SPDK NVMe BDEV Performance Report
Release 22.05

SPDK NVMe BDEV
Performance Report
Release 22.05

intel.

Testing Date: June 2022
Performed by:

Karol Latecki (karol.latecki@intel.com)

Jaroslaw Chachulski (jaroslawx.chachulski@intel.com)

Acknowledgments:

James Harris (james.r.harris@intel.com)

John Kariuki (john.k.kariuki@intel.com)

SPDK NVMe BDEV Performance Report

Release 22.05

(650) 1= X o= 2
FANE Lo I =T Tol = [g o B ¥ g o o 1= < PP 3
LTS =T = o o 2 PP 4
Hardware Configurationo e e as 4

5 (O SIS =t [= 5
1S BN o =Tele] o o [u o] o T1 T P 5
Kernel & BIOS Spectre-Meltdown informationcooiiiiiiiiii e 6
Introduction to SPDK BlOCK DeVICE Lay @l . ..ciiuiiiiiiiii i i ii i e e e e ae e e e aaaeaas 7
Test Case 1: SPDK NVMe BDEV IOPS/COre TSt vuuiiiiiiiiiiiiiiiiieiiinieiiissesiinsssiinsssiisssiinsnens 10
SPDK NVMe BDEV Single Core Throughputcoiiiiiiiiiiiiiir e 11
Bdevperf vs. FIO IOPS/COre reSUILS ..uuuiiiiiiiiiii ittt e e naeanes 13
NVMe BDEV vs. Polled-Mode Driver IOPS/CoOr. .ttt iiiiiiieesiiiiisssessisiiissseessns 13

1670 Lol 18 =] 1] o =P 14
Test Case 2: SPDK NVMe BDEV I/O Cores SCaliNg ...ovviiiiiiiiiiiiiiiiiiii i s neannes 15
2SO 16

(6o] o Vol 18 =]] o 1= PP 16
Test Case 3: SPDK NVMe BDEV LatenCy .vviiiiiiiiii i i i s s s rine e s e nne e s e neeas 18
Average and tail [atency COmMPariSONiiuiiiiiiii e 20
Linux Kernel libaio HiStOgramsciiiiiiiiiiiii s aes 22
Linux Kernel io_uring HistOgramscuiiiiiiiiiiiiii e 23

1Y o] G S (O 2 = o LIV o 11 oo] =1 0 0 - 24
Performance vs. increasing Queue Depth ...c.ciiiiiiiiiiiii 25
(6o] o {0l [0 =] o] o 1= PP 27
Test Case 4: IOPS vs. Latency at different queue depths......c.civiiiiiiiiiiiiii e 28
4KiB Random Read ReESUILSt e e e e aaneaas 30
4KiB RaNdOm WHEE RESUITS ..iiriiitiiiiii i a e e r e an e eaneaanenas 31
4KiB Random 70%/30% Read/Write RESUILS....ciiiiiiiiiiiii i i i i i naaes 32

1670 Lol 18 =] 1] o = PP 33

11 0 0 010> Y/ 34
[T oo) = o] =P 35
IS o) T 11 = 36
2] (=] = L= P 37

SPDK NVMe BDEV Performance Report
Release 22.05

Audience and Purpose

This report is intended for people who are interested in comparing the performance of the SPDK block
device layer vs the Linux Kernel (5.15.7-200.fc35.x86_64) block device layer. It provides performance
and efficiency information between the two block layers under various test workloads.

The purpose of the report is not to imply a single “correct” approach, but rather to provide a baseline of
well-tested configurations and procedures with repeatable and reproducible results. This report can be
viewed as information regarding best known method/practice when performance testing the SPDK
NVMe block device.

intel.

Test setup

SPDK NVMe BDEV Performance Report
Release 22.05

Hardware configuration

Item

Server Platform

Motherboard
CPU

Memory

Operating System
BIOS

Linux kernel version
SPDK version

Fio version

Storage

Table 1: Hardware setup configuration

Description

Ultra SuperServer SYS-ZOU-TNR

Server board X12DPU-6
2 CPU sockets, Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz

Number of cores 28 per socket, number of threads 56 per socket
Both sockets populated

Microcode: 0xd0002e0

16 x 32GB SK Hynix DDR4 HMA84GR7DJR4N-XN

Total 512 GBs
Memory channel population:

P1

P2

CPU1_DIMM_A1

CPU2_DIMM_A1

CPU1_DIMM_B1

CPU2_DIMM_B1

CPU1_DIMM_C1

CPU2_DIMM_C1

CPU1_DIMM_D1

CPU2_DIMM_D1

CPU1_DIMM_E1

CPU2_DIMM_E1

CPU1_DIMM_F1

CPU2_DIMM_F1

CPU1_DIMM_G1

CPU2_DIMM_G1

CPU1_DIMM_H1

CPU2_DIMM_H1

Fedora 35
1.1a

5.15.7-200.fc35.x86_64

SPDK 22.05
3.28

0S: 1x 250GB Crucial CT250MX500SSD1

Storage:

22x Kioxia® KCM61VUL3T20 3.2TBs (FW: 0105) (10 on CPU NUMA Node 0, 12 on CPU

NUMA Node 1)

https://www.supermicro.com/en/products/system/Ultra/2U/SYS-220U-TNR
https://www.supermicro.com/en/products/motherboard/X12DPU-6
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®

BIOS Settings

Table 2: Test setup BIOS settings

Description
BIOS VT-d = Enabled
CPU Power and Performance Policy = <Performance>
CPU C-state = No Limit
CPU P-state = Enabled
Enhanced Intel® Speedstep® Tech = Enabled
Turbo Boost = Enabled
Hyper Threading = Enabled

Table 3: Test System NVMe storage setup

Item Description
PCle Riser cards “Ultra” Riser Card: AOC-2UR68G4-i2XT
e PCleSlot1-x16, CPU2
e PCle Slot 2 —x8, CPU2
e PCle Slot 3 -x8, CPU2
Right-facing riser card: RSC-WR-6
e PCleSlot 4 -x16, CPU1
Left-facing riser card: RSC-W2-66G4
e PCleSlot5-x16, CPU2
e PCleSlot 7 -x16, CPU1
More information can be found in SYS-220U-TNR manual document.
PCle Retimer cards 3 x AOC-SLG4-4EAT
Installed in:
o PCle Retimer 1: RSC-WR-6, PCle Slot 4 (using CPU1 PCle Lanes)
o PCle Retimer 2: AOC-2UR68G4-i2XT, PCle Slot 1 (using CPU2 PCle Lanes)
o PCle Retimer 3: RSC-W2-66G4, PCle Slot 5 (using CPU2 PCle Lanes)

NVMe Drives NvmeO — 5 Motherboard ports (CPU1 PCle Lanes)

distribution acrossthe = Nvme6-9 Motherboard ports (CPU2 PCle Lanes)

system Nvme9 — 13 PCle Retimer 1 (CPU1 PCle Lanes)
Nvmel4 - 17 PCle Retimer 2 (CPU2 PCle Lanes)
Nvmel8 - 21 PCle Retimer 3 (CPU2 PCle Lanes)

SSD Preconditioning

An empty NAND SSD will often show read performance far beyond what the drive claims to be capable
of because the NVMe controller knows that the device is empty and completes the read request
successfully without performing any actual read operation on the device. Therefore, prior to running
each performance test case we preconditioned the SSDs by writing 128K blocks sequentially across the
namespace’s full LBA range twice to ensure the controller accesses the NAND media for each
subsequent 1/0. Additionally, the 4K 100% random writes performance decreases from one test to the
next until the NAND management overhead reaches steady state because the wear-levelling activity
increases dramatically until the SSD reaches steady state. Therefore, to obtain accurate and repeatable
results for the 4K 100% random write workload, we ran the workload for 60 minutes before starting the
benchmark test and collecting performance data. For a highly detailed description of exactly how to
force an SSD into a known state for benchmarking see the SNIA Solid State Storage Performance Test

Specification.

https://www.supermicro.com/manuals/superserver/2U/MNL-2252.pdf
https://www.supermicro.com/en/products/accessories/addon/AOC-SLG4-4E4T.php
https://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.1.pdf
https://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.1.pdf

[|
I n t I SPDK NVMe BDEV Performance Report
® Release 22.05

Kernel & BIOS Spectre-Meltdown information

Host server system uses 5.15.7-200 kernel version which is available from the DNF repository. The
default Spectre-Meltdown mitigation patches for this kernel version have been left enabled.

SPDK NVMe BDEV Performance Report
Release 22.05

Introduction to SPDK Block Device
Layer

SPDK Polled Mode Driver

The NVMe PCle driver is something that is usually expected to be part of the system kernel and your
application would interact with the driver via the system call interface. SPDK takes a different approach.
SPDK unbinds the NVMe devices from the kernel NVMe driver and binds them to a userspace NVMe
driver instead. This allows a userspace application to directly access the device and its queues from
userspace.

The SPDK NVME Driver is a C library that may be linked directly into an application that provides direct,
zero-copy data transfer to and from NVMe SSDs. It is entirely passive, meaning that it spawns no threads
and only performs actions in response to function calls from the application. The library controls NVMe
devices by directly mapping the PCI BAR into the local process and performing MMIO. The SPDK NVMe
driver is asynchronous, which means that the driver submits the 1/O request as an NVMe submission
gueue entry on a queue pair and the function returns immediately, prior to the completion of the NVMe
command. The application must poll for I/0 completion on each queue pair with outstanding 1/0 to
receive completion callbacks.

SPDK Block Device Layer

SPDK further provides a full block stack as a user space library that performs many of the same
operations as a block stack in an operating system. The SPDK block device layer often simply called
bdev, is a C library intended to be equivalent to the operating system block storage layer located above
the device drivers in traditional kernel storage stack.

The bdev module provides an abstraction layer that provides common APIs for implementing block
devices that interface with different types of block storage device. An application can use the APIs to
enumerate and claim SPDK block devices, and then perform asynchronous I/O operations (such as read,
write, unmap, etc) in a generic way without knowing if the device is an NVMe device or something else,
for example Ceph RBD or malloc ramdisk block device. The SPDK NVMe bdev module can create block
devices for both local PCle-attached NVMe device and remote devices exported over NVMe-oF.

In this report, we benchmarked the performance and efficiency of the bdev for the local PCle-attached
NVMe devices use case. We also demonstrated the benefits of the SPDK approaches, like user-space
polling, asynchronous I/0O, no context switching etc. under different workloads.

FIO Integration

SPDK provides an FIO plugin for integration with Flexible 1/0 benchmarking tool. The quickest way to
generate a configuration file with all the bdevs for locally PCle-attached NVMe devices is to use the
gen_nvme.sh script with “—json-with-subsystems” option as shown in Figure 1.

https://www.spdk.io/doc/nvme.html
http://www.spdk.io/doc/bdev.html
https://spdk.io/doc/bdev.html
https://github.com/spdk/spdk/tree/master/examples/nvme/fio_plugin
https://github.com/axboe/fio

SPDK NVMe BDEV Performance Report
Release 22.05

[user@localhost spdk]$ sudo scripts/gen_nvme.sh --json-with-
subsystems | jq

{
"subsystems": [
{
"subsystem": "bdev",
"config": [
{
"method": "bdev_set_options",
"params": {
"bdev_io_pool_size": 65535,
"bdev_io_cache_size": 2048,
"bdev_auto_examine": true
}
¥
{
"method": "bdev_nvme_attach_controller",
"params": {
"trtype": "PCIe",
"name": "Nvme@",
"traddr": "0000:1a:00.0"
}
¥
[...]
{
"method": "bdev_nvme_attach_controller”,
"params": {
"trtype": "PCIe",
"name": "Nvme23",
"traddr": "0000:df:00.0"
}
}
]
}
]

Add SPDK bdevs to the fio job file, by setting the joengine=spdk_bdev and adding the spdk_json_conf
parameter whose value points to the NVMe bdev configuration file.

The example fio configuration file in figure 2, shows how to define multiple fio jobs and assign NVMe
bdevs to each job. Each job is also pinned to a CPU core on the same NUMA node as the NVMe SSDs
that the job will access.

Finally, to use the bdev fio plugin specify the LD_PRELOAD when running fio.

LD_PRELOAD=<path to spdk repo>/examples/bdev/fio_plugin/fio_plugin fio <fio job file>

SPDK NVMe BDEV Performance Report
Release 22.05

[global]

direct=1

thread=1

time_based=1

norandommap=1
group_reporting=1
ioengine=spdk_bdev
spdk_json_conf=/tmp/bdev.conf

rw=randread
rwmixread=70
bs=4096
numjobs=1
runtime=300
ramp_time=60

[filename@]
iodepth=192
cpus_allowed=0
filename=Nvmeonl
filename=Nvmelnl
filename=Nvme4nl
filename=Nvme5n1l
filename=Nvme6nl
filename=Nvme7nl

[filenamel]
iodepth=192
cpus_allowed=21
filename=Nvme2nl
filename=Nvme3nl
filename=Nvme8nil
filename=Nvme9nil
filename=Nvmelonl
filename=Nvmellnl

[filename2]
iodepth=192
cpus_allowed=22
filename=Nvmel2nl
filename=Nvmel3nl
filename=Nvmel4nl
filename=Nvmel5nl
filename=Nvmel6nl

[filename3]
iodepth=192
cpus_allowed=23
filename=Nvmel7nl
filename=Nvmel8nl
filename=Nvmel9nl
filename=Nvme20n1l
filename=Nvme21nl

[|
I n t I SPDK NVMe BDEV Performance Report
® Release 22.05

Test Case 1: SPDK NVMe BDEV
IOPS/Core Test

Purpose: The purpose of this test case was to measure the maximum performance in IOPS/Core of the
NVMe block layer on a single CPU core. We used different benchmarking tools (SPDK bdevperf vs. SPDK
FIO BDEV plugin vs SPDK NVMe perf) to understand the overhead of benchmarking tools. Measuring
IOPS was key in this test case, so latency measurements were either disabled or skipped.

The following Random Read/Write workloads were used:
e 4KiB 100% Random Read
e 4KiB 100% Random Write
e 4KiB Random 70% Read 30% Write
For each workload we followed the following steps:
1) Precondition SSDs as described in “Test Setup” chapter.

2) Run each test workload: Start with a configuration that has 22 Kioxia KCM61VUL3T20 NVMe
devices and decrease the number of SSDs on each subsequent run.

e This shows us the I0OPS scaling as we add SSDs till the maximum IOPS/Core is reached.

e Starting with 22 SSDs and reducing the number of SSDs on subsequent eliminates having
to precondition between runs because all SSDs used in the subsequent run were used in
the previous run so they should still be in a steady state.

3) Repeat three times. The data reported is the average of the 3 runs.

Table 4: SPDK NVMe BDEV IOPS Test configuration

Item Description

Test case SPDK NVMe BDEV IOPS/Core Test
Test configuration FIO Version: fio-3.28

Number of NVMe SSDs:
{1, 2,3,4,5,6, 7,8, 10, 12, 14, 16, 18, 20, 22}

SPDK_BDEV_IO_CACHE_SIZE changed from 256 to 2048 (using
bdev_set_options RPC call).

spdk/test/bdev/bdevperf/bdevperf -c bdev.conf -g

Bdevperf S{iodepth} -o S${block size} -w ${rw} -M S${rwmixread} -t
configuration 300 -m 0 -p O a

[globall]
FIO configuration ioengine=spdk bdev

spdk json conf=bdev.conf

10

SPDK NVMe BDEV Performance Report
Release 22.05

intel.

gtod reduce=l1
direct=1
thread=1
norandommap=1
time based=1
ramp_ time=60s
runtime=300s

bs=4k
numjobs=1

rw={randread, randrw}
(Random read and rwmixread={100,70}
mixed workloads) iodepth={128, 192, 256}

rw=randwrite
(Random write rwmixread=0
workload) iodepth={32,64,128}

SPDK NVMe BDEV Single Core Throughput

The first test was performed using SPDK bdevperf, which is lightweight benchmarking tool that adds
minimal latency to the I/O path. The charts below show the Single core IOPS results for the SPDK

Block Layer with increasing number of NVMe SSDs.

SPDK NVMe BDEV IOPS
4KiB Random Read, QD=192, 1 CPU Core

7000.00

6000.00

IOPS (thousands)
(Higher is better)
w =
8 8
(=] (=]
8 8

Number of SSDs

5000.00
2000.00
1000.00 I
0.00
1 2 3 - 5 6 7 8 10 14 18 22

Figure 3: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB Random Read, 1CPU Core,

QD=192, using bdevperf tool)

11

intel.

8000.00

7000.00

6000.00

5000.00

4000.00

g
S
8

IOPS (thousands)
(Higher is better)

2000.00

1000.00

0.00

SPDK NVMe BDEV Performance Report
Release 22.05

SPDK NVMe BDEV IOPS
4KiB Random Write, QD=32, 1 CPU Core

1 2 3 - 5 6 7 8 10 14 18 22

Number of SSDs

Figure 4: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB Random Wtrite, 1CPU Core,

7000.00

6000.00

5000.00

[7%) P
S S
S S
S S

IOPS (thousands)
(Higher is better)

2000.00

1000.00

0.00

QD=32, using bdevperf tool)

SPDK NVMe BDEV IOPS
4KiB 70/30 Random Read/Write, QD=192, 1 CPU Core

1 2 3 - 5 6 7 8 10 14 18 22

Number of SSDs

Figure 5: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB 70/30 Random Read/Write,

12

1CPU Core, QD=192, using bdevperf tool)

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®
Bdevperf vs. FIO IOPS/Core results

SPDK provides the bdevperf benchmarking tool that provides minimal capabilities needed to define
basic workloads and collects a limited amount of data. The FIO benchmarking tool provides a lot of great
features to enable users to quickly define workloads, scale the workloads and collect many data points
for detailed performance analysis, however, at cost of higher overhead. This test compares the
performance in IOPS/core of bdevperf vs. the FIO benchmarking tool with the SPDK BDEV plugin.

Table 5: IOPS/Core performance; SPDK FIO bdev plugin vs SPDK bdevperf (Blocksize=4KiB, 1 CPU
Core)

Workload SDPK Fio BDEV Plugin SPDK Bdevperf Performance
(IOPS, thousands) (IOPS, thousands) gain
4KiB Random Read, QD=192, 3510.32 6536.90 86.2%
5 SSDs
4KiB Random Write, QD=32
)) _ _ 168%
10 SSDs 2670.63 7171.13 6
4KiB 70/30 Random 3044.31 6368.14 109.2%

Read/Write, QD=192, 7 SSDs

The overhead of the benchmarking tools is important when you are testing a system that is capable of
millions of I0PS/Core. Using a benchmarking tool that has minimal overhead like the SPDK bdevperf
yields up to 168% more IOPS/Core than FIO.

NVMe BDEYV vs. Polled-Mode Driver IOPS/Core

In this test case, we compared the throughput of the NVMe BDEV with that of the polled-mode driver.
How to read this data? The SPDK block layer provides several key features at a cost of approximately
6.4% and 16.5% more CPU utilization for Random Read and Random Write workloads. If you are building
a system with many SSDs that is capable of millions of IOPS, you can take advantage of the block layer
features at the cost of approximately 1 additional CPU core for every 15 I/O cores for Random Read
workload and 1 additional CPU core for every 6 I/O cores for Random Write workload. Comparison was
done using SPDK Bdevperf and Nvmeperf test tools.

Table 6: SPDK NVMe Bdev vs SPDK NVMe PMD IOPS/Core (Blocksize=4KiB, 1 CPU Core)

Workload SPDK Bdevperf SPDK Nvmeperf Performance
(IOPS, thousands) (IOPS, thousands) CELL
4KiB Random Read, QD=192, 6536.90 6956.86 6.4%
5 SSDs
4KiB Random Write, QD=32
! ’ 7171.13 9
10 SSDs 8359.00 16.5%

13

SPDK NVMe BDEV Performance Report
Release 22.05

Conclusions

14

1.

The SPDK NVMe block device module adds approximately 6.4% and 16.5% overhead compared
to using only the SPDK NVMe Polled-Mode Driver without the block device module for Random
Read and Random Write workloads respectively.

Performance scales linearly with addition of NVMe SSDs up to 5 NVMe SSDs for Random Read
workload, reaching around 6.4 million IOPS.

Performance scaling is linear for Random Write workload up to 10 NVMe SSDs, reaching around
7.1 million IOPS.

Performance scales linearly with addition of NVMe SSDs up 6 SSDs for Random Read/Write
workload, reaching around 5.98 million IOPS.

For all workloads there is a noticeable performance degradation with addition of more NVMe
SSDs after peak performance point has been reached.

The IOPS for the 4 KiB Random Write workload exceeded the expected NVMe SSDs maximum
throughput. We suspect this is due to imperfect preconditioning process, which wears off over
time. The results, however, were repeatable for a number of test runs.

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®

Test Case 2: SPDK NVMe BDEV 1/0
Cores Scaling

Purpose: The purpose of this test case is to demonstrate the 1/0 throughput scalability of the NVMe
BDEV module with the addition of more CPU cores to perform 1/O. The number of CPU cores used was
scaledas 1, 2,3,4,5and6.

Test Workloads: We use the following Random Read/Write mixes
e 4KiB 100% Random Read
e 4KiB 100% Random Write

e 4KiB Random 70% Read 30% Write

Table 7: SPDK NVMe BDEV I/O Cores Scalability Test

Item Description

Test case Test SPDK NVMe BDEV I/O Cores Scalability Test
Test configuration Number of CPU Cores: 1, 2, 3,4,5,6

Number of NVMe SSDs: 5 per each CPU Core used in test, up to maximum
of 22 NVMe SSDs

NUMA optimization: CPUs for test were selected in a way to match NVMe
drives distribution across platform NUMA nodes.

Bdev perf spdk/test/bdev/bdevperf/bdevperf —--json bdev.conf \
configuration -q 128 -0 4096 -w randrw -M ${MIXREAD} \
-t 300 -m ${CORE MASK} -p ${PRIMARY CORE}

15

[|
I n t e I SPDK NVMe BDEV Performance Report
® Release 22.05

Results

Table 8: SPDK NVMe BDEV I/0O Cores Scalability Test (4KiB 100% Random Read IOPS at QD=192;
4KiB 100% Random Write IOPS at QD=32; 4KiB 70/30 Random Read/Write IOPS at QD=192

Random Read Random Write 70/30 Random Read/Write
QD=192 QD=32 QD=192

1 5 6534.86 2466.53 4865.16
2 10 13081.29 6414.74 9995.29
3 15 19298.51 10575.73 15049.55
4 20 25758.50 14690.48 20153.65
5 22 28901.90 17325.78 22445.24
6 22 30005.69 18269.91 22722.57

4KiB Bdevperf Core Scaling Performance
35000.00

30000.00

25000.00

20000.00
15000.00
10000.00
5000.00 I I I I
0.00] I
1 2 3 4 5 6

Used CPU cores

I0PS (k)
(Higher is better)

B Random Read MW Random Write M Random ReadWrite

Figure 6: SPDK NVMe BDEV I/O Cores Scalability (4KiB 100% Random Read IOPS at QD=192; 4KiB
100% Random Write IOPS at QD=32; 4KiB 70/30 Random Read/Write IOPS at QD=192)

Conclusions

1. The IOPS for 4 KiB Random Read workload scales up linearly with addition of 1/O cores until
NVMe drives used for test are saturated.

2. The IOPS for 4 KiB Random Read/Write workloads scale up linearly with the addition of 1/0 cores
up to 5 I/O cores. Increasing the number of cores to 6 does not result in performance
improvement.

16

SPDK NVMe BDEV Performance Report
Release 22.05

3. The IOPS for the 4 KiB Random Write workload scale up linearly. The IOPS exceeded the
expected NVMe SSDs throughput for this workload which is about 7.7M IOPS. We suspect this is
due to imperfect preconditioning process, which wears off over time. However, the results were
repeatable and showed SPDK’s high scalability with addition of I/O cores.

17

[|
I n t I SPDK NVMe BDEV Performance Report
® Release 22.05

Test Case 3: SPDK NVMe BDEV
Latency

This test case was carried out to understand latency characteristics while running SPDK NVMe bdev and
its comparison to Linux Kernel NVMe block device layer. We used SPDK FIO BDEV Plugin instead of the
SPDK Bdevperf tool, as it allowed us to gather detailed latency metrics. FIO was ran for 15 minutes
targeting a single block device over a single NVMe drive. This test compares consistency between
latency of the SPDK and Linux Kernel block layers over time in a histogram. The Linux Kernel block layer
provides 1/0 polling capabilities to eliminate overhead such as context switch, IRQ delivery delay and
IRQ handler scheduling. This test case includes a comparison of the 1/0 latency for the Kernel vs. SPDK.

Test Workloads: We use the following workloads:
e 4KiB 100% Random Read

e 4KiB 100% Random Write

Table 9: SPDK NVMe BDEV Latency Test

Item Description

Test case Test SPDK NVMe BDEV Latency Test
Test configuration FIO Version: fio-3.28
Number of CPU Cores: 1

Number of NVMe SSDs: 1
ioengine=spdk_bdev
SPDK NVMe Driver
Configuration
ioengine=libaio
Linux Kernel
Default (libaio)
Configuration
ioengine=io_uring
Linux Kernel
io_uring System NVMe block device configuration:
echo 0 > /sys/block/nvmeOnl/queue
echo 0 > /sys/block/nvmeOnl/rqg affinity
echo 2 > /sys/block/nvmeOnl/nomerges
echo -1 > /sys/block/nvmeOnl/io poll delay

FIO configuration [globall]
(common part) direct=1
thread=1

time based=1
norandommap=1
group_reporting=1

rw={randread | randwrite}
bs=4096

runtime=900

ramp time=120

18

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®

numjobs=1
log_avg msec=15
write lat log=/tmp/tc3 lat.log

[global]
FIO configuration ioengine=spdk bdev
(SPDK specific) spdk conf=/tmp/bdev.conf
[filenameO]
iodepth=1

cpus_allowed=0
filename=NvmeOnl

[global]

FIO configuration ioengine={libaio | io_ uring}

(Linux Kernel

common) [filenameO]
iodepth=1
cpus_allowed=0
filename=/dev/nvmelOnl
[global]

FIO configuration fixedbufs=1

(Linux Kernel hipri=1

io_uring specific) registerfiles=1

sgthread poll=1

The Linux block layer implements 1/O polling on the completion queue. Polling can remove context
switch(cs) overhead, IRQ delivery and IRQ handler scheduling overhead[1].

Application perceived I/0 latency

IRQ ||l BIO stack Device driver HeS I Sleep I CS
Wake

]IRQ

| Command execution

Application perceived I/0 latency Gain

P°"|ng % |8 BIO stack Device driver Are you done ? BIO stack .

[Command execution

Figure 7: Linux Block Layer I/O Optimization with Polling. Source [1]

Furthermore, the Linux block I/O polling provides a mechanism to reduce the CPU load. In the Classic
Polling model, the CPU spin-waits for the command completion and utilizes 100% of a CPU core [1].
There’s also an adaptive hybrid polling which reduces the CPU load by putting the I/O polling thread to
sleep for about half of the command execution time, but the polling thread must be woken up before
the I/O completes with enough heads-up time for a context switch[1]. Hybrid polling mode was not
used for testing in this document.

19

[|
I n t e I SPDK NVMe BDEV Performance Report
® Release 22.05

Application perceived I/0 latency

Classic
Polling

I Y

BIO stack Device driver Are you done ? BIO stack

F vy vy 208 85 8 Y vy

| Command execution

CPU load reduction

——
~

Hybrid ™M BIO stack Device dri csﬂ/ —SI CS |- | BIO stack
- SyscC stac evice driver ee A stac
Polling = & B ,P

S = == J Wake
Timer IRQ

| Command execution

Figure 8: Linux Block I/O Classic and Hybrid Polling latency breakdown. Source [1]

The data in tables and charts compares the I/O latency for a various 4KiB workloads performed using
the SPDK BDEYV vs. Linux block layerI/O model libaio and io_uring with polling mode enabled.

Average and tail latency comparison

Table 10: SPDK bdev vs. Linux Kernel latency comparison (4KiB Random Read, QD=1, runtime=900s)

Latency metrics SDPK Fio_ BDEV Linux Kernel (libaio) Lir_lux K_ernel
usec Plugin io_urin
Average 73.087 76.697 73.895
P90 82.432 84.48 83.456
P99 82.432 85.504 84.48
P99.99 148.48 152.576 148.48
Stdev 7.018 7.031 10.135
Average submission latency 0.17 1.043 0
Average completion latency 72.916 75.576 73.854

Table 11: SPDK bdev vs. Linux Kernel latency comparison (4KiB Random Write, QD=1, runtime=900s)

Latency metrics SDPK Fio BDEV Linux Kernel Linux Kernel
(usec) Plugin (Default libaio) (io_uring)
Average 5.119 8.497 6.306
P90 6.048 7.456 6.304
P99 6.112 7.584 6.624
P99.99 8.64 10.56 8.896
Stdev 1.99 1.225 2.495
Average submission latency 0.176 1.014 0
Average completion latency 4.942 7.397 6.243

20

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®

4KiB Random Read Latency

Linux Kernel (io_uring)
Linux Kernel (libaio)

SPDK fio bdev

o

20 40 60 80 100 120 140 160 180

M p99.99 Latency (usec) W p99 Latency (usec) M p90 Latency (usec) M Average Latency (usec)

Figure 9: SPDK bdev vs Linux Kernel Latency comparison (4KiB Random Read)

4KiB Random Write Latency

Linux Kernel (io_uring)

Linux Kernel (libaio)

SPDK fio bdev

o

2 - 6 8 10 12

m p99.99 Latency (usec) W p99 Latency (usec) m p90 Latency (usec) W Average Latency (usec)

Figure 10: SPDK bdev vs Linux Kernel Latency comparison (4KiB Random Write)

21

intel.

SPDK NVMe BDEV Performance Report

Release 22.05
Linux Kernel libaio Histograms
Linux Kernel (libaio) Latency Histogram
4KiB Random Read
12000 -
10000 -
> 8000 -
g’_ 6000
= 4000 -
2000 -
0O +—F——FF—F"F7——FTT T T T T = ———
S S S S S SSS S S S S S S SS S
Latency (nanoseconds)

Figure 11: Linux Kernel (Default libaio) 4KiB Random Read Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec)

Linux Kernel (libaio) Latency Histogram
4KiB Random Write

45000
40000
35000
30000
25000
20000
15000

Frequency

10000
5000

Latency (nanoseconds)

Figure 12: Linux Kernel (Default libaio) 4KiB Random Write Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec)

22

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®

Linux Kernel io_uring Histograms

Linux Kernel (io_uring polling) Latency Histogram
4KiB Random Read
12000 -
10000 -
> 8000 -
3
S 6000 -
o
o
“ 4000 -
2000 -
0 T T T T T T T I-I T T T T T T T T T T T T T T T T T 1
& @@@@@@@@@@@@@@@
Q¥ N QT A Ne) O &
PN R (AP P R P & A A A S AT S
Latency (nanoseconds)
Figure 13: Linux Kernel (io_uring polling) 4KiB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)
Linux Kernel (io_uring) Latency Histogram
4KiB Random Write
45000 -+
40000 -
35000 -
30000 -
o)
E 25000 -
3 20000 -
b
15000 -
10000 -
5000 -
0 T 1
[e Non Nenlen oo Nenenlon Non Neonlon o Non Nonlon Non Noo oo oo Noo N oo [ool ow Now Non oo N ow Non ool o Non Jon i on Now Non oo R ow Non N on an I o I)
0000000000000 000000O00000000000000C00O00O0ooD =
O ANMTN ORI NN ORI AN MTNORONOINMITNOROOO L
SOOI\ OOOOOOOOOOMNPSPPSPSPSPSPS~S000000000000000 =
Latency (nanoseconds)
Figure 14: Linux Kernel (io_uring polling) 4KiB Random Write Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec)

23

[|
I n t e I SPDK NVMe BDEV Performance Report
® Release 22.05

SPDK FIO Bdev Histograms

SPDK FIO BDEV Latency Histogram
4KiB Random Read
12000 -
10000 -
- 8000 -
§ 6000
E 4000 -
2000 -
0 - r——TTT T T T T T T T T T T
/\N@/\\@@@@@@Q@ @/\ @@ 69 «9" S @/\ @/\ @,\ @@ S %@ S
Latency (nanoseconds)

Figure 15: SPDK BDEV NVMe 4KiB Random Read Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec)

SPDK FIO BDEV Latency Histogram
4KiB Random Write

70000 -
60000 -
50000 -
40000 -

30000 -

Frequency

20000 -

10000 -

Latency (nanoseconds)

Figure 16: SPDK BDEV NVMe 4KiB Random Write Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec)

24

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®

Performance vs. increasing Queue Depth

Purpose: Understand the performance in IOPS and average latency of SPDK vs. the Linux io_uring
polling and libaio block layer as the queue depth increases by powers of 2 from 1 to 512 for single
NVMe SSD and single CPU Core.

Table 12: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 1 NVMe SSD, 1 CPU Core, Numjobs=1

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)

13642 73 12996 77 13484 74

27072 74 25786 77 26772 75

4 53850 74 51304 78 53297 75
8 106573 75 101425 79 105311 76
16 208627 76 197896 81 205901 78
32 398749 80 372331 86 391405 82
64 725015 88 484431 132 705592 90
128 1172594 109 486468 263 1094491 117
256 1401335 182 487766 525 1369371 187
512 1401228 365 486200 1053 1504910 340

Average Latency and IOPS at increasing Queue Depth
4KiB Random Read, 1 NVMe SSD

1600000 1200
1400000
1000
— 1200000 > &
g 800 £ @
£ 1000000 o 2
= wn
& 2 800000 600 3 ©
=5 oo 2
£ 600000 g2
.20 4300 2 5
= < ¥
400000 5
200 -
200000
0 ——— = N . . 0
1 2 4 8 16 32 64 128 256 512
Queue Depth
. SPDK 10PS s |inux Kernel (Default) I0PS
I Linux Kernel (io_uring) 10PS e SPDK Avg. Lat. (usec)

e Linux Kernel (Default) Avg. Lat. (usec) e |inux Kernel (io_uring) Avg. Lat. (usec)

Figure 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 1 NVMe SSD, 1 CPU Core, Numjobs=1)

25

SPDK NVMe BDEV Performance Report
Release 22.05

intel.

Table 13: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 1 NVMe SSD, 1 CPU Core, Numjobs=1)

Linux Kernel

Linux Kernel

(Default libaio)

(io_uring polling)

192618 5 119737 8 151188 6
350222 5 223189 9 293265 7
677145 6 481793 8 528493 7
865263 9 485334 16 803826 10
16 854244 18 482757 33 839865 19
32 844980 38 482055 66 831852 38
64 830656 77 484015 132 827223 77
128 812722 157 483608 264 813289 158
256 790570 324 482516 530 798985 321
512 755587 678 480829 1065 741822 690
Average Latency and IOPS at increasing Queue Depth
4KiB Random Write, 1 NVMe SSD
1000000 1200
900000
800000 1000 =
E 700000 200 gg
L, & 600000 £ »
> g 500000 I 600 oy g
= 400000 =]
oo [T
£ 300000 ' I 400 z
200000 I o | b0 | =
100000 B
0 0
1 4 16 32 64 128 256 512

Queue Depth

. SPDK 10PS s |inux Kernel (Default) I0PS

s Linux Kernel (io_uring) IOPS e SPDK Avg. Lat. (usec)

e Linux Kernel (Default) Avg. Lat. (usec) e |inux Kernel (io_uring) Avg. Lat. (usec)

Figure 18: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 1 NVMe SSD, 1 CPU Core, Numjobs=1)

26

SPDK NVMe BDEV Performance Report
Release 22.05

Conclusions

1. Polling hardware for completion instead of relying on interrupts lowers both total latency and its
variance.

2. SPDK NVMe Bdev average latency was up to 4.7% and 39.8% lower than Linux Kernel Libaio, for
Random Read and Random Write workloads respectively.

3. SPDK NVMe Bdev average latency was up to approximately 1.1% and 18.8% lower than Linux
Kernel io_uring for Random Read and Random Write workloads respectively.

4. Frequency buckets for 4KiB Random Write at QD=1 workload were so narrow that it was
decided to present the results using 100ns as an interval unit for x-axis.

5. For 4KiB Random Read workload all test engines scaled linearly up to QD=32 queue depth.
Beyond this value:

a. SPDK NVMe Bdev scaling became non-linear and peaked at QD=256, reaching 1.4 million
IOPS and saturating NVMe drive

b. Kernel io_uring scaling became non-linear and peaked ad QD=512, reaching 1.5 million
IOPS and saturating NVMe drive

c. Kernel libaio peaked at QD=64 reaching approximately 484k IOPS. Increasing queue
depth did not improve throughput.

6. For 4KiB Random Write workload, the I0OPS for the libaio scaled linearly up to QD=4 and the IOPS
for the io_uring and SPDK engines scaled linearly up to QD=8. Further increasing the queue
depth resulted in minor performance degradation.

27

[|
I n t e I SPDK NVMe BDEV Performance Report
® Release 22.05

Test Case 4: IOPS vs. Latency at
different queue depths

Purpose: This test case was performed in order to understand throughput & latency trade-offs with
varying queue depth while running SPDK vs. Kernel NVMe block layers.

Results in the table represent performance in IOPS and average latency for the SPDK and Linux Kernel
NVMe block layers. We limited both the SPDK and Linux NVMe block layers to use the same number of
CPU Cores.

Test Workloads: We use the following Random Read/Write mixes
e 4KiB 100% Random Read
e 4KiB 100% Random Write

e 4KiB Random 70% Read 30% Write

Table 14: SPDK NVMe BDEV Latency Test at different Queue Depths configuration

Item Description

Test case Test SPDK NVMe BDEV Latency Test at different Queue Depths
Test configuration FIO Version: fio-3.28
Number of CPU Cores: 12

Number of NVMe SSDs: 22

Linux Kernel echo 0 > /sys/block/nvmeOnl/queue
io_uring NVMe echo 0 > /sys/block/nvmeOnl/rg affinity
block device echo 2 > /sys/block/nvmeOnl/nomerges
configuration echo -1 > /sys/block/nvmeOnl/io poll delay
FIO configuration [globall
(common part) direct=1

thread=1

time based=1
norandommap=1
group_reporting=1

rw={randread | randwrite | randrw}
rwmixread={100 | 0 | 70}
bs=4096

runtime=240
ramp_ time=60
numjobs=1

[global]
FIO configuration ioengine=spdk bdev
(SPDK specific) spdk conf=/tmp/bdev.conf

28

[|
SPDK NVMe BDEV Performance Report I n t e I

Release 22.05

FIO configuration
(Linux Kernel
common)

FIO configuration
(Linux Kernel
io_uring specific)

[filenameO]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*
cpus_allowed=0

filename=NvmeOnl

filename=Nvmelnl

[filenamel]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*
cpus_allowed=1

filename=Nvme2nl

filename=Nvme3nl

[...]

[filenamell]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*
cpus_allowed=11

filename=Nvme20nl

filename=Nvme2lnl

* - - actual iodepth parameter value used in test; this
was multiplied by the number of “filename” objects in
job section to achieve desired queue depth value per
NVMe SSD (e.g. 0OD=256 in this case is QD=128 per SSD)
[global]

ioengine={libaio | io_uring}

[filenameO]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*
cpus_allowed=0

filename=/dev/nvmelOnl

filename=/dev/nvmelnl

[filenamel]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}*
cpus_allowed=1

filename=/dev/nvme2nl

filename=/dev/nvme3nl

[...]

[filenamell]

iodepth={2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}~*
cpus_allowed=11

filename=/dev/nvme20nl

filename=/dev/nvme21lnl

* - - actual iodepth parameter value used in test; this
was multiplied by the number of “filename” objects in
job section to achieve desired queue depth value per
NVMe SSD (e.g. QD=256 in this case is QD=128 per SSD)
[global]

fixedbufs=1

hipri=1

registerfiles=1

sqthread poll=1

29

[|

I n t e I SPDK NVMe BDEV Performance Report
® Release 22.05

4KiB Random Read Results

Table 15: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 22 NVMe SSDs, 12 CPU Cores

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)
IOPS IOPS IOPS
(millions) (millions) (millions)
1 0.30 73 0.29 77 0.30 74
0.59 74 0.57 77 0.59 75
4 1.18 74 1.13 78 1.17 75
8 2.34 75 2.22 79 2.31 76
16 4.59 76 4.22 83 4.51 78
32 8.76 80 5.50 128 8.52 82
64 15.85 88 5.80 243 14.22 99
128 25.34 110 5.80 485 18.74 150
256 29.94 185 5.79 973 20.95 269
512 29.19 381 5.78 1947 20.82 541

IOPS vs. Avgerage Latency
4KiB Random Read

35.00
qd=256 qd=512

30.00 - qd=128

25.00

20.00 qd=64
q qd=256
- qd=512

15.00
qd=64

IOPS (millions)
(Higher is better)

10.00
qd=32 qd=64 qd=128 qd=256

5.00

0.00
0 200 400 600 800 1000 1200

Avg. Latency [usec]
(Lower is better)

==@==SPDK Fio Bdev IOPS === Kernel Libaio IOPS === SPDK Fio Bdev IOPS

Figure 19: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 22 NVMe SSDs, 12 CPU Cores)

30

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®

4KiB Random Write Results

Table 16: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 22 NVMe SSDs, 12 CPU Cores)

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)
IOPS IOPS IOPS
(millions) (millions) (millions)

1 4.01 5 2.33 9 3.42 6

7.55 6 4.99 8 6.86 6

4 13.71 6 5.63 15 11.54 7
8 17.31 9 5.67 31 14.60 12
16 17.32 19 5.65 62 15.72 22
32 16.91 41 5.64 124 16.51 42
64 16.90 82 5.67 248 16.48 85
128 16.64 168 5.66 497 16.32 172
256 16.43 342 5.61 1003 15.93 353
512 15.89 707 5.52 2041 15.43 730

IOPS vs. Average Latency
4KiB Random Write

20.00

qd=256 qd=512

qd=128 qd=256 !

qd=512

16.00

8

g8 8

8.00

IOPS [millions]
(Higher is better)
=

qd=64 qd=128
6.00

4.00
2.00

0.00
0 100 200 300 400 500 600 700 800

Avg. Latency [usec]
(Lower is better)

==@==SPDK Fio Bdev IOPS === Kernel Libaio IOPS === SPDK Fio Bdev IOPS

Figure 20: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 22 NVMe SSDs, 12 CPU Cores)

31

i n te I SPDK NVMe BDEV Performance Report
® Release 22.05
4KiB Random 70%/30% Read/Write Results

Table 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB 70/30 Random Read/Write, 22 NVMe SSDs, 12 CPU Cores

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)
IOPS IOPS IOPS IOPS

(millions) (millions) (millions)
1 0.48 15 0.43 17 0.46 16
0.92 16 0.86 17 0.90 16
4 1.77 17 1.68 17 1.74 17
8 3.34 17 3.24 18 3.35 17
16 6.14 19 5.03 23 5.98 20
32 10.08 23 5.55 42 9.39 25
64 14.65 32 5.74 82 12.15 39
128 18.97 49 5.76 163 14.74 64
256 19.89 281 5.75 978 16.26 346
512 19.52 574 5.73 1964 16.85 669

IOPS vs. Average Latency
4KiB 70/30 Random Read/Write

25.00

d=128 -
q qd=256 4d=512

qd=128 0d=256 e

10.00 qd=64

IOPS [millions]
(Higher is better)

d=3gd=64 qd=128

5.00

0.00
0 100 200 300 400 500 600 700 800

Avg. Latency [usec]
(Lower is better)

=== SPDK Fio Bdev IOPS === Kernel Libaio IOPS === Kernel |0 Uring IOPS

Figure 21: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB 70/30 Random Read/Write, 22 NVMe SSDs, 12 CPU Cores)

32

SPDK NVMe BDEV Performance Report
Release 22.05

Conclusions

1.

SPDK NVMe BDEV fio plugin reached up to around 29.94 million IOPS for Random Read
workload at Queue Depth = 256. This is close to 30 million IOPS result measured in Test Case 2 -
I/0 Cores Scaling using Bdevperf.

For the 4KiB Random Write workload SPDK NVMe BDEV Fio plugin and Kernel io_uring had
similar performance. We observed noticeable performance drop for both I/O engines when
increasing queue depth, after reaching peak performance.

SPDK NVMe BDEV fio plugin reached up to 19.89 million I0PS for Random Read/Write workload
at Queue Depth = 256, which is lower than the 22.4 million IOPS we measured in Test Case 2 -
I/0 Cores Scaling using Bdevperf.

The results for the Random Write workload exceeded what the 22NVMe SSDs are capable of
(around 7.7M IOPS). This is probably due to imperfect preconditioning process, which wears off
over time. However, these results were repeatable and still show SPDK’s high scalability with
increase in the I/0 requests.

The Kernel libaio ioengine achieved maximum performance of up to 5.8M IOPS with 12 CPU
cores and was unable to saturate platforms NVMe disks or PCle switches throughput. Peak
performance was reached at QD=64 for Random Read and Random Read/Write workloads and
at QD=8 for Random Write workload. Beyond these queue depth values there was no IOPS
improvement, but the latency increased.

The Kernel io_uring engine reached a peak performance of 20.95 million IOPS at Queue Depth =
256 for Random Read workload, 16.51 million at QD = 32 for Random Write and 16.85 million at
QD = 512 for Random Read/Write workload. However, when we looked at htop we noticed that
io_uring was using 24 CPU cores; When we configured the sqthread_poll parameter to eliminate
system calls, io_uring starts a special kernel thread that polls the shared submission queue for
I/0 submitted by the fio thread. Therefore, in terms of CPU efficiency we measured up to 872K
IOPS/Core for io_uring vs up to about 2.49M IOPS/Core for the SPDK NVMe bdev fio plugin. The
Submission Queue Polling blog provides more information about how to eliminate system calls
with io_uring.

33

https://unixism.net/loti/tutorial/sq_poll.html

SPDK NVMe BDEV Performance Report
Release 22.05

Summary

1. SPDK NVMe BDEV Block Layer using SPDK Bdevperf benchmarking tool can deliver up to 7.7
million IOPS on a single Intel® Xeon® Gold 6348 CPU Core with Turbo Boost enabled.

2. The SPDK NVMe BDEV IOPS scale linearly with addition of CPU cores. We demonstrated up to 30
million IOPS on just 5 CPU cores (Intel® Xeon® Gold 6348 with Turbo Boost enabled).

3. The SPDK NVMe BDEV has lower QD=1 latency than the Linux Kernel NVMe block driver for
small (4KiB) blocks.

a. SPDK BDEV latency was 4.71% and 39.8% lower than Linux Kernel Libaio latency for
Random Read and Random Write workloads.

b. SPDK BDEV latency was about 1.09% lower than Linux Kernel io_uring latency for
Random Read workload and 18.82% lower for Random Write workload.

4. SPDK NVMe Bdev Fio reaches up to 29.94 million IOPS with an average latency of around 185
while using 12 CPU cores at queue depth of 256. With the same fio workloads Kernel io_uring
and Kernel libaio reach up to 20.95 million (using 24 cores: 12 for fio and 12 for submission
gueue polling) and 5.8 million IOPS respectively.

34

SPDK NVMe BDEV Performance Report
Release 22.05

List of tables

Table 1: Hardware setup CONFIGUIALIONeieeiu it e e e e e e ees 4
Table 2: Test SEtUP BIOS SELLINGSuuuuinitiiie ittt s e st e e e et e e e eaes 5
Table 3: Test platform NVMeE StOrage SEEUDuuiiue ittt et a et a e eeanens 5
Table 4: SPDK NVMe BDEV IOPS TeSt CONfigUIation.........cuuiuiiiiiiiiiiii it i it eaeaaeae e eneaneeean 10
Table 5: IOPS/Core performance; SPDK FIO bdev plugin vs SPDK bdevperf (Blocksize=4KiB, 1 CPU

(o] 2= P PR 13
Table 6: SPDK NVMe Bdev vs SPDK NVMe PMD IOPS/Core (Blocksize=4KiB, 1 CPU COre) 13
Table 7: SPDK NVMe BDEV I/O Cores Scalability TESEciuiiiiiiiiiiiiii i 15
Table 8: SPDK NVMe BDEV 1I/0 Cores Scalability Test (4KiB 100% Random Read IOPS at QD=192;
4KiB 100% Random Write IOPS at QD=32; 4KiB 70/30 Random Read/Write IOPS at QD=192) 16
Table 9: SPDK NVMe BDEV LAtENCY TESLuuiii it ettt e e eaaenens 18
Table 10: SPDK bdev vs. Linux Kernel latency comparison (4KiB Random Read, QD=1, runt“ime=900§)0
Table 11: SPDK bdev vs. Linux Kernel latency comparison (4KiB Random Write, QD=1, runtime=900s)
.. 20
Table 12: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 1 NVMe SSD, 1 CPU Core, NUMJODS=1)......ccccvuiiiiiiiinninrnnnnnn 25
Table 13: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 1 NVMe SSD, 1 CPU Core, NUMJObS=1)c.cocviiiinininniinnnnnnn 26
Table 14: SPDK NVMe BDEV Latency Test at different Queue Depths configuration.......................... 28

Table 15: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 22 NVMe SSDsS, 12 CPU COI€S)vuiuuiieiiiiiiiiieisiiinsinennsnennnnes 30

Table 16: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 22 NVMe SSDs, 12 CPU COI€S)uvuiuuiieiiiiiiiiieisiiinniennnnennanes 31

Table 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB 70/30 Random Read/Write, 22 NVMe SSDs, 12 CPU COIreS).......covverieiiernennnnns 32

35

SPDK NVMe BDEV Performance Report

Release 22.05
Figure 1 : Example NVMe bdev configuration fil€..............coiiiiiiiiiiii i e 8
Figure 2: Example SPDK Fio BDEV configuration fil€cuuiiiiiiiiiiii it it aae e 9
Figure 3: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB Random Read, 1CPU Core,
QD=192, USiNG DAEVPEIT EOOI) ... et e e ettt a e a e et aae e 11
Figure 4: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB Random Write, 1CPU Core,
QD=32, USiNG BAEVPEIT EOOI) ...t i e e e ettt a e te e e e 12
Figure 5: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KiB 70/30 Random Read/Write,
1CPU Core, QD=192, using bdevperf t00])ciiiiiiiii it i i i e e e e 12
Figure 6: SPDK NVMe BDEV I/0O Cores Scalability (4KiB 100% Random Read IOPS at QD=192; 4KiB
100% Random Write IOPS at QD=32; 4KiB 70/30 Random Read/Write IOPS at QD=192)................ 16
Figure 7: Linux Block Layer I/O Optimization with Polling. SOUrce [1].......ccccooviiiiiiiiiiiiiniiiiienanes 19
Figure 8: Linux Block I/O Classic and Hybrid Polling latency breakdown. Source [1]ccovvvvinininnnnnn 20
Figure 9: SPDK bdev vs Linux Kernel Latency comparison (4KiB Random Read).............ccccovviiinnnnnn 21
Figure 10: SPDK bdev vs Linux Kernel Latency comparison (4KiB Random Write)c.covvviinnnne. 21

Figure 11: Linux Kernel (Default libaio) 4KiB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15MSEC)uiuiiiiiiii i e e 22

Figure 12: Linux Kernel (Default libaio) 4KiB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15MSEC)uuiuiiiiiii i eeees 22

Figure 13: Linux Kernel (io_uring polling) 4KiB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15MSEC)ccuuiiiiiiiii i e 23

Figure 14: Linux Kernel (io_uring polling) 4KiB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15MSEC)cciuiiiiiiii i e 23

Figure 15: SPDK BDEV NVMe 4KiB Random Read Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling iNterval = 15MSEC)cu i 24

Figure 16: SPDK BDEV NVMe 4KiB Random Write Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling iNterval = 15MSEC) e 24

Figure 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 1 NVMe SSD, 1 CPU Core, NUMjObS=1)......ccccvuiiiieiiriininennnnns 25

Figure 18: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 1 NVMe SSD, 1 CPU Core, NUMJODS=1)ccccvvevuiiiiniienninnnnnnnn 26

Figure 19: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Read, 22 NVMe SSDS, 12 CPU COI€S).......cuuiiiiiiiiiieniieiiiieaeeenenes 30

Figure 20: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB Random Write, 22 NVMe SSDS, 12 CPU COIeS)couuiiiiiiiiiieieiiiiaaaeenenes 31

Figure 21: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KiB 70/30 Random Read/Write, 22 NVMe SSDs, 12 CPU COIreS).......couvevieiieinennnnns 32

36

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 22.05 ®

References

[1] Damien Le Moal, “I/0 Latency Optimization with Polling”, Vault - Linux Storage and Filesystem
Conference - 2017, May 22nd, 2017.

37

[|
I n t I SPDK NVMe BDEV Performance Report
® Release 22.05

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more
at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may
not reflect all publicly available updates.

Your costs and results may vary.
No product or component can be absolutely secure.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

38

file:///C:/Users/abhewitt/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/M92GXFTD/www.Intel.com/PerformanceIndex

