
SPDK NVMe BDEV Performance Report

Release 21.01

 1

SPDK NVMe BDEV

Performance Report

Release 21.01

Testing Date: March 2021

Performed by Karol Latecki (karol.latecki@intel.com)

Acknowledgments:

James Harris (james.r.harris@intel.com)

John Kariuki (john.k.kariuki@intel.com)

mailto:karol.latecki@intel.com

SPDK NVMe BDEV Performance Report

Release 21.01

2

Contents

Contents ... 2

Audience and Purpose ... 3

Test setup ... 4

Hardware configuration .. 4
BIOS Settings ... 5
Storage distribution across NUMA Nodes and PCIe Switches 5
SSD Preconditioning .. 6
Kernel & BIOS Spectre-Meltdown information ... 6

Introduction to SPDK Block Device Layer ... 7

Test Case 1: SPDK NVMe BDEV IOPS Test ... 10

SPDK NVMe BDEV Single Core Throughput ... 11
Bdevperf vs. FIO IOPS/Core results ... 13
NVMe BDEV vs. Polled-Mode Driver IOPS/Core .. 13
Conclusions .. 13

Test Case 2: SPDK NVMe BDEV I/O Cores Scaling .. 14

Results .. 15
Conclusions .. 15

Test Case 3: SPDK NVMe BDEV Latency .. 17

Average and tail latency comparison .. 19
Linux Kernel libaio Histograms .. 21
Linux Kernel io_uring Histograms .. 22
SPDK FIO Bdev Histograms .. 23
Performance vs. increasing Queue Depth ... 24
Conclusions .. 26

Test Case 4: IOPS vs. Latency at different queue depths ... 27

4KB Random Read Results ... 29
4KB Random Write Results ... 30
4KB Random 70%/30% Read/Write Results ... 31
Conclusions .. 32

Summary .. 34

List of tables .. 35

List of figures... 36

References .. 37

SPDK NVMe BDEV Performance Report

Release 21.01

 3

Audience and Purpose

This report is intended for people who are interested in comparing the performance of the SPDK block
device layer vs the Linux Kernel (5.10.19-200.fc33.x86_64) block device layer. It provides performance
and efficiency information between the two block layers under various test workloads.

The purpose of the report is not to imply a single “correct” approach, but rather to provide a baseline of
well-tested configurations and procedures with repeatable and reproducible results. This report can be
viewed as information regarding best known method/practice when performance testing the SPDK
NVMe block device.

SPDK NVMe BDEV Performance Report

Release 21.01

4

Test setup

Hardware configuration

Table 1: Hardware setup configuration

Item Description
Server Platform Intel WolfPass R2224WFTZS

Server board S2600WFT

Motherboard S2600WFT

CPU 2 CPU sockets, Intel(R) Xeon(R) Gold 6230N CPU @ 2.30GHz

Number of cores 20 per socket, number of threads 40 per socket
Both sockets populated

Microcode: 0x4003003

Memory 12 x 32GB Micron DDR4 36ASF4G72PZ-2G9E2

Total 384 GBs

Memory channel population:

P1 P2

CPU1_DIMM_A1 CPU2_DIMM_A1

CPU1_DIMM_B1 CPU2_DIMM_B1

CPU1_DIMM_C1 CPU2_DIMM_C1

CPU1_DIMM_D1 CPU2_DIMM_D1

CPU1_DIMM_E1 CPU2_DIMM_E1

CPU1_DIMM_F1 CPU2_DIMM_F1

Operating System Fedora 33

BIOS SE5C620.86B.02.01.0012.070720200218

https://ark.intel.com/content/www/us/en/ark/products/192450/intel-xeon-gold-6230n-processor-27-5m-cache-2-30-ghz.html
https://downloadcenter.intel.com/download/29753/Intel-Server-Board-S2600WF-Family-BIOS-and-Firmware-Update-Package-for-UEFI

SPDK NVMe BDEV Performance Report

Release 21.01

 5

Linux kernel version 5.10.19-200.fc33.x86_64

SPDK version SPDK 21.01

Fio version 3.19

Storage OS: 1x 120GB Intel SSDSC2BB120G4

Storage:
24x Intel® P4610TM 1.6TBs (FW: VDV10170) (6 on CPU NUMA Node 0, 18 on CPU NUMA
Node 1)

BIOS Settings

Table 2: Test setup BIOS settings

Item Description
BIOS VT-d = Enabled

CPU Power and Performance Policy = <Performance>
CPU C-state = No Limit
CPU P-state = Enabled
Enhanced Intel® Speedstep® Tech = Enabled
Turbo Boost = Enabled
Hyper Threading = Enabled

Storage distribution across NUMA Nodes and PCIe

Switches

Wolfpass server platforms PCIe Lanes are not symmetrically distributed between CPU NUMA nodes,
which is an important factor in performance tests. Additionally, the total amount of PCIe Lanes available
was not enough to accommodate 24 NVMe drives. Therefore, PCIe switches were used to fan out PCIe
lanes to NVMe SSDs on the riser cards. For more information on PCIe capabilities of the platform please
refer to its technical specification.

Table 3: Test platform NVMe storage setup

Item Description
PCIe Riser cards Risers 1&2:

2x Intel A2UL16RISER2 (PCI gen 3 1x16 Riser)
o Installed in Riser Slot #1
o Installed in Riser Slot #2

Riser 3:
1 x A2UX8X4RISER (PCI gen 3 1x8 Riser)

o Installed in Riser Slot #3

PCIe Switches 5 x Intel 4-Port PCIe Gen3 x8 Switch AIC AXXP3SWX08040
Installed in:

o PCIe Switch 1: Riser Slot #1 port 1 (using CPU1 PCIe Lanes)
o PCIe Switch 2: Riser Slot #1 port 2 (using CPU2 PCIe Lanes)
o PCIe Switch 3: Riser Slot #2 port 1 (using CPU2 PCIe Lanes)
o PCIe Switch 4: Riser Slot #2 port 2 (using CPU2 PCIe Lanes)
o PCIe Switch 5: Riser Slot #3 port 1 (using CPU2 PCIe Lanes)

NVMe Drives
distribution across the
system

Nvme0 – 1 Motherboard ports (CPU1 PCIe Lanes)
Nvme2 – 3 Motherboard ports (CPU2 PCIe Lanes)

Nvme4 – 7 PCIe Switch 1 (CPU1 PCIe Lanes)

Nvme8 – 11 PCIe Switch 2 (CPU2 PCIe Lanes)

https://www.intel.com/content/dam/support/us/en/documents/server-products/server-boards/S2600WF_TPS.pdf
https://ark.intel.com/content/www/us/en/ark/products/81779/2u-riser-spare-a2ul16riser2-2-slot.html
https://ark.intel.com/content/www/us/en/ark/products/81783/2u-spare-short-riser-a2ux8x4riser.html
https://ark.intel.com/content/www/us/en/ark/products/124457/4-port-pcie-gen3-x8-switch-aic-axxp3swx08040.html

SPDK NVMe BDEV Performance Report

Release 21.01

6

Nvme12 – 15 PCIe Switch 3 (CPU2 PCIe Lanes)

Nvme16 – 19 PCIe Switch 4 (CPU2 PCIe Lanes)

Nvme20 – 23 PCIe Switch 5 (CPU2 PCIe Lanes)

SSD Preconditioning

An empty NAND SSD will often show read performance far beyond what the drive claims to be capable
of because the NVMe controller knows that the device is empty and completes the read request
successfully without performing any data transfer. Therefore, prior to running each performance test
case we preconditioned the SSDs by writing 128K blocks to the device sequentially to fill the SSD
capacity (including the over-provisioned areas) twice and force the internal state of the device into some
known state. Additionally, the 4K 100% random writes performance decreases from one test to the next
until the NAND management overhead reaches steady state because the wear-levelling activity
increases dramatically until the SSD reaches steady state. Therefore, to obtain accurate and repeatable
results for the 4K 100% random write workload, we ran the workload for 90 minutes before starting the
benchmark test and collecting performance data. For a highly detailed description of exactly how to
force an SSD into a known state for benchmarking see the SNIA Solid State Storage Performance Test
Specification.

Kernel & BIOS Spectre-Meltdown information

Host server system uses 5.10.19 kernel version which is available from the DNF repository. The default
Spectre-Meltdown mitigation patches for this kernel version have been left enabled.

https://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.1.pdf
https://www.snia.org/sites/default/files/SSS_PTS_Enterprise_v1.1.pdf

SPDK NVMe BDEV Performance Report

Release 21.01

 7

Introduction to SPDK Block Device

Layer

SPDK Polled Mode Driver

The NVMe PCIe driver is something that is usually expected to be part of the system Kernel and your
application would interact with the driver via the system call interface. SPDK takes a different approach.
SPDK unbinds the NVMe devices from the kernel and binds the hardware queues to a userspace NVMe
driver. From that point, your application will access the device queues directly from userspace.

The SPDK NVME Driver is a C library that may be linked directly into an application that provides direct,
zero-copy data transfer to and from NVMe SSDs. It is entirely passive, meaning that it spawns no threads
and only performs actions in response to function calls from the application. The library controls NVMe
devices by directly mapping the PCI BAR into the local process and performing MMIO. The SPDK NVMe
driver is asynchronous, which means that the driver submits the I/O request as an NVMe submission
queue entry on a queue pair and the function returns immediately, prior to the completion of the NVMe
command. The application must poll for I/O completion on each queue pair with outstanding I/O to
receive completion callbacks.

SPDK Block Device Layer

SPDK further provides a full block stack as a user space library that performs many of the same
operations as a block stack in an operating system. The SPDK block device layer often simply called
bdev, is a C library intended to be equivalent to the operating system block storage layer located above
the device drivers in traditional kernel storage stack.

The bdev module provides an abstraction layer that provides common APIs for implementing block
devices that interface with different types of block storage device. An application can use the APIs to
enumerate and claim SPDK block devices, and then perform asynchronous I/O operations (such as read,
write, unmap, etc) in a generic way without knowing if the device is an NVMe device or SAS device or
something else. The SPDK NVMe bdev module can create block devices for both local PCIe-attached
NVMe device and remote devices exported over NVMe-oF.

In this report, we benchmarked the performance and efficiency of the bdev for the local PCIe-attached
NVMe devices use case. We also demonstrated the benefits of the SPDK approaches, like user-space
polling, asynchronous I/O, no context switching etc. under different workloads.

FIO Integration

SPDK provides an FIO plugin for integration with Flexible I/O benchmarking tool. The quickest way to
generate a configuration file with all the bdevs for locally PCIe-attached NVMe devices is to use the
gen_nvme.sh script with “—json-with-subsystems” option as shown in Figure 1.

https://www.spdk.io/doc/nvme.html
http://www.spdk.io/doc/bdev.html
https://spdk.io/doc/bdev.html
https://github.com/spdk/spdk/tree/master/examples/nvme/fio_plugin
https://github.com/axboe/fio

SPDK NVMe BDEV Performance Report

Release 21.01

8

Figure 1 : Example NVMe bdev configuration file

Add SPDK bdevs to the fio job file, by setting the ioengine=spdk_bdev and adding the spdk_json_conf
parameter whose value points to the NVMe bdev configuration file.

The example fio configuration file in figure 2, shows how to define multiple fio jobs and assign NVMe
bdevs to each job. Each job is also pinned to a CPU core on the same NUMA node as the NVMe SSDs
that the job will access.

Finally, to use the bdev fio plugin specify the LD_PRELOAD when running fio.

LD_PRELOAD=<path to spdk repo>/examples/bdev/fio_plugin/fio_plugin fio <fio job file>

[user@localhost spdk]$ sudo scripts/gen_nvme.sh --json-
with-subsystems | jq
{
 "subsystems": [
 {
 "subsystem": "bdev",
 "config": [
 {
 "method": "bdev_nvme_attach_controller",
 "params": {
 "trtype": "PCIe",
 "name": "Nvme0",
 "traddr": "0000:1a:00.0"
 }
 },

 [...]

 "method": "bdev_nvme_attach_controller",
 "params": {
 "trtype": "PCIe",
 "name": "Nvme22",
 "traddr": "0000:de:00.0"
 }
 },
 {
 "method": "bdev_nvme_attach_controller",
 "params": {
 "trtype": "PCIe",
 "name": "Nvme23",
 "traddr": "0000:df:00.0"
 }
 }
]
 }
]

SPDK NVMe BDEV Performance Report

Release 21.01

 9

Figure 2: Example SPDK Fio BDEV configuration file

[global]
direct=1
thread=1
time_based=1
norandommap=1
group_reporting=1
ioengine=spdk_bdev
spdk_json_conf=/tmp/bdev.conf

rw=randread
rwmixread=70
bs=4096
numjobs=1
runtime=300
ramp_time=60

[filename0]
iodepth=192
cpus_allowed=0
filename=Nvme0n1
filename=Nvme1n1
filename=Nvme4n1
filename=Nvme5n1
filename=Nvme6n1
filename=Nvme7n1

[filename1]
iodepth=192
cpus_allowed=21
filename=Nvme2n1
filename=Nvme3n1
filename=Nvme8n1
filename=Nvme9n1
filename=Nvme10n1
filename=Nvme11n1

[filename2]
iodepth=192
cpus_allowed=22
filename=Nvme12n1
filename=Nvme13n1
filename=Nvme14n1
filename=Nvme15n1
filename=Nvme16n1
filename=Nvme17n1

[filename3]
iodepth=192
cpus_allowed=23
filename=Nvme18n1
filename=Nvme19n1
filename=Nvme20n1
filename=Nvme21n1
filename=Nvme22n1
filename=Nvme23n1

SPDK NVMe BDEV Performance Report

Release 21.01

10

Test Case 1: SPDK NVMe BDEV

IOPS/Core Test

Purpose: The purpose of this test case was to measure the maximum performance in IOPS/Core of the
NVMe block layer on a single CPU core. We used different benchmarking tools (SPDK bdevperf vs. SPDK
FIO BDEV plugin vs SPDK NVMe perf) to understand the overhead of benchmarking tools. Measuring
IOPS was key in this test case, so latency measurements were either disabled or skipped.

The following Random Read/Write workloads were used:

• 4KB 100% Random Read

• 4KB 100% Random Write

• 4KB Random 70% Read 30% Write

For each workload we followed the following steps:

1) Precondition SSDs as described in “Test Setup” chapter.

2) Run each test workload: Start with a configuration that has 24 Intel P4610x NVMe devices and
decrease the number of SSDs by 2 on each subsequent run.

• This shows us the IOPS scaling as we add SSDs till the maximum IOPS/Core is reached.

• Starting with 24 SSDs and reducing the number of SSDs on subsequent eliminates having
to precondition between runs because all SSDs used in the subsequent run were used in
the previous run so they should still be in a steady state.

3) Repeat three times. The data reported is the average of the 3 runs.

Table 4: SPDK NVMe BDEV IOPS Test configuration

Item Description

Test case SPDK NVMe BDEV IOPS/Core Test

Test configuration FIO Version: fio-3.19

Number of NVMe SSDs: scaled as follows: 24, 22, … 2, 1. Decreasing 2
SSDs on each test run.

SPDK_BDEV_IO_CACHE_SIZE changed from 256 to 2048.

NUMA optimization: The test platform has PCIe lanes unevenly distributed
between NUMA nodes, most of the NVMe SSDs (18 out of total 24) are located
on NUMA node 1. Therefore, a CPU Core from NUMA node 1 was selected as
primary core for test, in order to reduce the overhead of cross-numa
operations.

Bdevperf
configuration

./bdevperf -c bdev.conf -q ${iodepth} -o ${block_size} -

w ${rw} -M ${rwmixread} -t 300 -m 20 -p 20

SPDK NVMe BDEV Performance Report

Release 21.01

 11

FIO configuration

[global]

ioengine=spdk_bdev

spdk_json_conf=bdev.conf

gtod_reduce=1

direct=1

thread=1

norandommap=1

time_based=1

ramp_time=60s

runtime=300s

bs=4k

rw={randread, randwrite, randrw}

rwmixread={100,70,0}

iodepth={32, 64, 128, 256}

numjobs=1

SPDK NVMe BDEV Single Core Throughput

The first test was performed using SPDK bdevperf, which is lightweight benchmarking tool that adds
minimal latency to the I/O path. The charts below show the Single core IOPS results for the SPDK
Block Layer with increasing number of NVMe SSDs.

Figure 3: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB Random Read, 1CPU Core,
QD=128, using bdevperf tool)

SPDK NVMe BDEV Performance Report

Release 21.01

12

Figure 4: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB Random Write, 1CPU Core,
QD=32, using bdevperf tool)

Figure 5: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB 70/30 Random Read/Write,
1CPU Core, QD=128, using bdevperf tool)

SPDK NVMe BDEV Performance Report

Release 21.01

 13

Bdevperf vs. FIO IOPS/Core results

SPDK provides the bdevperf benchmarking tool that provides minimal capabilities needed to define
basic workloads and collects a limited amount of data. The FIO benchmarking tool provides a lot of great
features to enable users to quickly define workloads, scale the workloads and collect many data points
for detailed performance analysis, however, at cost of higher overhead. This test compares the
performance in IOPS/core of the bdevperf and FIO benchmarking tools.

Table 5: IOPS/Core performance; SPDK FIO bdev plugin vs SPDK bdevperf (Blocksize=4KB, 1 CPU
Core)

Workload
SDPK Fio BDEV Plugin

(IOPS, thousands)
SPDK Bdevperf

(IOPS, thousands)
Performance

gain

4KB Random Read, QD=128,
10 SSDs

2821.13 4814.68 70.6%

4KB Random Write, QD=32,
20 SSDs

2742.78 5285.38 92.7%

4KB 70/30 Random
Read/Write, QD=128, 12 SSDs

2353.75 4752.91 101.9%

The overhead of the benchmarking tools is important when you are testing a system that is capable of
millions of IOPS/Core. Using a benchmarking tool that has minimal overhead like the SPDK bdevperf
yields up to 101.9% more IOPS/Core than FIO.

NVMe BDEV vs. Polled-Mode Driver IOPS/Core

In this test case, we compared the throughput of the NVMe BDEV with that of the polled-mode driver.
How to read this data? The SPDK block layer provides several key features at a cost of approximately
20% more CPU utilization. If you are building a system with many SSDs that is capable of millions of
IOPS, you can take advantage of the block layer features at the cost of approximately 1 additional CPU
core for every 4 I/O cores. Comparison was done using SPDK Bdevperf and Nvmeperf test tools.

Table 6: SPDK NVMe Bdev vs SPDK NVMe PMD IOPS/Core (Blocksize=4KB, 1 CPU Core)

Workload
SPDK Bdevperf

(IOPS, thousands)
SPDK Nvmeperf

(IOPS, thousands)
Performance

gain

4KB Random Read, QD=128,
10 SSDs

4814.68 6044.76 20%

4KB Random Write, QD=32,
24 SSDs

5117.63 6614.97 22%

Conclusions

1) The SPDK NVMe block device module adds approximately 20% overhead compared to using
only the SPDK NVMe Polled-Mode Driver without the block device module.

2) Performance scales linearly with addition of NVMe SSDs up to 8 and 12 SSDs for Random
Read and Random Read/Write workloads, reaching around 4.81 and 4.75 million IOPS
respectively.

3) Performance scaling is close to linear for Random Write workloads up 20 NVMe SSDs, reaching
around 5.3M IOPS.

4) For all workloads there is a noticeable performance degradation with addition of more NVMe
SSDs after peak performance point has been reached.

SPDK NVMe BDEV Performance Report

Release 21.01

14

Test Case 2: SPDK NVMe BDEV I/O

Cores Scaling

Purpose: The purpose of this test case is to demonstrate the I/O throughput scalability of the NVMe
BDEV module with the addition of more CPU cores to perform I/O. The number of CPU cores used was
scaled as 1, 2, 3, 4 and 5.

Test Workloads: We use the following Random Read/Write mixes

• 4KB 100% Random Read

• 4KB 100% Random Write

• 4KB Random 70% Read 30% Write

Table 7: SPDK NVMe BDEV I/O Cores Scalability Test

Item Description

Test case Test SPDK NVMe BDEV I/O Cores Scalability Test

Test configuration Number of CPU Cores: 1, 2, 3, 4, 5

Number of NVMe SSDs: 6 per each CPU Core used in test

NUMA optimization: The test platform has PCIe lanes unevenly distributed
between NUMA nodes, most of the NVMe SSDs (18 out of total 24) are located
on NUMA node 1. Therefore, only CPU Cores from NUMA node 1 were
selected for test, in order to reduce the overhead of cross-numa operations.

Bdev perf
configuration

spdk/test/bdev/bdevperf/bdevperf --json bdev.conf \

 -q 128 -o 4096 -w randrw -M ${MIXREAD} \

 -t 300 -m ${CORE_MASK} -p ${PRIMARY_CORE}

SPDK NVMe BDEV Performance Report

Release 21.01

 15

Results

Table 8: SPDK NVMe BDEV I/O Cores Scalability Test (4KB 100% Random Read IOPS at QD=128; 4KB
100% Random Write IOPS at QD=32; 4KB 70/30 Random Read/Write IOPS at QD=128)

 IOPS (thousands)

CPU
Cores

NVMe
SSDs

Random Read
QD=128

Random Write
QD=32

70/30 Random Read/Write
QD=128

1 6 3640.29 1234.52 2095.73

2 12 7264.80 2583.99 4414.64

3 18 10380.46 3964.32 6891.24

4 24 10972.44 5530.95 9396.50

5 24 10961.85 6073.11 9854.77

Figure 6: SPDK NVMe BDEV I/O Cores Scalability with addition of SSDs (4KB 100% Random Read
IOPS at QD=128; 4KB 100% Random Write IOPS at QD=32; 4KB 70/30 Random Read/Write IOPS at

QD=128)

Conclusions

1. The IOPS for the 4 KiB random read workload scales up linearly with the addition of I/O cores
until the PCIe switches in platform are saturated (at about 10.9M IOPS; see “Test setup” chapter
for more information).

2. The IOPS for the 4 KiB random write workload scaling is close to linear. At 4 and 5 CPU cores the
IOPS exceeded the expected NVMe SSDs throughput for this workload which is about 4.8M
IOPS, we suspect this is due to a not perfect preconditioning process, which wears off over

SPDK NVMe BDEV Performance Report

Release 21.01

16

time. However, the results were repeatable and showed SPDK’s high scalability with addition
of I/O cores.

3. The IOPS for the 4 KiB random 70/30 read/write workload scales up linearly with the addition of
I/O cores up to 4 CPU cores. At this point peak performance of 9.4 million IOPS is reached and
increasing the number of cores to 5 does not improve performance significantly.

SPDK NVMe BDEV Performance Report

Release 21.01

 17

Test Case 3: SPDK NVMe BDEV

Latency

This test case was carried out to understand latency characteristics while running SPDK NVMe bdev and
its comparison to Linux Kernel NVMe block device layer. We used SPDK FIO BDEV Plugin instead of the
SPDK Bdevperf tool, as it allowed us to gather detailed latency metrics. FIO was ran for 15 minutes
targeting a single block device over a single NVMe drive. This test compares consistency between
latency of the SPDK and Linux Kernel block layers over time in a histogram. The Linux Kernel block layer
provides I/O polling capabilities to eliminate overhead such as context switch, IRQ delivery delay and
IRQ handler scheduling. This test case includes a comparison of the I/O latency for the Kernel vs. SPDK.

Test Workloads: We use the following workloads:

• 4KB 100% Random Read

• 4KB 100% Random Write

Important note: For 21.01 benchmark tests we have been unable to successfully run tests for Kernel
io_uring engine with sqthread_pool option enabled when workload was using write path and Queue
Depth was set to 1. Because of this, Random Write QD=1 workload was run without sqthread_poll
option enabled. This is caused by some unidentified bug, probably in Fio or Kernel itself. For more
information please see the issue for this problem on Github.

Table 9: SPDK NVMe BDEV Latency Test

Item Description

Test case Test SPDK NVMe BDEV Latency Test

Test configuration FIO Version: fio-3.19

Number of CPU Cores: 1

Number of NVMe SSDs: 1

SPDK NVMe Driver
Configuration

ioengine=spdk_bdev

Linux Kernel
Default (libaio)
Configuration

ioengine=libaio

Linux Kernel
io_uring

ioengine=io_uring

System NVMe block device configuration:
echo 0 > /sys/block/nvme0n1/queue

echo 0 > /sys/block/nvme0n1/rq_affinity

echo 2 > /sys/block/nvme0n1/nomerges

echo -1 > /sys/block/nvme0n1/io_poll_delay

FIO configuration
(common part)

[global]

direct=1

thread=1

time_based=1

https://github.com/axboe/fio/issues/1195

SPDK NVMe BDEV Performance Report

Release 21.01

18

norandommap=1

group_reporting=1

rw={randread | randwrite}

bs=4096

runtime=900

ramp_time=120

numjobs=1

log_avg_msec=15

write_lat_log=/tmp/tc3_lat.log

FIO configuration
(SPDK specific)

[global]

ioengine=spdk_bdev

spdk_conf=/tmp/bdev.conf

[filename0]

iodepth=1

cpus_allowed=20

filename=Nvme0n1

FIO configuration
(Linux Kernel
common)

[global]

ioengine={libaio | io_uring}

[filename0]

iodepth=1

cpus_allowed=20

filename=/dev/nvme18n1

FIO configuration
(Linux Kernel
io_uring specific)

[global]

fixedbufs=1

hipri=1

registerfiles=1

sqthread_poll=1

The Linux block layer implements I/O polling on the completion queue. Polling can remove context
switch(cs) overhead, IRQ delivery and IRQ handler scheduling overhead[1].

Figure 7: Linux Block Layer I/O Optimization with Polling. Source [1]

Furthermore, the Linux block I/O polling provides a mechanism to reduce the CPU load. In the Classic
Polling model, the CPU spin-waits for the command completion and utilizes 100% of a CPU core [1].
There’s also an adaptive hybrid polling which reduces the CPU load by putting the I/O polling thread to
sleep for about half of the command execution time, but the polling thread must be woken up before
the I/O completes with enough heads-up time for a context switch[1]. Hybrid polling mode was not
used for testing in this document.

SPDK NVMe BDEV Performance Report

Release 21.01

 19

Figure 8: Linux Block I/O Classic and Hybrid Polling latency breakdown. Source [1]

The data in tables and charts compares the I/O latency for a various 4KB workloads performed using
the SPDK BDEV vs. Linux block layerI/O model libaio and io_uring with polling mode enabled.

Average and tail latency comparison

Table 10: SPDK bdev vs. Linux Kernel latency comparison (4KB Random Read, QD=1, runtime=900s)

Latency metrics
(usec)

SDPK Fio BDEV
Plugin

Linux Kernel (libaio)
Linux Kernel
(io_uring)

Average 72.889 85.668 71.926

P90 98.816 109.056 99.84

P99 144.384 112.128 100.864

P99.99 292.864 313.344 296.96

Stdev 23.284 21.564 20.925

Average submission latency 0.111 4.942 0

Average completion latency 72.778 80.398 71.885

Table 11: SPDK bdev vs. Linux Kernel latency comparison (4KB Random Write, QD=1, runtime=900s)

Latency metrics
(usec)

SDPK Fio BDEV
Plugin

Linux Kernel
(Default libaio)

Linux Kernel
(io_uring)

Average 10.254 11.944 11.169

P90 19.328 18.304 18.816

P99 37.12 34.56 35.072

P99.99 81.408 77.312 80.384

Stdev 7.102 6.197 6.903

Average submission latency 0.152 1.194 0.865

Average completion latency 10.101 10.68 10.234

SPDK NVMe BDEV Performance Report

Release 21.01

20

Figure 9: SPDK bdev vs Linux Kernel Latency comparison (4KB Random Read)

Figure 10: SPDK bdev vs Linux Kernel Latency comparison (4KB Random Write)

SPDK NVMe BDEV Performance Report

Release 21.01

 21

Linux Kernel libaio Histograms

Figure 11: Linux Kernel (Default libaio) 4KB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)

Figure 12: Linux Kernel (Default libaio) 4KB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)

SPDK NVMe BDEV Performance Report

Release 21.01

22

Linux Kernel io_uring Histograms

Figure 13: Linux Kernel (io_uring polling) 4KB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)

Figure 14: Linux Kernel (io_uring polling) 4KB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec)

SPDK NVMe BDEV Performance Report

Release 21.01

 23

SPDK FIO Bdev Histograms

Figure 15: SPDK BDEV NVMe 4KB Random Read Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec)

Figure 16: SPDK BDEV NVMe 4KB Random Write Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec)

SPDK NVMe BDEV Performance Report

Release 21.01

24

Performance vs. increasing Queue Depth

Purpose: Understand the performance in IOPS and average latency of SPDK vs. the Linux io_uring
polling and libaio block layer as the queue depth increases by powers of 2 from 1 to 512 for single
NVMe SSD and single CPU Core.

Table 12: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read , 1 NVMe SSD, 1 CPU Core, Numjobs=1)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD IOPS
Avg. Lat.

(usec)
IOPS

Avg. Lat.

(usec)
IOPS

Avg. Lat.

(usec)

1 13976 71 11205 87 13233 75

2 27721 72 22167 89 26910 74

4 54263 73 44694 88 52667 76

8 103633 77 94674 84 101006 79

16 189781 84 174388 91 187468 85

32 321592 99 274749 116 315004 101

64 482925 132 442718 144 476500 134

128 595937 215 472568 271 588451 217

256 635712 402 472099 542 630797 406

512 636054 805 476585 1074 636897 804

Figure 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 1 NVMe SSD, 1 CPU Core, Numjobs=1)

SPDK NVMe BDEV Performance Report

Release 21.01

 25

Table 13: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 1 NVMe SSD, 1 CPU Core, Numjobs=1)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD IOPS
Avg. Lat.

(usec)
IOPS

Avg. Lat.

(usec)
IOPS

Avg. Lat.

(usec)

1 152865 6 76117 12 116068 8

2 253702 8 180159 11 217653 9

4 374805 10 296263 13 341450 11

8 469419 17 394137 20 430833 18

16 469234 34 434482 37 465493 34

32 462893 69 445494 72 470512 68

64 463909 138 444516 144 472428 135

128 459949 278 446619 286 472493 271

256 460036 304 445777 574 459904 558

512 449053 570 434403 1179 480313 1066

Figure 18: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 1 NVMe SSD, 1 CPU Core, Numjobs=1)

SPDK NVMe BDEV Performance Report

Release 21.01

26

Conclusions

1. Polling hardware for completion instead of relying on interrupts lowers both total latency and
its variance.

2. SPDK NVMe Bdev average latency was up to 15% lower than Linux Kernel Libaio, for both
Random Read and Random Write workloads.

3. SPDK NVMe Bdev average latency was up to approximately 1% lower than Linux Kernel
io_uring, for both Random Read and Random Write workloads.

4. SPDK NVMe Bdev IOPS throughput scaled almost linearly with increasing queue depth until the
NVMe SSDs was saturated

5. Kernel io_uring IOPS throughput scaled almost linearly with increasing queue depth until the
NVMe SSD was saturated.

6. Kernel libaio IOPS throughput scaling was not linear and the peak IOPS of approximately 440K
IOPS was achieve at QD=64. We were unable to fully saturate NVMe SSD by increasing queue
depth with just one CPU core. Both IOPS and latency results are worse than SPDK and
io_uring.

SPDK NVMe BDEV Performance Report

Release 21.01

 27

Test Case 4: IOPS vs. Latency at

different queue depths

Purpose: This test case was performed in order to understand throughput & latency trade-offs with
varying queue depth while running SPDK NVMe driver vs. Kernel NVMe driver.

Results in the table represent performance in IOPS and average latency for the SPDK NVMe driver and
Linux Kernel NVMe driver. We limited both the SPDK and Linux NVMe driver to use the same number of
CPU Cores.

Test Workloads: We use the following Random Read/Write mixes

• 4KB 100% Random Read

• 4KB 100% Random Write

• 4KB Random 70% Read 30% Write

Table 14: SPDK NVMe BDEV Latency Test at different Queue Depths configuration

Item Description

Test case Test SPDK NVMe BDEV Latency Test at different Queue Depths

Test configuration FIO Version: fio-3.19

Number of CPU Cores: 4

Number of NVMe SSDs: 24

Linux Kernel
io_uring NVMe
block device
configuration

echo 0 > /sys/block/nvme0n1/queue

echo 0 > /sys/block/nvme0n1/rq_affinity

echo 2 > /sys/block/nvme0n1/nomerges

echo -1 > /sys/block/nvme0n1/io_poll_delay

FIO configuration
(common part)

[global]

direct=1

thread=1

time_based=1

norandommap=1

group_reporting=1

rw={randread | randwrite | randrw}

rwmixread={100 | 0 | 70}

bs=4096

runtime=240

ramp_time=60

numjobs=1

FIO configuration
(SPDK specific)

[global]

ioengine=spdk_bdev

spdk_conf=/tmp/bdev.conf

SPDK NVMe BDEV Performance Report

Release 21.01

28

[filename0]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,

4608}*

cpus_allowed=0

filename=Nvme0n1

…

filename=Nvme5n1

[filename1]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,

4608}*

cpus_allowed=21

filename=Nvme6n1

…

filename=Nvme11n1

[filename2]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,

4608}*

cpus_allowed=22

filename=Nvme12n1

…

filename=Nvme17n1

[filename3]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,

4608}*

cpus_allowed=23

filename=Nvme18n1

…

filename=Nvme23n1

* - actual iodepth parameter value used in test; this

was multiplied by the number of “filename” objects in

job section to achieve desired iodepth value per NVMe

SSD (e.g. iodepth=3072 in this case is iodepth=512 per

SSD)

FIO configuration
(Linux Kernel
common)

[global]

ioengine={libaio | io_uring}

[filename0]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,

4608}*

cpus_allowed=21

filename=/dev/nvme0n1

…

filename=/dev/nvme5n1

[filename1]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,

4608}*

cpus_allowed=22

filename=/dev/nvme6n1

…

filename=/dev/nvme11n1

[filename2]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,

SPDK NVMe BDEV Performance Report

Release 21.01

 29

4608}*

cpus_allowed=0

filename=/dev/nvme12n1

…

filename=/dev/nvme17n1

[filename3]

iodepth={6, 12, 24, 48, 96, 192, 512, 768, 1536, 3072,

4608}*

cpus_allowed=23

filename=/dev/nvme18n1

…

filename=/dev/nvme23n1

* - actual iodepth parameter value used in test; this

was multiplied by the number of “filename” objects in

job section to achieve desired iodepth value per SSD

(e.g. iodepth=3072 in this case is iodepth=512 per SSD)

FIO configuration
(Linux Kernel
io_uring specific)

[global]

fixedbufs=1

hipri=1

registerfiles=1

sqthread_poll=1

4KB Random Read Results

Table 15: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 24 NVMe SSDs, 4 CPU Cores)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD
IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

1 0.65 73 0.32 75 0.40 75

2 1.29 74 0.62 77 0.76 76

4 2.46 78 1.18 81 1.40 81

8 4.46 86 1.74 110 2.48 92

16 7.35 103 1.75 219 3.59 128

32 10.20 145 1.75 438 3.87 234

64 10.25 294 1.75 876 3.45 523

128 8.20 583 1.75 1758 3.63 959

256 6.23 1760 1.72 3579 - -

512 0.65 73 1.65 7438 - -

SPDK NVMe BDEV Performance Report

Release 21.01

30

Figure 19: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 24 NVMe SSDs, 4 CPU Cores)

4KB Random Write Results

Table 16: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 24 NVMe SSDs, 4 CPU Cores)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD
IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

1 2.92 8 1.63 15 2.37 4

2 4.53 10 1.72 28 2.83 7

4 6.00 14 1.71 56 3.38 11

8 7.45 22 1.71 112 3.95 19

16 7.60 39 1.71 225 4.39 34

32 8.14 73 1.66 463 4.63 67

64 7.91 149 1.59 967 3.23 198

128 7.08 325 1.53 2007 3.16 406

256 6.22 765 1.49 4125 - -

512 5.01 2172 1.47 8336 - -

SPDK NVMe BDEV Performance Report

Release 21.01

 31

Figure 20: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 24 NVMe SSDs, 4 CPU Cores)

4KB Random 70%/30% Read/Write Results

Table 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB 70/30 Random Read/Write, 24 NVMe SSDs, 4 CPU Cores)

 SPDK
Linux Kernel

(Default libaio)

Linux Kernel

(io_uring polling)

QD
IOPS IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

IOPS

(millions)

Avg. Lat.

(usec)

1 0.44 55 0.41 58 0.51 19

2 0.83 58 0.76 63 0.92 21

4 1.52 63 1.32 72 1.55 24

8 2.50 76 1.72 112 2.30 33

16 3.76 102 1.71 224 3.03 51

32 5.60 136 1.71 448 3.53 86

64 7.54 201 1.67 917 3.77 160

128 8.38 342 1.65 1864 3.45 346

256 7.08 718 1.60 3832 - -

512 5.22 2130 1.56 7871 - -

SPDK NVMe BDEV Performance Report

Release 21.01

32

Figure 21: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB 70/30 Random Read/Write, 24 NVMe SSDs, 4 CPU Cores)

Conclusions

1. In all workloads Kernel libaio ioengine achieved maximum performance of up to 1.7M IOPS
with 4 CPU cores and was unable to saturate platforms NVMe disks or PCIe switches
throughput. Peak performance was reached at QD=8 for Random Read and Random
Read/Write workloads and at QD=2 for Random Write workload. Beyond these queue depth
values there was no IOPS improvement, but the latency increase.

2. SPDK NVMe BDEV fio plugin reached up to around 10 million IOPS for Random Read workload
at Queue Depth = 64, 128. This is similar to result measured in Test Case 2 - I/O Cores
Scaling using Bdevperf.

3. SPDK NVMe BDEV fio plugin reached up to around 8.4 million IOPS for Random Read/Write
workload at Queue Depth = 128, which is close to result measured in Test Case 2 - I/O Cores
Scaling using Bdevperf.

4. The results for the Random Write workload exceeded what the platforms NVMe SSDs are
capable of (around 4.8M IOPS). This is probably due to a not perfect preconditioning process,
which wears off over time. However, these results were repeatable and still show SPDK’s high
scalability with increase in the I/O requests.

5. For all workloads (when running SPDK NVMe BDEV fio plugin) with increasing queue depth,
after reaching peak performance there is a noticeable performance drop. The reason for this
degradation is still under investigation.

6. The Kernel io_uring engine reached a performance peaks of 3.8 million IOPS at Queue Depth
= 64 for all Random Write and Random Read/Write workloads and 4.6 million IOPS at Queue
Depth = 32 for Random Write workload. Similarly to SPDK NVMe BDEV fio plugin, the
performance starts to drop beyond these Queue Depth values. However, when we looked at
htop we noticed that io_uring was using 8 CPU cores, because when we configured the
sqthread_poll parameter to eliminate system calls io_uring starts a special kernel thread that

SPDK NVMe BDEV Performance Report

Release 21.01

 33

polls the shared submission queue for I/O added by the fio thread. Therefore, in terms of CPU
efficiency we measured up to 500K IOPS/Core for io_uring vs up to 2.5M IOPS/Core for the
SPDK NVMe bdev. The Submission Queue Polling blog provides more information about how to
eliminate system calls with io_uring. .

7. We were unable to run tests using Kernel io_uring ioengine with Queue Depth = 256 and 512
when we configured 6 NVMe SSDs per fio job. The reason for that was fio job configuration
paired with limiting system settings. In this test 4 CPU cores were used, which in fio job
configuration translates to 4 job sections, each with multiple “filename” arguments for target
NVMe devices and an upscaled iodepth argument to match the number of devices. For
example: a single job section was limited to a single cpu core using cpus_allowed argument; 6
NVMe devices were attached to this section using 6 “filename” arguments, and iodepth was
set to iodepth=1536 (6*256). Queue depth of this value makes the test impossible to run
because of fio “registerfiles” option (which is required to enable polling). When “registerfiles” is
used the test fails because of the default UIO_MAXIOV limitation in sys/uio.h header file.

https://unixism.net/loti/tutorial/sq_poll.html

SPDK NVMe BDEV Performance Report

Release 21.01

34

Summary

1. SPDK NVMe BDEV Block Layer using SPDK Bdevperf benchmarking tool can deliver up to 5.2
million IOPS on a single Intel® Xeon® Gold 6230N with Turbo Boost enabled.

2. The SPDK NVMe BDEV IOPS scale linearly with addition of CPU cores. We demonstrated up to
10.4 million IOPS on just 3 CPU cores (Intel® Xeon® Gold 6230N with Turbo Boost enabled).

3. The SPDK NVMe BDEV has lower QD=1 latency than the Linux Kernel NVMe block driver for
small (4KB) blocks.

a. SPDK BDEV latency was 15% lower than Linux Kernel Libaio latency for Random Read
and Random Write workloads.

b. SPDK BDEV latency was about 1% lower than Linux Kernel io_uring latency for Random
Read and Random Write workloads.

4. SPDK NVMe Bdev Fio reaches up to 10.2 million IOPS and keeping average latency less than
300usec while using 4 CPU cores. With the same fio workloads Kenrel io_uring and Kernel libaio
reach up to 3.85 million(using 8 cores: 4 for fio and 4 for submission queue polling) and 1.75
million IOPS respectively.

SPDK NVMe BDEV Performance Report

Release 21.01

 35

List of tables

Table 1: Hardware setup configuration .. 4

Table 2: Test setup BIOS settings ... 5

Table 3: Test platform NVMe storage setup .. 5

Table 4: SPDK NVMe BDEV IOPS Test configuration .. 10

Table 5: IOPS/Core performance; SPDK FIO bdev plugin vs SPDK bdevperf (Blocksize=4KB, 1 CPU
Core) .. 13

Table 6: SPDK NVMe Bdev vs SPDK NVMe PMD IOPS/Core (Blocksize=4KB, 1 CPU Core) 13

Table 7: SPDK NVMe BDEV I/O Cores Scalability Test ... 14

Table 8: SPDK NVMe BDEV I/O Cores Scalability Test (4KB 100% Random Read IOPS at QD=128; 4KB
100% Random Write IOPS at QD=32; 4KB 70/30 Random Read/Write IOPS at QD=128) 15

Table 9: SPDK NVMe BDEV Latency Test ... 17

Table 10: SPDK bdev vs. Linux Kernel latency comparison (4KB Random Read, QD=1, runtime=900s)
 ... 19

Table 11: SPDK bdev vs. Linux Kernel latency comparison (4KB Random Write, QD=1, runtime=900s)
 ... 19

Table 12: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read , 1 NVMe SSD, 1 CPU Core, Numjobs=1) 24

Table 13: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 1 NVMe SSD, 1 CPU Core, Numjobs=1) 25

Table 14: SPDK NVMe BDEV Latency Test at different Queue Depths configuration......................... 27

Table 15: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 24 NVMe SSDs, 4 CPU Cores) ... 29

Table 16: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 24 NVMe SSDs, 4 CPU Cores) ... 30

Table 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB 70/30 Random Read/Write, 24 NVMe SSDs, 4 CPU Cores) 31

SPDK NVMe BDEV Performance Report

Release 21.01

36

List of figures

Figure 1 : Example NVMe bdev configuration file ... 8

Figure 2: Example SPDK Fio BDEV configuration file .. 9

Figure 3: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB Random Read, 1CPU Core,
QD=128, using bdevperf tool)... 11

Figure 4: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB Random Write, 1CPU Core,
QD=32, using bdevperf tool) .. 12

Figure 5: SPDK NVMe BDEV IOPS scalability with addition of SSDs (4KB 70/30 Random Read/Write,
1CPU Core, QD=128, using bdevperf tool) .. 12

Figure 6: SPDK NVMe BDEV I/O Cores Scalability with addition of SSDs (4KB 100% Random Read
IOPS at QD=128; 4KB 100% Random Write IOPS at QD=32; 4KB 70/30 Random Read/Write IOPS at
QD=128) .. 15

Figure 7: Linux Block Layer I/O Optimization with Polling. Source [1] .. 18

Figure 8: Linux Block I/O Classic and Hybrid Polling latency breakdown. Source [1] 19

Figure 9: SPDK bdev vs Linux Kernel Latency comparison (4KB Random Read) 20

Figure 10: SPDK bdev vs Linux Kernel Latency comparison (4KB Random Write) 20

Figure 11: Linux Kernel (Default libaio) 4KB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec) ... 21

Figure 12: Linux Kernel (Default libaio) 4KB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec) ... 21

Figure 13: Linux Kernel (io_uring polling) 4KB Random Read Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec) ... 22

Figure 14: Linux Kernel (io_uring polling) 4KB Random Write Average Latency Histogram (QD=1,
Runtime=900s, fio, sampling interval = 15msec) ... 22

Figure 15: SPDK BDEV NVMe 4KB Random Read Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec) ... 23

Figure 16: SPDK BDEV NVMe 4KB Random Write Average Latency Histogram (QD=1, Runtime=900s,
fio, sampling interval = 15msec) ... 23

Figure 17: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 1 NVMe SSD, 1 CPU Core, Numjobs=1) 24

Figure 18: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 1 NVMe SSD, 1 CPU Core, Numjobs=1) 25

Figure 19: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Read, 24 NVMe SSDs, 4 CPU Cores) ... 30

Figure 20: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB Random Write, 24 NVMe SSDs, 4 CPU Cores) ... 31

Figure 21: Performance at increasing Queue Depth; SPDK NVMe BDEV vs Linux Default libaio vs Linux
io_uring polling (4KB 70/30 Random Read/Write, 24 NVMe SSDs, 4 CPU Cores) 32

SPDK NVMe BDEV Performance Report

Release 21.01

 37

References

[1] Damien Le Moal, “I/O Latency Optimization with Polling”, Vault – Linux Storage and Filesystem
Conference – 2017, May 22nd, 2017.

SPDK NVMe BDEV Performance Report

Release 21.01

38

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more

at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may

not reflect all publicly available updates.

Your costs and results may vary.

No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Other names and brands may be claimed as the

property of others.

§

file:///C:/Users/abhewitt/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/M92GXFTD/www.Intel.com/PerformanceIndex

