x16, CPU2

• PCIe Slot 7 – x16, CPU1
More information can be found in SYS-220U-TNR manual document.

PCIe Retimer cards 3 x AOC-SLG4-4E4T
Installed in:

o PCIe Retimer 1: RSC-WR-6, PCIe Slot 4 (using CPU1 PCIe Lanes)
o PCIe Retimer 2: AOC-2UR68G4-i2XT, PCIe Slot 1 (using CPU2 PCIe Lanes)
o PCIe Retimer 3: RSC-W2-66G4, PCIe Slot 5 (using CPU2 PCIe Lanes)

NVMe Drives
distribution across the
system

Nvme0 – 5 Motherboard ports (CPU1 PCIe Lanes)

Nvme6 – 9 Motherboard ports (CPU2 PCIe Lanes)

Nvme9 – 13 PCIe Retimer 1 (CPU1 PCIe Lanes)

Nvme14 - 17 PCIe Retimer 2 (CPU2 PCIe Lanes)

Nvme18 - 21 PCIe Retimer 3 (CPU2 PCIe Lanes)

SSD Preconditioning

An empty NAND SSD will often show read performance far beyond what the drive claims to be capable
of because the NVMe controller knows that the device is empty and completes the read request
successfully without performing any actual read operation on the device. Therefore, prior to running
each performance test case we preconditioned the SSDs by writing 128K blocks sequentially across the
namespace’s full LBA range twice to ensure the controller accesses the NAND media for each
subsequent I/O. Additionally, the 4K 100% random writes performance decreases from one test to the
next until the NAND management overhead reaches steady state because the wear-levelling activity
increases dramatically until the SSD reaches steady state. Therefore, to obtain accurate and repeatable
results for the 4K 100% random write workload, we ran the workload for 60 minutes before starting the
benchmark test and collecting performance data. For a highly detailed description of exactly how to
force an SSD into a known state for benchmarking see the SNIA Solid State Storage Performance Test
Specification.

https://www.supermicro.com/manuals/superserver/2U/MNL-2252.pdf
https://www.supermicro.com/en/products/accessories/addon/AOC-SLG4-4E4T.php
https://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.1.pdf
https://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.1.pdf

SPDK NVMe BDEV Performance Report

Release 24.05

6

Introduction to SPDK Block Device

Layer

SPDK Polled Mode Driver

The NVMe PCIe driver is something that is usually expected to be part of the system kernel and your
application would interact with the driver via the system call interface. SPDK takes a different approach.
SPDK unbinds the NVMe devices from the kernel NVMe driver and binds them to a userspace NVMe
driver instead. This allows a userspace application to directly access the device and its queues from
userspace.

The SPDK NVMe Driver is a C library that may be linked directly into an application that provides direct,
zero-copy data transfer to and from NVMe SSDs. It is entirely passive, meaning that it spawns no threads
and only performs actions in response to function calls from the application. The library controls NVMe
devices by directly mapping the PCI BAR into the local process and performing MMIO. The SPDK NVMe
driver is asynchronous, which means that the driver submits the I/O request as an NVMe submission
queue entry on a queue pair and the function returns immediately, prior to the completion of the NVMe
command. The application must poll for I/O completion on each queue pair with outstanding I/O to
receive completion callbacks.

SPDK Block Device Layer

SPDK further provides a full block stack as a userspace library that performs many of the same
operations as a block stack in an operating system. The SPDK block device layer often simply called
bdev, is a C library intended to be equivalent to the operating system block storage layer located above
the device drivers in traditional kernel storage stack.

The bdev module provides an abstraction layer with common APIs for implementing block devices that
interface with different types of block storage device. An application can use the APIs to enumerate and
claim SPDK block devices, and then perform asynchronous I/O operations (such as read, write, unmap,
etc.) in a generic way without knowing if the device is an NVMe device a different type of block device,
for example Ceph RBD or malloc ramdisk block device. The SPDK NVMe bdev module can create block
devices for both local PCIe-attached NVMe device and remote devices exported over NVMe-oF.

In this report, we benchmarked the performance and efficiency of the bdev for the local PCIe-attached
NVMe devices use case. We also demonstrated the benefits of the SPDK approaches, like userspace
polling, asynchronous I/O, no context switching etc. under different workloads.

FIO Integration

SPDK provides an fio plugin for integration with Flexible I/O benchmarking tool. The quickest way to
generate a configuration file with all the bdevs for locally PCIe-attached NVMe devices is to use the
gen_nvme.sh script with “—json-with-subsystems” option as shown in Figure 1.

https://www.spdk.io/doc/nvme.html
http://www.spdk.io/doc/bdev.html
https://github.com/spdk/spdk/tree/master/examples/nvme/fio_plugin
https://github.com/axboe/fio

SPDK NVMe BDEV Performance Report

Release 24.05

 7

Figure 1 : Example NVMe bdev configuration file

Add SPDK bdevs to the fio job file, by setting the ioengine=spdk_bdev and adding the spdk_json_conf
parameter whose value points to the NVMe bdev configuration file.

The example fio configuration file in Figure 2, shows how to define multiple fio jobs and assign NVMe
bdevs to each job. Each job is also pinned to a CPU core on the same NUMA node as the NVMe SSDs
that the job will access.

Finally, to use the bdev fio plugin specify the LD_PRELOAD when running fio.

LD_PRELOAD=<path to spdk repo>/examples/bdev/fio_plugin/fio_plugin fio <fio job file>

[user@localhost spdk]$ sudo scripts/gen_nvme.sh --json-with-
subsystems | jq
{
 "subsystems": [
 {
 "subsystem": "bdev",
 "config": [
 {
 "method": "bdev_set_options",
 "params": {
 "bdev_io_pool_size": 65535,
 "bdev_io_cache_size": 2048,
 "bdev_auto_examine": true
 }
 },
 {
 "method": "bdev_nvme_attach_controller",
 "params": {
 "trtype": "PCIe",
 "name": "Nvme0",
 "traddr": "0000:1a:00.0"
 }
 },

 [...]

 {
 "method": "bdev_nvme_attach_controller",
 "params": {
 "trtype": "PCIe",
 "name": "Nvme23",
 "traddr": "0000:df:00.0"
 }
 }
]
 }
]
}

SPDK NVMe BDEV Performance Report

Release 24.05

8

Figure 2: Example SPDK Fio BDEV configuration file

[global]
direct=1
thread=1
time_based=1
norandommap=1
group_reporting=1
ioengine=spdk_bdev
spdk_json_conf=/tmp/bdev.conf

rw=randread
rwmixread=70
bs=4096
numjobs=1
runtime=300
ramp_time=60

[filename0]
iodepth=192
cpus_allowed=0
filename=Nvme0n1
filename=Nvme1n1
filename=Nvme4n1
filename=Nvme5n1
filename=Nvme6n1
filename=Nvme7n1

[filename1]
iodepth=192
cpus_allowed=21
filename=Nvme2n1
filename=Nvme3n1
filename=Nvme8n1
filename=Nvme9n1
filename=Nvme10n1
filename=Nvme11n1

[filename2]
iodepth=192
cpus_allowed=22
filename=Nvme12n1
filename=Nvme13n1
filename=Nvme14n1
filename=Nvme15n1
filename=Nvme16n1

[filename3]
iodepth=192
cpus_allowed=23
filename=Nvme17n1
filename=Nvme18n1
filename=Nvme19n1
filename=Nvme20n1
filename=Nvme21n1

SPDK NVMe BDEV Performance Report

Release 24.05

 9

Test Case 1: SPDK NVMe BDEV

IOPS/Core Test

Purpose: The purpose of this test case was to measure the maximum performance in IOPS/Core of the
NVMe block layer on a single CPU core. We used different benchmarking tools (SPDK bdevperf vs. SPDK
fio bdev plugin vs SPDK NVMe perf) to understand the overhead of benchmarking tools. Measuring IOPS
was the key in this test case, so latency measurements were either disabled or skipped.

The following Random Read/Write workloads were used:

• 4KiB 100% Random Read

• 4KiB 100% Random Write

• 4KiB Random 70% Read 30% Write

For each workload we followed the following steps:

1) Precondition SSDs as described in “Test Setup” chapter.

2) Run each test workload: Start with a configuration that has 22 Kioxia KCM61VUL3T20 NVMe
devices and decrease the number of SSDs on each subsequent run.

• This shows us the IOPS scaling as we add SSDs till the maximum IOPS/Core is reached.

• Starting with 22 SSDs and reducing the number of SSDs on subsequent runs eliminates
having to precondition between runs because all SSDs were used in the previous run, so
they still are in a steady state.

3) Repeat three times. The data reported is the average of the 3 runs.

Table 4: SPDK NVMe BDEV IOPS Test configuration

Item Description

Test case SPDK NVMe BDEV IOPS/Core Test

Test configuration

fio version: fio-3.28

Number of NVMe SSDs:
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22}

SPDK_BDEV_IO_CACHE_SIZE changed from 256 to 2048 (using bdev_set_options RPC
call).

Bdevperf configuration

spdk/test/bdev/bdevperf/bdevperf -c bdev.conf -q

${iodepth} -o ${block_size} -w ${rw} -M ${rwmixread} -t

300 -m 0 -p 0

fio configuration
[global]

ioengine=spdk_bdev

spdk_json_conf=bdev.conf

https://spdk.io/doc/bdevperf.html

SPDK NVMe BDEV Performance Report

Release 24.05

10

gtod_reduce=1

direct=1

thread=1

norandommap=1

time_based=1

ramp_time=60s

runtime=300s

bs=4k

numjobs=1

(Random read and
mixed workloads)

rw={randread, randrw}

rwmixread={100,70}

iodepth={128, 192, 256}

(Random write
workload)

rw=randwrite

rwmixread=0

iodepth={32,64,128}

SPDK NVMe BDEV Single Core Throughput

The first test was performed using SPDK bdevperf, which is a lightweight benchmarking tool that adds
minimal latency to the I/O path. The charts below show the single core IOPS results for the SPDK Block
Layer with increasing number of NVMe SSDs.

Figure 3: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB Random Read, 1 CPU Core,

QD=192, using bdevperf tool)

SPDK NVMe BDEV Performance Report

Release 24.05

 11

Figure 4: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB Random Write, 1 CPU Core,
QD=32, using bdevperf tool)

Figure 5: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB 70/30 Random Read/Write, 1

CPU Core, QD=192, using bdevperf tool)

SPDK NVMe BDEV Performance Report

Release 24.05

12

Bdevperf vs. fio IOPS/Core results

SPDK provides the bdevperf benchmarking tool that provides minimal capabilities needed to define
basic workloads and collects a limited amount of data. The fio benchmarking tool provides a lot of great
features to enable users to quickly define workloads, scale the workloads and collect many data points
for detailed performance analysis, however, at cost of higher overhead. This test compares the
performance in IOPS/core of bdevperf vs. the fio benchmarking tool with the SPDK bdev plugin.

Table 5: IOPS/Core performance; SPDK fio bdev plugin vs SPDK bdevperf (Blocksize=4KiB, 1 CPU

Core)

Workload
SPDK fio bdev Plugin

(IOPS, thousands)

SPDK bdevperf

(IOPS, thousands)

Performance

gain

4KiB Random Read, QD=192,
5 SSDs

3294.70 6231.38 89.13%

4KiB Random Write, QD=32,
10 SSDs

2618.50 7016.85 167.97%

4KiB 70/30 Random
Read/Write, QD=192, 7 SSDs

2841.88 5362.27 88.68%

The overhead of the benchmarking tools is important when you are testing a system that is capable of
millions of IOPS/Core. Using a benchmarking tool that has minimal overhead like the SPDK bdevperf
yields up to 168% more IOPS/Core than fio.

NVMe BDEV vs. Polled-Mode Driver IOPS/Core

In this test case, we compared the throughput of the NVMe BDEV with that of the polled-mode driver.
How to read this data? The SPDK block layer provides several key features at a cost of approximately
11.6% and 19.8% more CPU utilization for Random Read and Random Write workloads. If you are
building a system with many SSDs that is capable of millions of IOPS, you can take advantage of the
block layer features at the cost of approximately 1 additional CPU core for every 8 I/O cores for Random
Read workload and 1 additional CPU core for every 5 I/O cores for Random Write workload. Comparison
was done using SPDK bdevperf and nvmeperf test tools.

Table 6: SPDK NVMe Bdev vs SPDK NVMe PMD IOPS/Core (Blocksize=4KiB, 1 CPU Core)

Workload
SPDK Bdevperf

(IOPS, thousands)
SPDK Nvmeperf

(IOPS, thousands)
Performance

gain

4KiB Random Read, QD=192,
5 SSDs

6231.38 6954.30 11.6%

4KiB Random Write, QD=32,
10 SSDs

7016.85 8411.24 19.8%

https://github.com/spdk/spdk/tree/master/examples/nvme/perf

SPDK NVMe BDEV Performance Report

Release 24.05

 13

Conclusions

1. The SPDK NVMe block device module adds approximately 11.6% and 19.8% overhead compared
to using only the SPDK NVMe polled-mode driver without the block device module for Random
Read and Random Write workloads respectively.

2. Performance scales linearly with addition of NVMe SSDs up to 5 NVMe SSDs for Random Read
workload, reaching around 6.2 million IOPS.

3. Performance scaling is linear for Random Write workload up to 10 NVMe SSDs, reaching around
7 million IOPS.

4. Performance scales linearly with addition of NVMe SSDs up 6 SSDs for Random Read/Write
workload, reaching around 5.7 million IOPS.

5. For all workloads there is a noticeable performance degradation with addition of more NVMe
SSDs after peak performance point has been reached.

6. The IOPS for the 4KiB Random Write workload exceeded the expected NVMe SSDs maximum
throughput. We suspect this is due to imperfect preconditioning process, which wears off over
time. The results, however, were repeatable for several test runs.

SPDK NVMe BDEV Performance Report

Release 24.05

14

Test Case 2: SPDK NVMe BDEV I/O

Cores Scaling

Purpose: The purpose of this test case is to demonstrate the I/O throughput scalability of the NVMe
BDEV module with the addition of more CPU cores to perform I/O. The number of CPU cores used was
scaled as 1, 2, 3, 4, 5 and 6.

Test Workloads:

• 4KiB 100% Random Read

• 4KiB 100% Random Write

• 4KiB Random 70% Read 30% Write

Table 7: SPDK NVMe BDEV I/O Cores Scalability Test

Item Description

Test case Test SPDK NVMe BDEV I/O Cores Scalability Test

Test configuration

Number of CPU Cores: 1, 2, 3, 4, 5, 6

Number of NVMe SSDs: 5 per each CPU Core used in test, up to maximum of 22 NVMe
SSDs

NUMA optimization: CPUs for test were selected in a way to match NVMe drives
distribution across platform NUMA nodes.

Bdev perf configuration

spdk/test/bdev/bdevperf/bdevperf --json bdev.conf \

 -q 128 -o 4096 -w randrw -M ${MIXREAD} \

 -t 300 -m ${CORE_MASK} -p ${PRIMARY_CORE}

SPDK NVMe BDEV Performance Report

Release 24.05

 15

Results

Table 8: SPDK NVMe BDEV I/O Cores Scalability Test (4KiB 100% Random Read IOPS at QD=192;
4KiB 100% Random Write IOPS at QD=32; 4KiB 70/30 Random Read/Write IOPS at QD=192)

 IOPS (thousands)

CPU

Cores

NVMe

SSDs

Random Read

QD=192

Random Write

QD=32

70/30 Random Read/Write

QD=192

1 5 6214.04 2818.98 4732.98

2 10 12559.27 6298.64 9851.94

3 15 18363.68 11164.91 14874.58

4 20 24566.86 14537.17 19931.14

5 22 28134.84 17543.03 22299.88

6 22 29627.50 18196.14 22661.17

Figure 6: SPDK NVMe BDEV I/O Cores Scalability (4KiB 100% Random Read IOPS at QD=192; 4KiB

100% Random Write IOPS at QD=32; 4KiB 70/30 Random Read/Write IOPS at QD=192)

SPDK NVMe BDEV Performance Report

Release 24.05

16

Conclusions

1. The IOPS for 4KiB Random Read workload scales linearly with addition of I/O cores reaching
around 29 million IOPS.

2. The IOPS for 4KiB Random Read/Write workloads scale up linearly with the addition of I/O cores
up to 5 I/O cores. Increasing the number of cores to 6 does not result in performance
improvement.

3. The IOPS for the 4KiB Random Write workload scale linearly until 5 CPU Cores. The IOPS
exceeded the expected NVMe SSDs throughput for this workload which is about 7.7M IOPS. We
suspect this is due to imperfect preconditioning process, which wears off over time. However,
the results were repeatable and showed SPDK’s high scalability with addition of I/O cores.

SPDK NVMe BDEV Performance Report

Release 24.05

 17

Test Case 3: SPDK NVMe BDEV

Latency

This test case was carried out to understand latency characteristics while running SPDK NVMe bdev and
its comparison to Linux Kernel NVMe block device layer. We used SPDK fio bdev plugin instead of the
SPDK bdevperf tool, as it allowed us to gather detailed latency metrics. fio was ran for 15 minutes
targeting a single block device over a single NVMe drive. This test compares consistency between
latency of the SPDK and Linux Kernel block layers over time in a histogram. The Linux Kernel block layer
provides I/O polling capabilities to eliminate overhead such as context switch, IRQ (Interrupt Request)
delivery delay and IRQ handler scheduling. This test case includes a comparison of the I/O latency for the
Kernel vs. SPDK.

Test Workloads:

• 4KiB 100% Random Read

• 4KiB 100% Random Write

Table 9: SPDK NVMe BDEV Latency Test

Item Description

Test case Test SPDK NVMe BDEV Latency Test

Test configuration

Fio version: fio-3.28

Number of CPU cores: 1

Number of NVMe SSDs: 1

SPDK NVMe Driver
Configuration

ioengine=spdk_bdev

Linux Kernel Default
(libaio) Configuration

ioengine=libaio

Linux Kernel io_uring

ioengine=io_uring

System NVMe block device configuration:
echo 0 > /sys/block/nvme0n1/queue
echo 0 > /sys/block/nvme0n1/rq_affinity
echo 2 > /sys/block/nvme0n1/nomerges
echo -1 > /sys/block/nvme0n1/io_poll_delay

fio configuration
(common part)

[global]

direct=1

thread=1

time_based=1

norandommap=1

group_reporting=1

rw={randread | randwrite}

bs=4096

SPDK NVMe BDEV Performance Report

Release 24.05

18

runtime=900

ramp_time=120

numjobs=1

log_avg_msec=15

write_lat_log=/tmp/tc3_lat.log

fio configuration
(SPDK specific)

[global]

ioengine=spdk_bdev

spdk_conf=/tmp/bdev.conf

[filename0]

iodepth=1

cpus_allowed=0

filename=Nvme0n1

fio configuration
(Linux Kernel common)

[global]

ioengine={libaio | io_uring}

[filename0]

iodepth=1

cpus_allowed=0

filename=/dev/nvme0n1

fio configuration
(Linux Kernel io_uring

specific)

[global]

fixedbufs=1

hipri=1

registerfiles=1

sqthread_poll=1

The Linux block layer implements I/O polling on the completion queue. Polling can remove context
switch overhead, IRQ delivery and IRQ handler scheduling overhead[1].

Figure 7: Linux Block Layer I/O Optimization with Polling. Source [1]

Furthermore, the Linux block I/O polling provides a mechanism to reduce the CPU load. In the Classic
Polling model, the CPU spin-waits for the command completion and utilizes 100% of a CPU core [1].
There’s also an adaptive hybrid polling which reduces the CPU load by putting the I/O polling thread to
sleep for about half of the command execution time, but the polling thread must be woken up before

SPDK NVMe BDEV Performance Report

Release 24.05

 19

the I/O completes with enough heads-up time for a context switch[1]. Hybrid polling mode was not used
for testing in this document.

Figure 8: Linux Block I/O Classic and Hybrid Polling latency breakdown. Source [1]

The data in tables and charts compares the I/O latency for a various 4KiB workloads performed using the
SPDK bdev vs. Linux block layer I/O model libaio and io_uring with polling mode enabled.

Average and tail latency comparison

Table 10: SPDK bdev vs. Linux Kernel latency comparison (4KiB Random Read, QD=1, runtime=900s)

Latency metrics

(usec)

SPDK Fio BDEV

Plugin
Linux Kernel (libaio)

Linux Kernel

(io_uring)

Average 73.42 77.16 74.81

P90 82.43 85.50 84.48

P99 83.46 86.53 84.48

P99.99 148.48 154.62 150.53

Stdev 7.02 7.04 9.98

Average submission latency 0.15 0.98 0.00

Average completion latency 73.28 76.10 74.77

Table 11: SPDK bdev vs. Linux Kernel latency comparison (4KiB Random Write, QD=1, runtime=900s)

Latency metrics
(usec)

SPDK Fio BDEV
Plugin

Linux Kernel
(Default libaio)

Linux Kernel
(io_uring)

Average 5.47 9.15 6.81

P90 5.34 8.16 6.94

P99 6.05 8.26 7.33

P99.99 8.64 11.58 9.54

Stdev 1.28 0.63 2.87

Average submission latency 0.18 0.99 0.00

Average completion latency 5.28 8.09 6.75

SPDK NVMe BDEV Performance Report

Release 24.05

20

Figure 9: SPDK bdev vs Linux Kernel Latency comparison (4KiB Random Read)

Figure 10: SPDK bdev vs Linux Kernel Latency comparison (4KiB Random Write)

SPDK NVMe BDEV Performance Report

Release 24.05

 21

Linux Kernel libaio Histograms

Figure 11: Linux Kernel (Default libaio) 4KiB Random Read Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec)

Figure 12: Linux Kernel (Default libaio) 4KiB Random Write Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec)

SPDK NVMe BDEV Performance Report

Release 24.05

22

Linux Kernel io_uring Histograms

Figure 13: Linux Kernel (io_uring polling) 4KiB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)

Figure 14: Linux Kernel (io_uring polling) 4KiB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)

SPDK NVMe BDEV Performance Report

Release 24.05

 23

SPDK fio Bdev Histograms

Figure 15: SPDK BDEV NVMe 4KiB Random Read Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec)

Figure 16: SPDK BDEV NVMe 4KiB Random Write Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec)

SPDK NVMe BDEV Performance Report

Release 24.05

24

Performance vs. increasing Queue Depth

Purpose: Understand the performance in IOPS and average latency of SPDK vs. the Linux io_uring polling
and libaio block layer as the queue depth increases by powers of 2 from 1 to 512 for single NVMe SSD
and single CPU Core.

Table 12: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 1 NVMe SSD, 1 CPU Core, numjobs=1)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD IOPS
Avg. Lat.

(usec)
IOPS

Avg. Lat.

(usec)
IOPS

Avg. Lat.

(usec)

1 13572 73 12921 77 13336 75

2 27080 74 25758 77 26590 75

4 53885 74 51310 78 52866 75

8 106637 75 101451 79 104351 76

16 208673 76 197995 81 203705 78

32 398868 80 373124 86 386420 83

64 724679 88 491020 130 696490 92

128 1171181 109 488503 262 1068420 120

256 1399267 183 489808 522 1330179 192

512 1399407 366 491117 1042 1486475 344

Figure 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Read, 1 NVMe SSD, 1 CPU Core, numjobs=1)

SPDK NVMe BDEV Performance Report

Release 24.05

 25

Table 13: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Write, 1 NVMe SSD, 1 CPU Core, numjobs=1)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD IOPS
Avg. Lat.

(usec)
IOPS

Avg. Lat.

(usec)
IOPS

Avg. Lat.

(usec)

1 176303 5 106741 9 145240 7

2 348976 6 200031 10 282863 7

4 669765 6 461930 8 528093 7

8 863716 9 469443 17 841202 9

16 839376 19 468482 34 833498 19

32 854419 37 467585 68 824194 39

64 832855 77 466336 137 844890 76

128 797463 160 466094 274 803540 159

256 779005 329 466149 549 788349 325

512 735351 697 464023 1103 734270 698

Figure 18: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 1 NVMe SSD, 1 CPU Core, numjobs=1)

SPDK NVMe BDEV Performance Report

Release 24.05

26

Conclusions

1. Polling hardware for completion instead of relying on interrupts lowers both total latency and its
variance.

2. SPDK NVMe Bdev average latency was up to 4.85% and 40.29% lower than Linux Kernel libaio,
for Random Read and Random Write workloads respectively.

3. SPDK NVMe Bdev average latency was up to approximately 1.85% and 19.75% lower than Linux
Kernel io_uring for Random Read and Random Write workloads respectively.

4. Frequency buckets for 4KiB Random Write at QD=1 workload were so narrow that it was
decided to present the results using 100ns as an interval unit for x-axis.

5. For 4KiB Random Read workload all test engines scaled linearly up to QD=32 queue depth.
Beyond this value:

a. SPDK NVMe Bdev scaling became non-linear at QD=128 and peaked at QD=256,
reaching 1.4 million IOPS and saturating NVMe drive.

b. Kernel io_uring scaling became non-linear at QD=128 and peaked at QD=768, reaching
1.51 million IOPS and saturating NVMe drive.

c. Kernel libaio peaked at QD=64 reaching approximately 493k IOPS. Increasing queue
depth did not improve throughput.

6. For 4KiB Random Write workload, the IOPS for the libaio scaled linearly up to QD=4 and the IOPS
for the io_uring and SPDK engines scaled linearly up to QD=8. Further increasing the queue
depth resulted in minor performance degradation.

SPDK NVMe BDEV Performance Report

Release 24.05

 27

Test Case 4: IOPS vs. Latency at

different queue depths

Purpose: This test case was performed in order to understand throughput & latency trade-offs with
varying queue depth while running SPDK vs. Kernel NVMe block layers.

Results in the table represent performance in IOPS and average latency for the SPDK and Linux Kernel
NVMe block layers. We limited both the SPDK and Linux NVMe block layers to use the same number of
CPU Cores.

Test Workloads:

• 4KiB 100% Random Read

• 4KiB 100% Random Write

• 4KiB Random 70% Read 30% Write

Table 14: SPDK NVMe BDEV Latency Test at different Queue Depths configuration

Item Description

Test case Test SPDK NVMe BDEV Latency Test at different Queue Depths

Test configuration

fio version: fio-3.28

Number of CPU cores: 12

Number of NVMe SSDs: 22

Linux Kernel io_uring
NVMe block device

configuration

echo 0 > /sys/block/nvme0n1/queue

echo 0 > /sys/block/nvme0n1/rq_affinity

echo 2 > /sys/block/nvme0n1/nomerges

echo -1 > /sys/block/nvme0n1/io_poll_delay

fio configuration
(common part)

[global]

direct=1

thread=1

time_based=1

norandommap=1

group_reporting=1

rw={randread | randwrite | randrw}

rwmixread={100 | 0 | 70}

bs=4096

runtime=240

ramp_time=60

numjobs=1

fio configuration
(SPDK specific)

[global]

ioengine=spdk_bdev

spdk_conf=/tmp/bdev.conf

SPDK NVMe BDEV Performance Report

Release 24.05

28

[filename0]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*

cpus_allowed=0

filename=Nvme0n1

filename=Nvme1n1

[filename1]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*

cpus_allowed=1

filename=Nvme2n1

filename=Nvme3n1

[…]

[filename11]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*

cpus_allowed=11

filename=Nvme20n1

filename=Nvme21n1

* - - actual iodepth parameter value used in test; this

was multiplied by the number of “filename” objects in

job section to achieve desired queue depth value per

NVMe SSD (e.g. QD=256 in this case is QD=128 per SSD)

fio configuration
(Linux Kernel common)

[global]

ioengine={libaio | io_uring}

[filename0]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*

cpus_allowed=0

filename=/dev/nvme0n1

filename=/dev/nvme1n1

[filename1]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*

cpus_allowed=1

filename=/dev/nvme2n1

filename=/dev/nvme3n1

[…]

[filename11]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*

cpus_allowed=11

filename=/dev/nvme20n1

filename=/dev/nvme21n1

* - - actual iodepth parameter value used in test; this

was multiplied by the number of “filename” objects in

job section to achieve desired queue depth value per

NVMe SSD (e.g. QD=256 in this case is QD=128 per SSD)

SPDK NVMe BDEV Performance Report

Release 24.05

 29

fio configuration
(Linux Kernel io_uring

specific)

[global]

fixedbufs=1

hipri=1

registerfiles=1

sqthread_poll=1

4KiB Random Read Results

Table 15: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Read, 22 NVMe SSDs, 12 CPU Cores)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD
IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

1 0.30 74 0.28 78 0.30 74

2 0.59 74 0.56 78 0.59 74

4 1.18 74 1.12 78 1.17 75

8 2.34 75 2.20 80 2.31 76

16 4.59 76 4.18 84 4.49 78

32 8.76 80 5.36 131 8.41 83

64 15.82 88 5.62 250 13.78 102

128 25.23 110 5.61 501 18.80 150

256 29.65 186 5.60 1006 22.89 246

512 28.74 386 5.61 2008 24.14 467

SPDK NVMe BDEV Performance Report

Release 24.05

30

Figure 19: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Read, 22 NVMe SSDs, 12 CPU Cores)

4KiB Random Write Results

Table 16: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 22 NVMe SSDs, 12 CPU Cores)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD
IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

1 3.60 6 2.08 10 3.27 7

2 7.38 6 4.21 10 6.38 7

4 13.75 6 5.32 16 11.54 7

8 17.37 9 5.42 32 14.27 12

16 17.39 19 5.41 65 16.48 21

32 17.21 40 5.39 130 16.92 41

64 16.92 82 5.41 260 17.12 82

128 16.44 170 5.40 521 16.67 169

256 16.21 346 5.39 1045 16.33 345

512 15.89 706 5.31 2119 15.93 707

SPDK NVMe BDEV Performance Report

Release 24.05

 31

Figure 20: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Write, 22 NVMe SSDs, 12 CPU Cores).

4KiB Random 70%/30% Read/Write Results

Table 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB 70/30 Random Read/Write, 22 NVMe SSDs, 12 CPU Cores)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD
IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

1 0.46 16 0.43 17 0.45 16

2 0.91 16 0.84 17 0.91 16

4 1.77 16 1.67 17 1.77 17

8 3.32 18 3.22 18 3.35 17

16 6.11 19 4.87 24 5.93 20

32 10.05 23 5.37 44 8.78 27

64 14.67 32 5.48 86 11.68 40

128 18.80 49 5.50 171 13.63 69

256 19.81 282 5.50 1023 15.99 352

512 19.54 573 5.49 2051 17.28 652

SPDK NVMe BDEV Performance Report

Release 24.05

32

Figure 21: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB 70/30 Random Read/Write, 22 NVMe SSDs, 12 CPU Cores)

Conclusions

1. SPDK NVMe bdev fio plugin reached up to around 29.65 million IOPS for Random Read workload
at Queue Depth = 256. This is close to 30 million IOPS result measured in Test Case 2 - I/O Cores
Scaling using bdevperf.

2. For the 4KiB Random Write workload SPDK NVMe bdev fio plugin and Kernel io_uring had
similar performance. We observed noticeable performance drop for both I/O engines when
increasing queue depth, after reaching peak performance.

3. SPDK NVMe bdev fio plugin reached up to 19.81 million IOPS for Random Read/Write workload
at Queue Depth = 256, which is lower than the 22.6 million IOPS we measured in Test Case 2 -
I/O Cores Scaling using bdevperf.

4. The results for the Random Write workload exceeded what the 22 NVMe SSDs are capable of
(around 7.7M IOPS). This is probably due to imperfect preconditioning process, which wears off
over time. However, these results were repeatable and still show SPDK’s high scalability with
increase in the I/O requests.

5. The Kernel libaio IO engine achieved maximum performance of up to 5.62M IOPS with 12 CPU
cores and was unable to saturate platform’s NVMe disks throughput. Peak performance was
reached at QD=64 for Random Read , at QD=128 for Random Read/Write workloads and at

SPDK NVMe BDEV Performance Report

Release 24.05

 33

QD=8 for Random Write workload. Beyond these queue depth values there was no IOPS
improvement, but the latency increased.

6. The Kernel io_uring engine reached a peak performance of 24.14 million IOPS at Queue Depth =
512 for Random Read workload, 17.12 million at QD = 64 for Random Write and 17.28 million at
QD = 512 for Random Read/Write workload. However, when we looked at htop we noticed that
io_uring was using 24 CPU cores; When we configured the sqthread_poll parameter to eliminate
system calls, io_uring starts a special kernel thread that polls the shared submission queue for
I/O submitted by the fio thread. Therefore, in terms of CPU efficiency we measured up to 1.01M
IOPS/Core for io_uring vs up to about 2.47M IOPS/Core for the SPDK NVMe bdev fio plugin. The
Submission Queue Polling blog provides more information about how to eliminate system calls
with io_uring.

https://unixism.net/loti/tutorial/sq_poll.html

SPDK NVMe BDEV Performance Report

Release 24.05

34

Summary

1. SPDK NVMe BDEV Block Layer using SPDK bdevperf benchmarking tool can deliver up to 6.2
million IOPS on a single Intel® Xeon® Gold 6348 CPU Core with Turbo Boost enabled.

2. The SPDK NVMe BDEV IOPS scale linearly with addition of CPU cores. We demonstrated up to 29
million IOPS on just 5 CPU cores (Intel® Xeon® Gold 6348 with Turbo Boost enabled).

3. The SPDK NVMe BDEV has lower QD=1 latency than the Linux Kernel NVMe block driver for
small (4KiB) blocks.

a. SPDK BDEV latency was to 4.85% and 40.29% lower than Linux Kernel libaio latency for
Random Read and Random Write workloads.

b. SPDK BDEV latency was about 1.85% lower than Linux Kernel io_uring latency for
Random Read workload and 19.75% lower for Random Write workload.

4. SPDK NVMe bdev Fio reaches up to 29.65 million IOPS with an average latency of around 186
usec while using 12 CPU cores at queue depth of 256. With the same fio workloads Kernel
io_uring and Kernel libaio reach up to 24.14 million (using 24 cores: 12 for fio and 12 for
submission queue polling) and 5.62 million IOPS respectively.

SPDK NVMe BDEV Performance Report

Release 24.05

 35

List of tables

Table 1: Hardware setup configuration ... 4

Table 2: Test setup BIOS settings .. 5

Table 3: Test System NVMe storage setup .. 5

Table 4: SPDK NVMe BDEV IOPS Test configuration.. 9

Table 5: IOPS/Core performance; SPDK fio bdev plugin vs SPDK bdevperf (Blocksize=4KiB, 1 CPU
Core) ...12

Table 6: SPDK NVMe Bdev vs SPDK NVMe PMD IOPS/Core (Blocksize=4KiB, 1 CPU Core)12

Table 7: SPDK NVMe BDEV I/O Cores Scalability Test ..14

Table 8: SPDK NVMe BDEV I/O Cores Scalability Test (4KiB 100% Random Read IOPS at QD=192;
4KiB 100% Random Write IOPS at QD=32; 4KiB 70/30 Random Read/Write IOPS at QD=192)15

Table 9: SPDK NVMe BDEV Latency Test ..17

Table 10: SPDK bdev vs. Linux Kernel latency comparison (4KiB Random Read, QD=1, runtime=900s)
 ..19

Table 11: SPDK bdev vs. Linux Kernel latency comparison (4KiB Random Write, QD=1, runtime=900s)

 ..19

Table 12: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 1 NVMe SSD, 1 CPU Core, numjobs=1)24

Table 13: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 1 NVMe SSD, 1 CPU Core, numjobs=1)25

Table 14: SPDK NVMe BDEV Latency Test at different Queue Depths configuration27

Table 15: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 22 NVMe SSDs, 12 CPU Cores) ...29

Table 16: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Write, 22 NVMe SSDs, 12 CPU Cores) ..30

Table 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB 70/30 Random Read/Write, 22 NVMe SSDs, 12 CPU Cores)31

SPDK NVMe BDEV Performance Report

Release 24.05

36

List of figures

Figure 1 : Example NVMe bdev configuration file .. 7

Figure 2: Example SPDK Fio BDEV configuration file ... 8

Figure 3: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB Random Read, 1 CPU Core,
QD=192, using bdevperf tool) ..10

Figure 4: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB Random Write, 1 CPU Core,
QD=32, using bdevperf tool) ..11

Figure 5: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB 70/30 Random Read/Write, 1

CPU Core, QD=192, using bdevperf tool) ...11

Figure 6: SPDK NVMe BDEV I/O Cores Scalability (4KiB 100% Random Read IOPS at QD=192; 4KiB

100% Random Write IOPS at QD=32; 4KiB 70/30 Random Read/Write IOPS at QD=192)15

Figure 7: Linux Block Layer I/O Optimization with Polling. Source [1] ..18

Figure 8: Linux Block I/O Classic and Hybrid Polling latency breakdown. Source [1]19

Figure 9: SPDK bdev vs Linux Kernel Latency comparison (4KiB Random Read)20

Figure 10: SPDK bdev vs Linux Kernel Latency comparison (4KiB Random Write)20

Figure 11: Linux Kernel (Default libaio) 4KiB Random Read Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec) ..21

Figure 12: Linux Kernel (Default libaio) 4KiB Random Write Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec) ..21

Figure 13: Linux Kernel (io_uring polling) 4KiB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec) ..22

Figure 14: Linux Kernel (io_uring polling) 4KiB Random Write Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec) ..22

Figure 15: SPDK BDEV NVMe 4KiB Random Read Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec) ...23

Figure 16: SPDK BDEV NVMe 4KiB Random Write Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec) ...23

Figure 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Read, 1 NVMe SSD, 1 CPU Core, numjobs=1)24

Figure 18: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 1 NVMe SSD, 1 CPU Core, numjobs=1)25

Figure 19: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Read, 22 NVMe SSDs, 12 CPU Cores) ...30

Figure 20: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KiB Random Write, 22 NVMe SSDs, 12 CPU Cores). ...31

Figure 21: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB 70/30 Random Read/Write, 22 NVMe SSDs, 12 CPU Cores)32

SPDK NVMe BDEV Performance Report

Release 24.05

 37

References

[1] Damien Le Moal, “I/O Latency Optimization with Polling”, Vault – Linux Storage and Filesystem
Conference – 2017, May 22nd, 2017.

SPDK NVMe BDEV Performance Report

Release 24.05

38

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more

at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may

not reflect all publicly available updates.

Your costs and results may vary.

No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software, or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Other names and brands may be claimed as the

property of others.

§

file:///C:/Users/abhewitt/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/M92GXFTD/www.Intel.com/PerformanceIndex

