SPDK NVMe BDEV Performance Report
Release 21.04

SPDK NVMe BDEV
Performance Report
Release 21.04

intel.

Testing Date: June 2021
Performed by:

Karol Latecki (karol.latecki@intel.com)

Maciej Wawryk (maciejx.wawryk@intel.com)

Acknowledgments:

James Harris (james.r.harris@intel.com)

John Kariuki (john.k.kariuki@intel.com)

mailto:karol.latecki@intel.com
mailto:maciejx.wawryk@intel.com

SPDK NVMe BDEV Performance Report

Release 21.04

(650] = = 2
JANE Lo 1<) g Lol o o B U T oo 1= = R 3
ST Tl 4
Hardware configurationcoeoei i et e e e e 4

) O TS =]]| Ve =P 5
Storage distribution across NUMA Nodes and PCle Switchescocoiviiiiiiiiiiiiiiiiiiinns 5
53] DI S =Tale g Lo L u o] o 11 0 T PP 6
Kernel & BIOS Spectre-Meltdown informationocoiiiiiiiii e 6
Introduction to SPDK BlOCK DeVIiCE LAy @luiuieiiieiieatiieaeiee et et et ae e e e e eaa e eaanens 7
Test Case 1: SPDK NVMe BDEV IOPS TeSt...uriiiiiiiiiii i 10
SPDK NVMe BDEV Single Core Throughputo.viiiniiiiiii i ae e 11
Bdevperf vs. FIO IOPS/COre reSUILS ..oviuiieiiii it e e 13
NVMe BDEV vs. Polled-Mode Driver IOPS/Core. . .uiiii it viee s e nneennes 13

@0 1! 11 o] o =3P 13
Test Case 2: SPDK NVMe BDEV I/O Cores SCaliNg ...ovveiviiiiiiiiiiieiiiieie e e ee e eens 14
=] | 15

[@0e] L] 18] [0 o =3P 15
Test Case 3: SPDK NVMe BDEV Lat@nCy c.uuiiiiiiiiiiiii it ne e ea s 17
Average and tail 1atenCy CoOMPAriSONottt e 19
Linux Kernel libaio HiStOgramscoiuiiiiiii i e 21
Linux Kernel i0_Uuring HiStOgramS .. .ciiuiiii i e e 22
SPDK FIO BdeV HisStOgrams .. it e sttt ettt e vt e st e e e rneereenas 23
Performance vs. increasing Queue DepPthc.iiiiiiiii e 24

[@0e L] 18] 0] o =P 26
Test Case 4: IOPS vs. Latency at different queue depths.....cccooviiiiiiiiiiiiiic i 27
4KB Random Read ReESUILScviiriiiii it r e e e s e s e s e s e v e nansanannannans 29
4KB RaNdom Write RESUILS . .uuiitiiiie it a s e e e e e s e s e s e r e ranaanannannans 30
4KB Random 70%/30% Read/Writ€ RESUIESoiiiiiiiiiiiiiiiiiii i i e rniaas 31

[@o L] 18] 0] o =P 32
118121 0 41> 7/ 34
TS oo) = o] = PP 35
] oo) T 18 == PP 36
DS (= =] o= PP 37

SPDK NVMe BDEV Performance Report
Release 21.04

Audience and Purpose

This report is intended for people who are interested in comparing the performance of the SPDK block
device layer vs the Linux Kernel (5.11.20-200.fc33.x86_64) block device layer. It provides performance
and efficiency information between the two block layers under various test workloads.

The purpose of the report is not to imply a single “correct” approach, but rather to provide a baseline of
well-tested configurations and procedures with repeatable and reproducible results. This report can be
viewed as information regarding best known method/practice when performance testing the SPDK
NVMe block device.

intel.

Test setup

SPDK NVMe BDEV Performance Report
Release 21.04

Hardware configuration

Item

Server Platform

Motherboard
CPU

Memory

Operating System
BIOS

Table 1: Hardware setup configuration

Description
Intel WolfPass R2224WFTZS

S2600WFT
2 CPU sockets, Intel(R) Xeon(R) Gold 6230N CPU @ 2.30GHz

Number of cores 20 per socket, number of threads 40 per socket
Both sockets populated

Microcode: 0x4003003

12 x 32GB Micron DDR4 36ASF4G72PZ-2G9E2

Total 384 GBs

Memory channel population:

P1

P2

CPU1_DIMM_A1

CPU2_DIMM_A1

CPU1_DIMM_B1

CPU2_DIMM_B1

CPU1_DIMM_C1

CPU2_DIMM_C1

CPU1_DIMM_D1

CPU2_DIMM_D1

CPU1_DIMM_E1

CPU2_DIMM_E1

CPU1_DIMM_F1

CPU2_DIMM_F1

Fedora 33

SE5C620.86B.02.01.0013.121520200651

https://ark.intel.com/content/www/us/en/ark/products/192450/intel-xeon-gold-6230n-processor-27-5m-cache-2-30-ghz.html
https://downloadcenter.intel.com/download/30174/Intel-Server-Board-S2600WF-Family-BIOS-and-Firmware-Update-Package-for-UEFI

[|
SPDK NVMe BDEV Performance Report I n t e I
®

Release 21.04

Linux kernel version
SPDK version
Fio version

Storage

5.11.20-200.fc33.x86_64

SPDK 21.04

3.19

0S: 1x 120GB Intel SSDSC2BB120G4

Storage:
24x Intel” P4610™ 1.6TBs (FW: VDV10170) (6 on CPU NUMA Node 0, 18 on CPU NUMA
Node 1)

BIOS Settings

Table 2: Test setup BIOS settings

BIOS

Description

VT-d = Enabled

CPU Power and Performance Policy = <Performance>
CPU C-state = No Limit

CPU P-state = Enabled

Enhanced Intel® Speedstep® Tech = Enabled

Turbo Boost = Enabled

Hyper Threading = Enabled

Storage distribution across NUMA Nodes and PCle

Switches

Wolfpass server platforms PCle Lanes are not symmetrically distributed between CPU NUMA nodes,
which is an important factor in performance tests. Additionally, the total amount of PCle Lanes available
was not enough to accommodate 24 NVMe drives. Therefore, PCle switches were used to fan out PCle
lanes to NVMe SSDs on the riser cards. For more information on PCle capabilities of the platform please
refer to its technical specification.

Item
PCle Riser cards

PCle Switches

NVMe Drives
distribution across the
system

Table 3: Test platform NVMe storage setup

Description
Risers 1&2:
2x Intel A2UL16RISER2 (PCl gen 3 1x16 Riser)

o Installed in Riser Slot #1
o Installed in Riser Slot #2

Riser 3:
1 x A2UX8X4RISER (PCl gen 3 1x8 Riser)
o Installed in Riser Slot #3
5 x Intel 4-Port PCle Gen3 x8 Switch AIC AXXP3SWX08040
Installed in:

PCle Switch 1: Riser Slot #1 port 1 (using CPU1 PCle Lanes)

PCle Switch 2: Riser Slot #1 port 2 (using CPU2 PCle Lanes)

PCle Switch 3: Riser Slot #2 port 1 (using CPU2 PCle Lanes)

PCle Switch 4: Riser Slot #2 port 2 (using CPU2 PCle Lanes)

PCle Switch 5: Riser Slot #3 port 1 (using CPU2 PCle Lanes)

NvmeO -1 Motherboard ports (CPU1 PCle Lanes)
Nvme2 -3 Motherboard ports (CPU2 PCle Lanes)
Nvme4 —7 PCle Switch 1 (CPU1 PCle Lanes)
Nvme8 — 11 PCle Switch 2 (CPU2 PCle Lanes)

O O 0O O ©

https://www.intel.com/content/dam/support/us/en/documents/server-products/server-boards/S2600WF_TPS.pdf
https://ark.intel.com/content/www/us/en/ark/products/81779/2u-riser-spare-a2ul16riser2-2-slot.html
https://ark.intel.com/content/www/us/en/ark/products/81783/2u-spare-short-riser-a2ux8x4riser.html
https://ark.intel.com/content/www/us/en/ark/products/124457/4-port-pcie-gen3-x8-switch-aic-axxp3swx08040.html

SPDK NVMe BDEV Performance Report
Release 21.04

Nvmel2 — 15 PCle Switch 3 (CPU2 PCle Lanes)
Nvmel6 — 19 PCle Switch 4 (CPU2 PCle Lanes)
Nvme20 — 23 PCle Switch 5 (CPU2 PCle Lanes)

SSD Preconditioning

An empty NAND SSD will often show read performance far beyond what the drive claims to be capable
of because the NVMe controller knows that the device is empty and completes the read request
successfully without performing any data transfer. Therefore, prior to running each performance test
case we preconditioned the SSDs by writing 128K blocks to the device sequentially to fill the SSD
capacity (including the over-provisioned areas) twice and force the internal state of the device into some
known state. Additionally, the 4K 100% random writes performance decreases from one test to the next
until the NAND management overhead reaches steady state because the wear-levelling activity
increases dramatically until the SSD reaches steady state. Therefore, to obtain accurate and repeatable
results for the 4K 100% random write workload, we ran the workload for 90 minutes before starting the
benchmark test and collecting performance data. For a highly detailed description of exactly how to
force an SSD into a known state for benchmarking see the SNIA Solid State Storage Performance Test

Specification.

Kernel & BIOS Spectre-Meltdown information

Host server system uses 5.11.20 kernel version which is available from the DNF repository. The default
Spectre-Meltdown mitigation patches for this kernel version have been left enabled.

https://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.1.pdf
https://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.1.pdf

SPDK NVMe BDEV Performance Report
Release 21.04

Introduction to SPDK Block Device
Layer

SPDK Polled Mode Driver

The NVMe PCle driver is something that is usually expected to be part of the system Kernel and your
application would interact with the driver via the system call interface. SPDK takes a different approach.
SPDK unbinds the NVMe devices from the kernel and binds the hardware queues to a userspace NVMe
driver. From that point, your application will access the device queues directly from userspace.

The SPDK NVME Driver is a C library that may be linked directly into an application that provides direct,
zero-copy data transfer to and from NVMe SSDs. It is entirely passive, meaning that it spawns no threads
and only performs actions in response to function calls from the application. The library controls NVMe
devices by directly mapping the PCl BAR into the local process and performing MMIO. The SPDK NVMe
driver is asynchronous, which means that the driver submits the I/O request as an NVMe submission
gueue entry on a queue pair and the function returns immediately, prior to the completion of the NVMe
command. The application must poll for I/O completion on each queue pair with outstanding 1/0 to
receive completion callbacks.

SPDK Block Device Layer

SPDK further provides a full block stack as a user space library that performs many of the same
operations as a block stack in an operating system. The SPDK block device layer often simply called
bdey, is a C library intended to be equivalent to the operating system block storage layer located above
the device drivers in traditional kernel storage stack.

The bdev module provides an abstraction layer that provides common APIs for implementing block
devices that interface with different types of block storage device. An application can use the APIs to
enumerate and claim SPDK block devices, and then perform asynchronous |/O operations (such as read,
write, unmap, etc) in a generic way without knowing if the device is an NVMe device or SAS device or
something else. The SPDK NVMe bdev module can create block devices for both local PCle-attached
NVMe device and remote devices exported over NVMe-oF.

In this report, we benchmarked the performance and efficiency of the bdev for the local PCle-attached
NVMe devices use case. We also demonstrated the benefits of the SPDK approaches, like user-space
polling, asynchronous I/0, no context switching etc. under different workloads.

FIO Integration

SPDK provides an FIO plugin for integration with Flexible 1/0 benchmarking tool. The quickest way to
generate a configuration file with all the bdevs for locally PCle-attached NVMe devices is to use the
gen_nvme.sh script with “—json-with-subsystems” option as shown in Figure 1.

https://www.spdk.io/doc/nvme.html
http://www.spdk.io/doc/bdev.html
https://spdk.io/doc/bdev.html
https://github.com/spdk/spdk/tree/master/examples/nvme/fio_plugin
https://github.com/axboe/fio

SPDK NVMe BDEV Performance Report
Release 21.04

[user@localhost spdk]$ sudo scripts/gen_nvme.sh --json-
with-subsystems | jq

{
"subsystems": [
{
"subsystem": "bdev",
"config": [
{
"method": "bdev_nvme_attach_controller”,
"params": {
"trtype": "PCIe",
"name": "Nvme@",
"traddr": "0000:1a:00.0",
"bdev_io_cache_size": 2048
}
bs
[..-]
"method"”: "bdev_nvme_attach_controller”,
"params": {
"trtype": "PCIe",
"name": "Nvme22",
"traddr": "0000:de:00.0",
"bdev_io_cache_size": 2048
¥
s
{
"method": "bdev_nvme_attach_controller”,
"params": {
"trtype": "PCIe",
"name": "Nvme23",
"traddr": "0000:df:00.0",
"bdev_io_cache_size": 2048
¥
}
]
}
]

Add SPDK bdevs to the fio job file, by setting the ioengine=spdk_bdev and adding the spdk json conf
parameter whose value points to the NVMe bdev configuration file.

The example fio configuration file in figure 2, shows how to define multiple fio jobs and assign NVMe
bdevs to each job. Each job is also pinned to a CPU core on the same NUMA node as the NVMe SSDs
that the job will access.

Finally, to use the bdev fio plugin specify the LD_PRELOAD when running fio.

LD _PRELOAD=<path to spdk repo>/examples/bdev/fio_plugin/fio_plugin fio <fio job file>

SPDK NVMe BDEV Performance Report
Release 21.04

[global]

direct=1

thread=1

time_based=1

norandommap=1
group_reporting=1
ioengine=spdk_bdev
spdk_json_conf=/tmp/bdev.conf

rw=randread
rwmixread=70
bs=4096
numjobs=1
runtime=300
ramp_time=60

[filenameO]
iodepth=192
cpus_allowed=0
filename=Nvmeonl
filename=Nvmelnl
filename=Nvme4nl
filename=Nvme5n1l
filename=Nvme6bnl
filename=Nvme7nl

[filenamel]
iodepth=192
cpus_allowed=21
filename=Nvme2nl
filename=Nvme3nl
filename=Nvme8n1l
filename=Nvme9nl
filename=Nvmel0nl
filename=Nvmellnl

[filename2]
iodepth=192
cpus_allowed=22
filename=Nvmel2nl
filename=Nvmel3nl
filename=Nvmel4nl
filename=Nvmel5n1
filename=Nvmel6nl
filename=Nvmel7nl

[filename3]
iodepth=192
cpus_allowed=23
filename=Nvmel8nl
filename=Nvmel9nl
filename=Nvme20nl
filename=Nvme21nl
filename=Nvme22nl
filename=Nvme23nl

[|
I n t I SPDK NVMe BDEV Performance Report
. Release 21.04

Test Case 1: SPDK NVMe BDEV
IOPS/Core Test

Purpose: The purpose of this test case was to measure the maximum performance in IOPS/Core of the
NVMe block layer on a single CPU core. We used different benchmarking tools (SPDK bdevperf vs. SPDK
FIO BDEV plugin vs SPDK NVMe perf) to understand the overhead of benchmarking tools. Measuring
IOPS was key in this test case, so latency measurements were either disabled or skipped.

The following Random Read/Write workloads were used:
e 4KB 100% Random Read
e 4KB 100% Random Write
e 4KB Random 70% Read 30% Write
For each workload we followed the following steps:
1) Precondition SSDs as described in “Test Setup” chapter.

2) Run each test workload: Start with a configuration that has 24 Intel P4610x NVMe devices and
decrease the number of SSDs by 2 on each subsequent run.

e This shows us the IOPS scaling as we add SSDs till the maximum IOPS/Core is reached.

e Starting with 24 SSDs and reducing the number of SSDs on subsequent eliminates having
to precondition between runs because all SSDs used in the subsequent run were used in
the previous run so they should still be in a steady state.

3) Repeat three times. The data reported is the average of the 3 runs.

Table 4: SPDK NVMe BDEV IOPS Test configuration

Item Description

Test case SPDK NVMe BDEV IOPS/Core Test

Test configuration FIO Version: fio-3.19

Number of NVMe SSDs: scaled as follows: 24, 22, ... 2, 1. Decreasing 2
SSDs on each test run.

SPDK_BDEV_IO_CACHE_SIZE changed from 256 to 2048 (using
bdev_nvme_attach_controller “params” section).

NUMA optimization: The test platform has PCle lanes unevenly distributed
between NUMA nodes, most of the NVMe SSDs (18 out of total 24) are located
on NUMA node 1. Therefore, a CPU Core from NUMA node 1 was selected as
primary core for test, in order to reduce the overhead of cross-numa

operations.
./bdevperf -c bdev.conf -g ${iodepth} -o ${block size} -
Bdevperf w S${rw} -M S${rwmixread} -t 300 -m 20 -p 20

10

[|
SPDK NVMe BDEV Performance Report I n t e I
®

Release 21.04

configuration

FIO configuration

[global]
ioengine=spdk bdev
spdk json conf=bdev.conf

gtod reduce=1
direct=1

thread=1

norandommap=1
time based=l1
ramp time=60s
runtime=300s

bs=4k

rw={randread, randwrite, randrw}
rwmixread={100,70,0}
iodepth={32, 64, 128, 256}
numjobs=1

SPDK NVMe BDEYV Single Core Throughput

The first test was performed using SPDK bdevperf, which is lightweight benchmarking tool that adds
minimal latency to the I/O path. The charts below show the Single core IOPS results for the SPDK
Block Layer with increasing number of NVMe SSDs.

6000.00

5000.00

:
:

I0PS (thousands)
(Higher is better)

0.00

SPDK NVMe BDEV IOPS
4KB Random Read, QD=128, 1 CPU Core

3000.00
2000.00
1000.00 I
1 2 4 6 8 10 12 14 16 18 20 22 24

Number of SSDs

Figure 3: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB Random Read, 1CPU Core,

QD=128, using bdevperf tool)

11

intel.

6000.00

5000.00

:
:

3000.00

IOPS (thousands)
(Higher is better)

2000.00

1000.00

0.00

SPDK NVMe BDEV Performance Report
Release 21.04

SPDK NVMe BDEV IOPS
4KB Random Write, QD=32, 1 CPU Core

1 2 4 6 8 10 12 14 16 18 20 22 24

Number of SSDs

Figure 4: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB Random Write, 1CPU Core,

5000.00

4500.00

4000.00

3500.00

IOPS (thousands)
(Higher is better)
I =] w
g8 &8 8
(=] (=] (=]

8 8 8

1500.00

1000.00

500.00

0.00

QD=32, using bdevperf tool)

SPDK NVMe BDEV IOPS
4KB 70/30 Random Read/Write, QD=128, 1 CPU Core

1 2 - 6 8 10 12 14 16 18 20 22 24

Number of SSDs

Figure 5: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB 70/30 Random Read/Write,

12

1CPU Core, QD=128, using bdevperf tool)

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®
Bdevperf vs. FIO IOPS/Core results

SPDK provides the bdevperf benchmarking tool that provides minimal capabilities needed to define
basic workloads and collects a limited amount of data. The FIO benchmarking tool provides a lot of great
features to enable users to quickly define workloads, scale the workloads and collect many data points
for detailed performance analysis, however, at cost of higher overhead. This test compares the
performance in I0PS/core of the bdevperf and FIO benchmarking tools.

Table 5: IOPS/Core performance; SPDK FIO bdev plugin vs SPDK bdevperf (Blocksize=4KB, 1 CPU
Core

Workload SDPK Fio BDEV Plugin SPDK Bdevperf Performance
(IOPS, thousands) (IOPS, thousands) CELL]
4KB Random Read, QD=64, 14 3184.42 4987.25 56.6%
SSDs
4KB Random Write, QD=32, 2832.88 5237.00 84%
24 SSDs
4KB 70/30 Random 2734.08 4924.16 80.1%

Read/Write, QD=64, 16 SSDs

The overhead of the benchmarking tools is important when you are testing a system that is capable of
millions of I0PS/Core. Using a benchmarking tool that has minimal overhead like the SPDK bdevperf
yields up to 101.9% more I0OPS/Core than FIO.

NVMe BDEYV vs. Polled-Mode Driver IOPS/Core

In this test case, we compared the throughput of the NVMe BDEV with that of the polled-mode driver.
How to read this data? The SPDK block layer provides several key features at a cost of approximately
20% more CPU utilization. If you are building a system with many SSDs that is capable of millions of
IOPS, you can take advantage of the block layer features at the cost of approximately 1 additional CPU
core for every 4 1/0 cores. Comparison was done using SPDK Bdevperf and Nvmeperf test tools.

Table 6: SPDK NVMe Bdev vs SPDK NVMe PMD IOPS/Core (Blocksize=4KB, 1 CPU Core)

SPDK Bdevperf SPDK Nvmeperf Performance
LfEmE IOPS, thousands IOPS, thousands ain
4KB Random Read, QD=64
! ! 4987.25 289
14 SSDs 6385.40 %
Ol e Gl 1D 5237.00 6606.35 26%
24 SSDs
Conclusions

1) The SPDK NVMe block device module adds approximately 26-28% overhead compared to
using only the SPDK NVMe Polled-Mode Driver without the block device module.

2) Performance scales linearly with addition of NVMe SSDs up to 8 and 12 SSDs for Random
Read and Random Read/Write workloads, reaching around 4.63 and 4.48 million IOPS
respectively.

3) Performance scaling is close to linear for Random Write workloads up 20 NVMe SSDs, reaching
around 5.2M IOPS.

4) For all workloads there is a noticeable performance degradation with addition of more NVMe
SSDs after peak performance point has been reached.

13

[|
I n t e I SPDK NVMe BDEV Performance Report
® Release 21.04

Test Case 2: SPDK NVMe BDEV 1I/0
Cores Scaling

Purpose: The purpose of this test case is to demonstrate the 1/0O throughput scalability of the NVMe
BDEV module with the addition of more CPU cores to perform /0. The number of CPU cores used was
scaledas 1, 2, 3,4 and5.

Test Workloads: We use the following Random Read/Write mixes
e 4KB 100% Random Read
e 4KB 100% Random Write

e 4KB Random 70% Read 30% Write

Table 7: SPDK NVMe BDEV I/O Cores Scalability Test

Item Description
Test case Test SPDK NVMe BDEV I/0O Cores Scalability Test
Test configuration Number of CPU Cores: 1, 2, 3,4, 5
Number of NVMe SSDs: 6 per each CPU Core used in test

NUMA optimization: The test platform has PCle lanes unevenly distributed
between NUMA nodes, most of the NVMe SSDs (18 out of total 24) are located
on NUMA node 1. Therefore, only CPU Cores from NUMA node 1 were
selected for test, in order to reduce the overhead of cross-numa operations.

Bdev perf spdk/test/bdev/bdevperf/bdevperf --json bdev.conf \

configuration -q 128 -o 4096 -w randrw -M S${MIXREAD} \
-t 300 -m ${CORE_MASK} =70 ${PRIMARY_CORE}

14

[
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

Results

Table 8: SPDK NVMe BDEV I/O Cores Scalability Test (4KB 100% Random Read IOPS at QD=128; 4KB
100% Random Write IOPS at QD=32; 4KB 70/30 Random Read/Wtrite IOPS at QD=128

Random Read Random Write 70/30 Random Read/Write
QD=128 QD=32 QD=128
1 6 3628.21 1231.85 2095.23
2 12 7231.02 2546.27 4399.17
3 18 10373.48 3919.16 6894.85
4 24 10930.36 5454.25 9364.90
5 24 10953.72 6025.41 9818.69

4KB Bdevperf Core Scaling Performance
12000.00

10000.00

8000.00
6000.00
4000.00
o II !
0.00 .
1 2 3 - 5

Used CPU cores

I0PS (k)
(Higher is better)

B Random Read M Random Write M Random ReadWrite

Figure 6: SPDK NVMe BDEV I/0 Cores Scalability with addition of SSDs (4KB 100% Random Read
IOPS at QD=128; 4KB 100% Random Write IOPS at QD=32; 4KB 70/30 Random Read/Write IOPS at
QD=128)

Conclusions

1. The IOPS for the 4 KiB random read workload scales up linearly with the addition of I/O cores
until the PCle switches in platform are saturated (at about 10.9M IOPS; see “Test setup” chapter
for more information).

2. The IOPS for the 4 KiB random write workload scaling is close to linear. At 4 and 5 CPU cores the
IOPS exceeded the expected NVMe SSDs throughput for this workload which is about 4.8M
IOPS, we suspect this is due to a not perfect preconditioning process, which wears off over

15

16

SPDK NVMe BDEV Performance Report
Release 21.04

time. However, the results were repeatable and showed SPDK's high scalability with addition
of I/O cores.

The IOPS for the 4 KiB random 70/30 read/write workload scales up linearly with the addition of
I/O cores up to 4 CPU cores. At this point performance of 9.3 million IOPS is reached and
increasing the number of cores to 5 does not improve performance significantly.

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

Test Case 3: SPDK NVMe BDEV
Latency

This test case was carried out to understand latency characteristics while running SPDK NVMe bdev and
its comparison to Linux Kernel NVMe block device layer. We used SPDK FIO BDEV Plugin instead of the
SPDK Bdevperf tool, as it allowed us to gather detailed latency metrics. FIO was ran for 15 minutes
targeting a single block device over a single NVMe drive. This test compares consistency between
latency of the SPDK and Linux Kernel block layers over time in a histogram. The Linux Kernel block layer
provides 1/0O polling capabilities to eliminate overhead such as context switch, IRQ delivery delay and
IRQ handler scheduling. This test case includes a comparison of the /0O latency for the Kernel vs. SPDK.

Test Workloads: We use the following workloads:
e 4KB 100% Random Read
e 4KB 100% Random Write

Important note: For 21.01 benchmark tests we have been unable to successfully run tests for Kernel
io_uring engine with sqthread_pool option enabled when workload was using write path and Queue
Depth was set to 1. Because of this, Random Write QD=1 workload was run without sqthread_poll
option enabled. This is caused by some unidentified bug, probably in Fio or Kernel itself. For more
information please see the issue for this problem on Github.

Table 9: SPDK NVMe BDEV Latency Test

Item Description

Test case Test SPDK NVMe BDEV Latency Test
Test configuration FIO Version: fio-3.19
Number of CPU Cores: 1

Number of NVMe SSDs: 1
ioengine=spdk_bdev
SPDK NVMe Driver
Configuration
ioengine=libaio
Linux Kernel
Default (libaio)
Configuration
ioengine=io_uring
Linux Kernel
io_uring System NVMe block device configuration:
echo 0 > /sys/block/nvmeOnl/queue
echo 0 > /sys/block/nvmeOnl/rq affinity
echo 2 > /sys/block/nvmeOnl/nomerges
echo -1 > /sys/block/nvmeOnl/io poll delay

FIO configuration [globall]
(common part) direct=1
thread=1

time based=1

17

https://github.com/axboe/fio/issues/1195

[|
n I SPDK NVMe BDEV Performance Report
I Release 21.04

norandommap=1
group_reporting=1

rw={randread | randwrite}
bs=4096

runtime=900

ramp_ time=120

numjobs=1

log avg msec=15

write lat log=/tmp/tc3 lat.log

[global]
FIO configuration iocengine=spdk bdev
(SPDK specific) spdk conf=/tmp/bdev.conf
[filenameO]
iodepth=1

cpus_allowed=20
filename=NvmeOnl

[global]

FIO configuration ioengine={libaio | io_uring}

(Linux Kernel

common) [filenameO]
iodepth=1
cpus_allowed=20
filename=/dev/nvmel8nl
[global]

FIO configuration fixedbufs=1

(Linux Kernel hipri=1

io_uring specific) registerfiles=1

sgthread poll=1

The Linux block layer implements 1/O polling on the completion queue. Polling can remove context
switch(cs) overhead, IRQ delivery and IRQ handler scheduling overhead[1].

Application perceived I/0 latency

IRQ ‘ 75118 BIO stack Device driver HeS I Sleep I €S
Wake

IRQ

| Command execution

Application perceived I/0 latency Gain

PO“II‘Ig 5% |8 BIO stack Device driver Are you done ? BIO stack .

| Command execution

Figure 7: Linux Block Layer I/O Optimization with Polling. Source [1]

Furthermore, the Linux block I/O polling provides a mechanism to reduce the CPU load. In the Classic
Polling model, the CPU spin-waits for the command completion and utilizes 100% of a CPU core [1].
There’s also an adaptive hybrid polling which reduces the CPU load by putting the I/O polling thread to
sleep for about half of the command execution time, but the polling thread must be woken up before
the I/O completes with enough heads-up time for a context switch[1]. Hybrid polling mode was not
used for testing in this document.

18

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

Application perceived I/0 latency

Classic ‘ T
- %18 BIO stack Device driver Are you done ? BIO stack
Polling !

A A A 2 0 8 8 Y Y-y

| Command execution

CPU load reduction

Hybrid gy BIO stack Device dri cs(T ’s-; = cs || BIO stack
- stac evice driver ‘ eep ; stac
Polling “= & j
- = = /J Wake

[Command execution

Figure 8: Linux Block I/O Classic and Hybrid Polling latency breakdown. Source [1]

The data in tables and charts compares the I/0 latency for a various 4KB workloads performed using
the SPDK BDEV vs. Linux block layerI/O model libaio and io_uring with polling mode enabled.

Average and tail latency comparison

Table 10: SPDK bdev vs. Linux Kernel latency comparison (4KB Random Read, QD=1, runtime=900s)

Latency metrics SDPK Fio BDEV Linux Kernel

usec Plugin tinwx Kernel (Ibalo) __(io_uring) ____
Average 71.163 85.826 72.181
P90 98.816 109.056 98.816
P99 100.864 113.152 100.864
P99.99 464.896 473.088 452.608
Stdev 23.029 23.222 22.463
Average submission latency 0.128 5.178 0.778
Average completion latency 71.035 80.328 71.337

Table 11: SPDK bdev vs. Linux Kernel latency comparison (4KB Random Write, QD=1, runtime=900s)

Latency metrics SDPK Fio BDEV Linux Kernel Linux Kernel
usec Plugin (Default libaio) (io_uring)
Average 10.09 11.867 11.158
P90 19.328 18.048 18.816
P99 36.608 34.56 35.072
P99.99 85.504 78.336 78.336
Stdev 7.436 6.175 6.793
Average submission latency 0.16 1.221 0.897
Average completion latency 9.929 10.578 10.194

19

[

n t I SPDK NVMe BDEV Performance Report
I ® Release 21.04
4KB Random Read Latency
Linux Kernel (io_uring)

Linux Kernel (libaio)

SPDK fio bdev

o

50 100 150 200 250 300 350 400 450 500
M p99.99 Latency (usec) M p99 Latency (usec) M p90 Latency (usec) B Average Latency (usec)

Figure 9: SPDK bdev vs Linux Kernel Latency comparison (4KB Random Read)

4KB Random Write Latency

Linux Kernel (io_uring)

Linux Kernel (libaio)

SPDK fio bdev

o

10 20 30 40 50 60 70 80 90

M p99.99 Latency (usec) M p99 Latency (usec) M p90 Latency (usec) W Average Latency (usec)

Figure 10: SPDK bdev vs Linux Kernel Latency comparison (4KB Random Write)

20

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

Linux Kernel libaio Histograms

Linux Kernel (libaio) Latency Histogram

4KB Random Read
16000 -
14000 -
12000 -+
10000 -

8000 -

Frequency

6000 -

4000 -

2000 -

0 T

& & & P /\‘9@ «® '\°’°@ %"9@ & > %Q@ & <b°§§p 0?'@ q”’o@ $> OZ‘Q@ 05’9@

Latency (nanoseconds)

Figure 11: Linux Kernel (Default libaio) 4KB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)

Linux Kernel (libaio) Latency Histogram
4KB Random Write

10000 -+
9000 -
8000 -
7000 +
6000 -
5000 -

Frequency

4000 -
3000 -

2000 -
1000 -

7500
8000
8500
9000
9500

Latency (nanoseconds)

Figure 12: Linux Kernel (Default libaio) 4KB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)

21

[|
I n t e I SPDK NVMe BDEV Performance Report
® Release 21.04

Linux Kernel io_uring Histograms

22

Linux Kernel (io_uring polling) Latency Histogram
4KB Random Read
16000 -
14000 -
12000 -
> 10000 -
(=]
c
S 8000 -
o
o
w6000
4000
2000
0 I I-I-I T 1
& (3° (3° FLFLSSLSSLS
S \) Q) S Q
69 609’\\"\ R P A S i i
Latency (nanoseconds)
Figure 13: Linux Kernel (io_uring polling) 4KB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)
Linux Kernel (io_uring polling) Latency Histogram
4KB Random Write
10000 -+
9000 -
8000
7000
g 6000
c
S 5000
o
X 4000
3000
2000
1000 ‘ I
0 IIIII-I-I-I.IIIIIIIIIIIIIIIIIII-I-I-IIIIIIIIIIIIIIIIIIIIIIIIII
 © O O Q0 o O 9 © 9 9 9 9 9 9 g 9 99 9 g o g g o o
o o o o Q o o O QO Q Q O o QO o O C 9O QO O o o o o Q
n QO n 9O N 9O L O W O W O WL O L QO LN O WL O WL O Wn o ;noo
~ 0 00 & &0 © © == = ~N ~N ™M Mm < =T 0 1 WO O M~ ™~ 0 0 g ¢ O
N -4 -4 4 4 o o 4 4 4 A o A4 A A4 A A A A A ~
Latency (nanoseconds)
Figure 14: Linux Kernel (io_uring polling) 4KB Random Write Average Latency Histogram (QD=1,

Runtime=900s, fio, sampling interval = 15msec)

SPDK NVMe BDEV Performance Report
Release 21.04

intel.

SPDK FIO Bdev Histograms

16000

14000

12000

10000

8000

Frequency

6000

4000

2000

SPDK FIO BDEV Latency Histogram
4KB Random Read

@ @ oY @ @ $ & @ S @ QP SF LSS
& & A '\"9 '\°P PSSP PP S
Latency (nanoseconds)

Figure 15: SPDK BDEV NVMe 4KB Random Read Average Latency Histogram (QD=1, Runtime=900s,

fio, sampling interval = 15msec)

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Frequency

SPDK FIO BDEV Latency Histogram
4KB Random Write

7500
8000
8500
9000 e
9500
10000
10500
11000
11500
12000
12500
13000
13500
14000
14500
15000
15500
16000
16500
17000
17500
18000
18500
19000
19500
20000

Latency (nanoseconds)

Figure 16: SPDK BDEV NVMe 4KB Random Write Average Latency Histogram (QD=1, Runtime=900s,

fio, sampling interval = 15msec)

23

[|
I n t e I SPDK NVMe BDEV Performance Report
® Release 21.04

Performance vs. increasing Queue Depth

Purpose: Understand the performance in IOPS and average latency of SPDK vs. the Linux io_uring
polling and libaio block layer as the queue depth increases by powers of 2 from 1 to 512 for single
NVMe SSD and single CPU Core.

Table 12: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read , 1 NVMe SSD, 1 CPU Core, Numjobs=1

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)

1 13964 71 11374 86 13598 73

27719 72 23297 84 26974 74

4 54265 73 51199 78 53909 74

8 103639 77 99598 80 102941 78

16 189711 84 182477 87 188251 85
32 321281 99 308167 103 318594 100
64 474311 135 437701 146 478786 133
128 605782 211 442950 289 602275 212
256 635384 403 444510 576 635846 402
512 635727 805 445157 1150 636708 804

Average Latency and IOPS at increasing Queue Depth
4KB Random Read, 1 NVMe SSD

700000 1400
600000 1200
@
S 500000 1000 3 £
- c ¢
= o =
w2 400000 800 ® 2
= - s
© 5 300000 600 & 2
2 o
2 €9
= 200000 00 Z @
=
100000 200
0 0
1 2 4 8 16 32 64 128 256 512
Queue Depth
. SPDK 10PS s |inux Kernel (Default) IOPS
I Linux Kernel (io_uring) 10PS e SPDK Avg. Lat. (usec)

=== | inux Kernel (Default) Avg. Lat. (usec) e |inux Kernel (io_uring) Avg. Lat. (usec)

Figure 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 1 NVMe SSD, 1 CPU Core, Numjobs=1)

24

[
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

Table 13: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 1 NVMe SSD, 1 CPU Core, Numjobs=1

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)

1 152284 6 107808 9 121481 8
256367 8 194249 10 209812 9
4 378188 10 310128 13 315084 12
8 458679 17 398580 20 433417 18
16 467007 34 427635 37 464365 34
32 468227 68 434640 73 466491 68
64 470102 136 432191 148 468241 137
128 469764 272 429736 298 469040 273
256 469310 546 431030 594 459166 558
512 454544 1128 420048 1219 453126 1143

Average Latency and IOPS at increasing Queue Depth
4KB Random Write, 1 NVMe SSD

500000 1400
450000
1200
400000 g =
'3 350000 | 1000 & &
" 2 300000 800 E @
& v 250000 o
9 = 600 En 2
Z 200000 © D
20 g 5
= 150000 400 Z 2
100000 =l
200
50000
0 0
1 2 4 8 16 32 64 128 256 512

Queue Depth

. SPDK 10PS s Linux Kernel (Default) 10PS
s Linux Kernel (io_uring) 10PS e SPDK Avg. Lat. (usec)

== Linux Kernel (Default) Avg. Lat. (usec) es=|inux Kernel (io_uring) Avg. Lat. (usec)

Figure 18: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 1 NVMe SSD, 1 CPU Core, Numjobs=1)

25

SPDK NVMe BDEV Performance Report
Release 21.04

Conclusions

26

1.

Polling hardware for completion instead of relying on interrupts lowers both total latency and
its variance.

SPDK NVMe Bdev average latency was up to 18% lower than Linux Kernel Libaio, for both
Random Read and Random Write workloads.

SPDK NVMe Bdev average latency was up to approximately 1% lower than Linux Kernel
io_uring, Random Read workload and 10% for Random Write workload.

SPDK NVMe Bdev IOPS throughput scaled almost linearly with increasing queue depth until the
NVMe SSDs was saturated

Kernel io_uring IOPS throughput scaled almost linearly with increasing queue depth until the
NVMe SSD was saturated.

Kernel libaio IOPS throughput scaling was not linear and the peak IOPS of approximately 443K
IOPS was achieved at QD=128. We were unable to fully saturate NVMe SSD by increasing
queue depth with just one CPU core. Both IOPS and latency results are worse than SPDK and
io_uring.

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

Test Case 4: IOPS vs. Latency at
different queue depths

Purpose: This test case was performed in order to understand throughput & latency trade-offs with
varying queue depth while running SPDK vs. Kernel NVMe block layers.

Results in the table represent performance in IOPS and average latency for the SPDK and Linux Kernel
NVMe block layers. We limited both the SPDK and Linux NVMe block layers to use the same number of
CPU Cores.

Test Workloads: We use the following Random Read/Write mixes
e 4KB 100% Random Read
e 4KB 100% Random Write

e 4KB Random 70% Read 30% Write

Table 14: SPDK NVMe BDEV Latency Test at different Queue Depths configuration

Item Description

Test case Test SPDK NVMe BDEV Latency Test at different Queue Depths
Test configuration FIO Version: fio-3.19
Number of CPU Cores: 4

Number of NVMe SSDs: 24

Linux Kernel echo 0 > /sys/block/nvmeOnl/queue
io_uring NVMe echo 0 > /sys/block/nvmeOnl/rq affinity
block device echo 2 > /sys/block/nvmeOnl/nomerges
configuration echo -1 > /sys/block/nvmeOnl/io poll delay
FIO configuration [globall
(common part) direct=1

thread=1

time based=1
norandommap=1
group_reporting=1

rw={randread | randwrite | randrw}
rwmixread={100 | 0 | 70}
bs=4096

runtime=240
ramp_ time=60
numjobs=1

[global]
FIO configuration ioengine=spdk bdev
(SPDK specific) spdk_conf=/tmp/bdev.conf

27

FIO configuration
(Linux Kernel
common)

28

SPDK NVMe BDEV Performance Report
Release 21.04

[filename(]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,
4608} *

cpus_allowed=0

filename=NvmeOnl

filename=Nvmeb5nl

[filenamel]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,
4608} *

cpus_allowed=21

filename=Nvme6nl

filename=Nvmellnl

[filename?2]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,
4608} *

cpus_allowed=22

filename=Nvmel2nl

filename=Nvmel7nl

[filename3]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,
4608} *

cpus_allowed=23

filename=Nvmel8nl

filename=Nvme23nl

* — - actual iodepth parameter value used in test; this
was multiplied by the number of “filename” objects in
job section to achieve desired queue depth value per
NVMe SSD (e.g. QD=3072 in this case is QD=512 per SSD)
[globall]

ioengine={libaio | io_ uring}

[filenameO]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,
4608} *

cpus_allowed=21

filename=/dev/nvmelOnl

filename=/dev/nvme5nl

[filenamel]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,
4608} *

cpus_allowed=22

filename=/dev/nvmeo6nl

filename=/dev/nvmellnl
[filename?2]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,
4608} *

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

cpus_allowed=0
filename=/dev/nvmel2nl

filename=/dev/nvmelinl

[filename3]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,
46081} *

cpus_allowed=23

filename=/dev/nvmel8nl

filename=/dev/nvme23nl

* - actual iodepth parameter value used in test; this
was multiplied by the number of “filename” objects in
job section to achieve desired queue depth value per SSD
(e.g. queue depth=3072 in this case is queue depth=512

per SSD)
[global]
FIO configuration fixedbufs=1
(Linux Kernel hipri=1
io_uring specific) registerfiles=1

sgthread poll=1

4KB Random Read Results

Table 15: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 24 NVMe SSDs, 4 CPU Cores)

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)
IOPS IOPS IOPS
(millions) (millions) (millions)

1 0.33 72 0.32 75 0.40 74
0.66 73 0.62 77 0.76 76

4 1.28 75 1.18 81 1.39 81
8 2.46 78 1.67 115 2.48 92
16 4.46 86 1.65 232 3.68 125
32 7.34 103 1.66 463 4.09 223
64 10.21 145 1.67 920 3.75 482
128 10.24 291 1.66 1855 3.60 997

256 8.78 547 1.63 3773 - -

512 6.55 1676 1.59 7743 - -

29

[|
I n t e I SPDK NVMe BDEV Performance Report
® Release 21.04

IOPS vs. Avgerage Latency
4KB Random Read

12.00
10.00

8.00 qd=512

6.00

4.00 qd=128

IOPS (millions)
(Higher is better)

qd=64 qd=128
2.00

0.00
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Avg. Latency [usec]
(Lower is better)

==@=SPDK Fio Bdev IOPS ==@=Kernel Libaio IOPS ==@=Kernel 10 Uring IOPS

Figure 19: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 24 NVMe SSDs, 4 CPU Cores)

4KB Random Write Results

Table 16: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 24 NVMe SSDs, 4 CPU Cores)

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)
IOPS IOPS (0] 4
(millions) (millions) (millions)

1 2.93 8 1.57 15 2.31 4

4.55 10 1.64 29 2.80 7

4 6.05 14 1.63 59 3.33 11
8 7.38 22 1.63 118 4.03 19
16 7.63 39 1.61 238 4.48 34
32 8.19 73 1.57 490 4.61 68
64 6.79 171 1.52 1011 3.59 178
128 6.65 346 1.46 2102 3.34 384

256 6.50 731 1.42 4327 - -

512 4.99 2182 1.41 8728 - -

30

[
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

IOPS vs. Average Latency
4KB Random Write

IOPS [millions]

qd=256

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Avg. Latency [usec]
(Lower is better)

==@==SPDK Fio Bdev IOPS === Kernel Libaio IOPS === Kernel 10 Uring IOPS

Figure 20: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 24 NVMe SSDs, 4 CPU Cores)

4KB Random 70%/30% Read/Write Results

Table 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB 70/30 Random Read/Write, 24 NVMe SSDs, 4 CPU Cores)

Linux Kernel Linux Kernel
(Default libaio) (io_uring polling)
IOPS IOPS IOPS (0] 4
(millions) (millions) (millions)
1 0.44 55 0.41 58 0.53 19
2 0.82 58 0.77 62 0.94 20
4 1.48 65 1.34 72 1.57 24
8 2.43 79 1.64 116 2.32 33
16 3.65 105 1.64 234 2.97 51
32 5.47 140 1.63 471 3.36 90
64 7.68 197 1.61 953 3.58 167
128 8.46 347 1.58 1944 3.59 333
256 7.17 739 1.54 3993 - -
512 5.32 2061 1.50 8215 - -

31

I0PS [millions]
(Higher is better)

SPDK NVMe BDEV Performance Report
Release 21.04

IOPS vs. Average Latency
4KB 70/30 Random Read/Write
9.00 qd=128
8.00 qd=256
7.00
6.00
5.00

4.00

3.00
d=32 = -
2.00 G qd=64 qd=128

1.00 &4

0.00
0 500 1000 1500 2000 2500

Avg. Latency [usec]
(Lower is better)

=== SPDK Fio Bdev IOPS Kernel Libaio I0PS Kernel 10 Uring IOPS

Figure 21: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux

io_uring polling (4KB 70/30 Random Read/Write, 24 NVMe SSDs, 4 CPU Cores)

Conclusions

32

1.

SPDK NVMe BDEV fio plugin reached up to around 10.2 million IOPS for Random Read
workload at Queue Depth = 64, 128. This is similar to result measured in Test Case 2 - I/O
Cores Scaling using Bdevperf.

SPDK NVMe BDEV fio plugin reached up to around 8.4 million IOPS for Random Read/Write
workload at Queue Depth = 128, which is close to result measured in Test Case 2 - I/O Cores
Scaling using Bdevperf.

The results for the Random Write workload exceeded what the platforms NVMe SSDs are
capable of (around 4.8M IOPS). This is probably due to a not perfect preconditioning process,
which wears off over time. However, these results were repeatable and still show SPDK'’s high
scalability with increase in the I/0 requests.

For all workloads (when running SPDK NVMe BDEV fio plugin) with increasing queue depth,
after reaching peak performance there is a noticeable performance drop. The reason for this
degradation is still under investigation.

In all workloads Kernel libaio ioengine achieved maximum performance of up to 1.67M IOPS
with 4 CPU cores and was unable to saturate platforms NVMe disks or PCle switches
throughput. Peak performance was reached at QD=8 for Random Read and Random
Read/Write workloads and at QD=2 for Random Write workload. Beyond these queue depth
values there was no IOPS improvement, but the latency increased.

The Kernel io_uring engine reached a performance peaks of 4.1 million IOPS at Queue Depth
= 32 for Random Read workload, 4.61 million at QD = 32 for Random Write and 3.59 million
at QD = 128 for Random Read/Write workload. Similarly to SPDK NVMe BDEV fio plugin, the
performance starts to drop beyond these Queue Depth values. However, when we looked at
htop we noticed that io_uring was using 8 CPU cores, because when we configured the
sqgthread_poll parameter to eliminate system calls io_uring starts a special kernel thread that

SPDK NVMe BDEV Performance Report
Release 21.04

polls the shared submission queue for I/O added by the fio thread. Therefore, in terms of CPU
efficiency we measured up to 500K IOPS/Core for io_uring vs up to 2.5M IOPS/Core for the
SPDK NVMe bdev. The Submission Queue Polling blog provides more information about how to
eliminate system calls with io_uring. .

7. We were unable to run tests using Kernel io_uring ioengine with Queue Depth = 256 and 512
when we configured 6 NVMe SSDs per fio job. The reason for that was fio job configuration
paired with limiting system settings. In this test 4 CPU cores were used, which in fio job
configuration translates to 4 job sections, each with multiple “filename” arguments for target
NVMe devices and an upscaled iodepth argument to match the number of devices. For
example: a single job section was limited to a single cpu core using cpus_allowed argument; 6
NVMe devices were attached to this section using 6 “filename” arguments, and iodepth was
set to iodepth=1536 (6*256). Queue depth of this value makes the test impossible to run
because of fio “registerfiles” option (which is required to enable polling). When “registerfiles” is
used the test fails because of the default UIO_MAXIOV limitation in sys/uio.h header file.

33

https://unixism.net/loti/tutorial/sq_poll.html

SPDK NVMe BDEV Performance Report
Release 21.04

Summary

34

SPDK NVMe BDEV Block Layer using SPDK Bdevperf benchmarking tool can deliver up to 5.2
million IOPS on a single Intel® Xeon® Gold 6230N with Turbo Boost enabled.

The SPDK NVMe BDEV IOPS scale linearly with addition of CPU cores. We demonstrated up to
10.3 million IOPS on just 3 CPU cores (Intel® Xeon® Gold 6230N with Turbo Boost enabled).

The SPDK NVMe BDEV has lower QD=1 latency than the Linux Kernel NVMe block driver for
small (4KB) blocks.

a. SPDK BDEV latency was 18% lower than Linux Kernel Libaio latency for Random Read
and Random Write workloads.

b. SPDK BDEV latency was about 1% lower than Linux Kernel io_uring latency for Random
Read workload and 10% lower for Random Write workload.

SPDK NVMe Bdev Fio reaches up to 10.2 million IOPS and keeping average latency less than
300usec while using 4 CPU cores. With the same fio workloads Kenrel io_uring and Kernel libaio
reach up to 4 million (using 8 cores: 4 for fio and 4 for submission queue polling) and 1.6 million
IOPS respectively.

SPDK NVMe BDEV Performance Report
Release 21.04

List of tables

Table 1: Hardware Setup CONFIGUIALIONo.uineie ittt e e e e e anennenes 4
Table 2: Test SEtUP BIOS SELLINGS......cueii ittt et e e e e et e e e eeaneanennenes 5
Table 3: Test platform NVME StOrage SEEUPD et e e e e nennenes 5
Table 4: SPDK NVMe BDEV IOPS TeSt CONfIQUIAtiONcuuuuiieii i i it ae e e enneeans 10
Table 5: IOPS/Core performance; SPDK FIO bdev plugin vs SPDK bdevperf (Blocksize=4KB, 1 CPU
(0 = P 13
Table 6: SPDK NVMe Bdev vs SPDK NVMe PMD IOPS/Core (Blocksize=4KB, 1 CPU Core) 13
Table 7: SPDK NVMe BDEV I/O Cores SCalability TESEuuueiieii i ee e aenaeeens 14
Table 8: SPDK NVMe BDEV I/0 Cores Scalability Test (4KB 100% Random Read IOPS at QD=128,; 4KB
100% Random Write IOPS at QD=32; 4KB 70/30 Random Read/Write IOPS at QD=128)................ 15
Table 9: SPDK NVMe BDEV LAtENCY TESE....uuuie it ieaeaeat ettt se e sneaasneenesaeseeeaeaneanennanenn 17
Table 10: SPDK bdev vs. Linux Kernel latency comparison (4KB Random Read, QD=1, runtime=90051)9
Table 11: SPDK bdev vs. Linux Kernel latency comparison (4KB Random Write, QD=1, runL“ime=900€i)9
Table 12: Performance at increasing Queue Depth, SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read , 1 NVMe SSD, 1 CPU Core, NUmjobs=1)cccovviiiviiinniiinnnnns 24
Table 13: Performance at increasing Queue Depth, SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 1 NVMe SSD, 1 CPU Core, NUMJOBS=1)....ccc.cciiiiiiiiiinnniinnnnns 25
Table 14: SPDK NVMe BDEV Latency Test at different Queue Depths configuration......................... 27

Table 15: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 24 NVMe SSDS, 4 CPU COI€S)ccuiiiiiiiiieiiiieiiiieeiiinessinnennn 29

Table 16: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 24 NVMe SSDS, 4 CPU COIES)ivuuiieiiiiiineiiseiiessiesnssinesnnenns 30

Table 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB 70/30 Random Read/Write, 24 NVMe SSDS, 4 CPU COr€S)c.vvvvvieiinernnnrnnnnns 31

35

SPDK NVMe BDEV Performance Report
Release 21.04

List of figures

Figure 1 : Example NVMe bdev configuration fil€o e 8
Figure 2: Example SPDK Fio BDEV configuration fileoiiiiii i e eenaeneees 9

Figure 3: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB Random Read, 1CPU Core,
QD =64, USING DAEVPEIT EOOI) ... e e ettt r et e e e e e neneenens 11

Figure 4: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB Random Write, 1CPU Core,
QD=32, USING BAEVPEIT EOOI) ... ettt ettt e e e e e e e e e e 12

Figure 5: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB 70/30 Random Read/Write,
1CPU Core, QD=128, using BAeVPEIrf t0O0])oineiii i e aeneeeas 12

Figure 6: SPDK NVMe BDEV I/O Cores Scalability with addition of SSDs (4KB 100% Random Read
IOPS at QD=128; 4KB 100% Random Write IOPS at QD=32; 4KB 70/30 Random Read/Write IOPS at

(00 LN 7 R 15
Figure 7: Linux Block Layer I/O Optimization with Polling. SOUIrCe [1]ccuvuuuiiiiiiiiiiiiinnannannanss 18
Figure 8: Linux Block I/O Classic and Hybrid Polling latency breakdown. Source [1] ...ccvvvivininnnnnn. 19
Figure 9: SPDK bdev vs Linux Kernel Latency comparison (4KB Random Read)cccevvvinvnnnnn. 20
Figure 10: SPDK bdev vs Linux Kernel Latency comparison (4KB Random Write)ccocvviviiinnnnn. 20

Figure 11: Linux Kernel (Default libaio) 4KB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15MSEC)c.uiiiii it i e e 21

Figure 12: Linux Kernel (Default libaio) 4KB Random Wtrite Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15MSEC)cuiiiii it i i e 21

Figure 13: Linux Kernel (io_uring polling) 4KB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15MSEC)cuuiiiii it i i i 22

Figure 14: Linux Kernel (io_uring polling) 4KB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15MSEC)cuiiiii it i i i e 22

Figure 15: SPDK BDEV NVMe 4KB Random Read Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling INterval = I5MSEC) ...oouuiiriii i e e i 23

Figure 16: SPDK BDEV NVMe 4KB Random Write Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling INterval = I5MSEC)ouuiieiii i e e 23

Figure 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 1 NVMe SSD, 1 CPU Core, NUMJOBS=1)ccccvuiiuiiiiiinniinninnnnns 24

Figure 18: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 1 NVMe SSD, 1 CPU Core, NUmMjobs=1).....c.ccccuvuiiiiiiiiinniinnnns 25

Figure 19: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 24 NVMe SSDS, 4 CPU COI€S)cuvieiiiiiieiineiiiinieinesnneinnenns 30

Figure 20: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 24 NVMe SSDS, 4 CPU COI€S)uuuuiieiiiiiieiiseiiesaieiaiesinesnnanns 31

Figure 21: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB 70/30 Random Read/Write, 24 NVMe SSDs, 4 CPU COI€S)uvuvieiieiineninnnns 32

36

[|
SPDK NVMe BDEV Performance Report I n t e I
Release 21.04 ®

References

[1] Damien Le Moal, “I/O Latency Optimization with Polling”, Vault - Linux Storage and Filesystem
Conference - 2017, May 22nd, 2017.

37

[|
I SPDK NVMe BDEV Performance Report
I Release 21.04

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more
at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may
not reflect all publicly available updates.

Your costs and results may vary.
No product or component can be absolutely secure.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

38

file:///C:/Users/abhewitt/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/M92GXFTD/www.Intel.com/PerformanceIndex

