

SPDK vhost-scsi Performance

Report

Release 17.07

Test Date: Sep 14, 2017

SPDK vhost-scsi Performance Report

Release 17.07

2

Revision History

Date Revision Comment

Aug 15, 2017 1.0 Initial document for release

Aug 21, 2017 2.0 Reviews incorporated

Sept 7, 2017 3.0 Updated Test Case # 3

SPDK vhost-scsi Performance Report

Release 17.07

 3

Contents

Audience and Purpose ... 4

Test setup ... 4

Hardware Configuration ... 4

BIOS settings ... 4

Introduction to SPDK vhost-scsi target .. 5

SPDK vhost-scsi target working .. 5

Test Case 1: SPDK vhost-scsi core scaling ... 8

Test Case 2: Rate Limiting IOPS per VM .. 12

Test Case 3: Performance per NVMe Drive .. 15

Test Case 4: Maximum IOPS ... 19

Summary .. 22

SPDK vhost-scsi Performance Report

Release 17.07

4

Audience and Purpose

This report is intended for people who are interested in looking at SPDK vhost-scsi performance and its

comparison to Linux kernel vhost-scsi. It provides performance and efficiency information between

SPDK vhost-scsi and Linux Kernel vhost-scsi software stacks under various test cases.

The purpose of reporti g these tests is ot to i ply a si gle orre t approa h, ut rather to pro ide a
baseline of well-tested configurations and procedures with repeatable and reproducible results. This

report can also be viewed as information regarding best known method/practice when performance

testing SPDK vhost-scsi stack.

Test setup

Intel® Server board S2600WF populated with 5x PCIe Gen3.0 x8 Switches was used which enabled to

hook up to as many as 24x NVMe drives. Following are the configuration details listed regarding the

platform:

Hardware Configuration

Item Description

Server Platform Intel® Server Board S2600WF

CPU Intel® Xeon® Platinum 8180 Processor (38.5MB L3, 2.50 GHz)

https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-

Cache-2_50-GHz

Number of cores 28, number of threads 56

Memory Total 192 GBs over 12 channels @ 2667 MHz

Operating System Ubuntu 16.04.1 LTS

BIOS SE5C620.86B.01.00.0511.051220170820

Linux kernel version 4.11.0 (built from kernel.org)

Qemu version 2.9 with vhost-user scsi support

Libvirt version 3.0.0

SPDK version SPDK 17.07 (3bfecec994)

VM OS CentOS 7 (3.10.0 kernel)

Storage 24x Intel® OptaneTM P4800x 375GB (FW:E2010311)

BIOS settings

Item Description

BIOS VT-d enabled

Hyper threading Disabled

CPU Power and Performance Policy <Performance>

CPU C-state No Limit

CPU P-state Enabled

Enhanced Intel® Speedstep® Tech Enabled

https://ark.intel.com/products/89014/Intel-Server-Board-S2600WF0
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz

SPDK vhost-scsi Performance Report

Release 17.07

 5

Turbo Boost Enabled

Introduction to SPDK vhost-scsi target

SPDK vhost is a userspace target designed to extend the performance efficiencies of SPDK into

QEMU/KVM virtualization environments. This SPDK vhost-scsi target presents a broad range of SPDK-

managed block devices into virtual machines. SPDK team has leveraged existing SPDK SCSI layer, DPDK

vhost library, QEMU vhost-scsi and vhost-user functionality in order to create this high performance

SPDK userspace vhost-scsi target.

SPDK vhost-scsi target working

QEMU setups vhost-scsi target via UNIX domain socket. Vhost-scsi target transfers data to/from quest

VM via shared memory. QEMU pre-allocates huge pages for guest VM to enable direct DMA by vhost-

scsi target. Guest VM submits I/O directly to vhost-scsi target via virtqueues in shared memory as shown

in Figure 1. It should be noted that there is no QEMU intervention during the submission I/O process.

Vhost-scsi target then completes I/O to guest VM via virtqueues in shared memory. There is a

completion interrupt sent using eventfd which requires system call and guest VM exits.

Figure 1: SPDK vhost-scsi Architecture

SPDK vhost-scsi Performance Report

Release 17.07

6

This report is prepared to uncover performance comparisons between traditional interrupt-driven

kernel vhost-scsi vs. accelerated polled-mode driven SPDK vhost-scsi under 4 different test cases using

local NVMe storage.

SPDK vhost-scsi Performance Report

Release 17.07

 7

SPDK vhost-scsi Performance Report

Release 17.07

8

Test Case 1: SPDK vhost-scsi core scaling

This test case was performed in order to understand aggregate VM performance with SPDK vhost-scsi

I/O core scaling. We ran 48 Virtual Machines, each running FIO workloads:

 4KB 100% Random Read

 4KB 100% Random Write

 4KB Random 70% Read 30% Write

We increased the number of CPU cores used by the SPDK vhost-scsi target to process I/O from 1 to 2 to

4 and 8 and measured the throughput (in IOPS) and latency. FIO was run in each VM in a client-server

mode which helped us kick FIO across all 48 VMs at same time. Results in the table represent aggregate

performance (IOPS & avg. latency) seen across all the VMs.

Item Description

Test Case Test SPDK vhost-scsi target I/O core scaling performance

Test configuration FIO Configuration:

FIO-2.1.10, each VM running block I/O to a single vhost-user-scsi backend device.

VM Configuration:

 Each VM was configured with 2GB Memory, 1 vCPU and CentOS 7 OS.

 VM’s CPUs utilized cores which were not running SPDK vhost-user-scsi process.

 Total 48 VMs. Each VM has a single vhost-scsi device which is one of two equal

partitions of an Optane drive. 24 Optanes x 2 partitions/Optane = 48 partitions.

SPDK vhost-scsi target Configuration:

 1 core: 0x1 Reactor mask

 2 core: 0x3 Reactor mask

 4 core: 0xF Reactor mask

 8 core: 0xFF Reactor mask

Kernel vhost-scsi Configuration:

 N/A in this test case

FIO config ioengine=libaio

direct=1

rw=randrw

rwmixread= 100 (100% reads), 70 (70% reads 30% writes), 0 (100% writes)

thread=1

norandommap=1

time_based=1

runtime=300s

ramp_time=10s

bs=4K

iodepth=32

numjobs=1

[test]

filename=/dev/sda

#sda is vhost-scsi device (Optane drive partition)

SPDK vhost-scsi Performance Report

Release 17.07

 9

Test Result: 4K 100% Random Read IOPS

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core 0.78 M 1920

2 cores 1.82 M 820

4 cores 3.65 M 420

8 cores 7.3 M 210

Figure 2: SPDK vhost-scsi target I/O core scaling: IOPS vs. Latency while running 4KB 100% Random read workload

Test Result: 4K 100% Random Writes IOPS

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core 0.79 M 1920

2 cores 1.77 M 830

4 cores 3.6 M 425

8 cores 7.1 M 213

SPDK vhost-scsi Performance Report

Release 17.07

10

Figure 3: SPDK vhost-scsi target I/O core scaling: IOPS vs. Latency while running 4KB 100% Random write workload

Test Result: 4K 70% Read 30% Write IOPS

of Cores Throughput (IOPS)

Avg. Latency (usec)

1 core 0.78 M 1920

2 cores 1.75 M 840

4 cores 3.6 M 425

8 cores 7.1 M 213

SPDK vhost-scsi Performance Report

Release 17.07

 11

Figure 4: SPDK vhost-scsi tagret I/O core scaling: IOPS vs. Latency while running 4KB Random 70% read 30% write workload

Conclusion:

1. For all the 3 workloads, throughput scales up and latency decreases almost linearly with the scaling

of SPDK vhost-scsi target I/O cores.

SPDK vhost-scsi Performance Report

Release 17.07

12

Test Case 2: Rate Limiting IOPS per VM

This test case was geared towards understanding how many VMs can be supported with a given number

of IOPS per vhost-scsi device. Both read and write IOPS were rate limited for each vhost-scsi device on

each of the VMs and then VM density was compared between SPDK & Linux Kernel.

20K IOPS were chosen as the rate limiter using linux cgroups. Each individual VM was running FIO with

the following workloads:

 4KB 100% Random Read

 4KB 100% Random Write

Results in the table represent aggregate performance (IOPS & CPU %) seen across all the VMs.

Item Description

Test Case Test Rate Limiting IOPS/VM to 20000 IOPS

Test configuration FIO Configuration:

FIO-2.1.10, each VM running block I/O to a single vhost-user-scsi backend device.

VM Configuration:

 24, 48 and 96 VMs tested

 Each VM was configured with 2GB Memory, 1 vCPU and CentOS 7 OS.

 VM’s CPUs utilized cores which were not running SPDK vhost-user-scsi process.

 Total 48 VMs. Each VM has a single vhost-scsi device which is one of two equal

partitions of an Optane drive. 24 Optanes x 2 partitions/Optane = 48 partitions.

 For the 48 VMs case, there were total 46 cores available to allocate as 10 cores

were running vhost-scsi process. Each of the vCPUs for 44 VMs were run on

separate physical cores on the system. The remaining 4 VMs shared each of their

vCPUs with 2 physical cores on the system.

Note: While running 96 VMs, Hyper Threading was enabled to allow each VM to run on

each individual logical core on the system. Also for 96 VMs case, 4 partitions were

created per Optane drive. 24 Optanes x 4 partitions/Optane = 96 partitions. Each VM

with single vhost-scsi device which is one of four equal partition of Optane drive.

 vhost-scsi device on each of the VMs was throttled to run 20000 IOPS (read and

write) using:

 echo "8:0 20000" > /sys/fs/cgroup/blkio/blkio.throttle.read_iops_device

 echo "8:0 20000" > /sys/fs/cgroup/blkio/blkio.throttle.write_iops_device

SPDK vhost-scsi target Configuration:

 10 vhost-scsi SPDK cores.

 0x3F000000F. This was chosen a NUMA optimized config which allows the compute

and storage I/O to run on the same socket and in-turn avoids cross-socket

transactions per I/O.

Kernel vhost-scsi Configuration:

 Used cgroups to let first 10 cores run vhost-scsi process

Note: We did not explore NUMA optimization with kernel vhost-scsi

SPDK vhost-scsi Performance Report

Release 17.07

 13

Command line ioengine=libaio

direct=1

rw=randrw

rwmixread= 100 (100% reads), 0 (100% writes)

thread=1

norandommap=1

time_based=1

runtime=300s

ramp_time=10s

bs=4K

iodepth=1

numjobs=1

[test]

filename=/dev/sda

#sda is vhost-scsi device (Optane drive partition)

Test Result: 4K 100% Random Read IOPS

of VMs Throughput

Kernel (IOPS)

Throughput

SPDK (IOPS)

CPU % util. VM

(Kernel)

CPU % util. VM

(SPDK)

24 VMs 480000 480000 85 35

48 VMs 730000 960000 90 35

96 VMs 700000 1700000 90 35

Figure 5: Kernel vhost-scsi vs. SPDK vhost-scsi target : 4KB 100% Random reads, IOPS vs. % CPU Utilization with increasing no. of

VMs while rate limiting IOPS

SPDK vhost-scsi Performance Report

Release 17.07

14

Test Result: 4K 100% Random Writes IOPS

of VMs Throughput

Kernel (IOPS)

Throughput

SPDK (IOPS)

CPU % util. VM

(Kernel)

CPU % util. VM

(SPDK)

24 VMs 480000 480000 85 35

48 VMs 700000 960000 90 35

96 VMs 700000 1700000 90 35

Figure 6: Kernel vhost-scsi vs. SPDK vhost-scsi target: 4KB 100% Random writes, IOPS vs. % CPU Utilization with increasing no. of

VMs while rate limiting IOPS

Conclusion:

1. The VM was running a low queue depth (QD=1) workload while running 4KB 100% read or

4KB 100% write to the vhost-scsi device. It was observed that when VMs were using the SPDK

vhost-scsi target, the I/O processing consumes approximately 35% of the virtual machines

CPU cycles. However, with the kernel vhost-scsi the VMs are using as much as 90% of their

CPU cycles for I/O processing. So using vhost-scsi with SPDK, one would get plenty of head

room on the VMs for other value add tasks as compared to vhost-scsi with Kernel.

SPDK vhost-scsi Performance Report

Release 17.07

 15

Test Case 3: Performance per NVMe Drive

This test case was performed in order to understand performance and efficiency of the vhost-scsi

process using SPDK vs. Linux Kernel with single NVMe drive on 2 VMs. Each VM has a single vhost-scsi

device which is one of two equal partitions of an NVMe drive.

Results in the table represent performance (IOPS, avg. latency & CPU %) seen from the VM. The VM was

running FIO with following workloads:

 4KB 100% Random Read

 4KB 100% Random Write

 4KB Random 70% Read 30% Write

Item Description

Test Case Test storage performance per VM using vhost-scsi

Test configuration FIO Configuration:

FIO-2.1.10, each VM running block I/O to a single vhost-user-scsi backend device.

VM Configuration:

 2 VMs tested

 Each VM was configured with 2GB Memory, 1 vCPU and CentOS 7 OS.

 Each VM has a single vhost-scsi device which is one of two equal partitions of

an Optane drive.

SPDK vhost-scsi target Configuration:

 Vhost-scsi process was run on separate individual physical core.

 0x1 Reactor Mask

Kernel vhost-scsi Configuration:

 Vhost-scsi process was run on separate individual physical core using cgroups.

Command line ioengine=libaio

direct=1

rw=randrw

rwmixread= 100 (100% reads), 70 (70% reads, 30% writes) & 0 (100% writes)

thread=1

norandommap=1

time_based=1

runtime=300s

ramp_time=10s

bs=4K

iodepth=32

numjobs={1, 8 and 32}

[test]

filename=/dev/sda

#sda is vhost-scsi device (1x Optane drive)

SPDK vhost-scsi Performance Report

Release 17.07

16

Test Result SPDK

Access Pattern
Queue

Depth
Throughput (IOPS) Avg. Latency (usec)

4K 100% Random Reads 1 163000 12.27

4K 100% Random Reads 8 584000 27.40

4K 100% Random Reads 32 584000 109.59

4K 100% Random Writes 1 149500 13.38

4K 100% Random Writes 8 518000 30.89

4K 100% Random Writes 32 552000 115.94

4K 70% Reads 30% Writes 1 156000 12.82

4K 70% Reads 30% Writes 8 482000 33.20

4K 70% Reads 30% Writes 32 505000 126.73

Test Result Linux Kernel

Access Pattern
Queue

Depth
Throughput (IOPS) Avg. Latency (usec)

4K 100% Random Reads 1 92000 21.74

4K 100% Random Reads 8 305000 52.46

4K 100% Random Reads 32 378000 169.31

4K 100% Random Writes 1 91000 21.98

4K 100% Random Writes 8 291000 54.98

4K 100% Random Writes 32 371000 172.51

4K 70% Reads 30% Writes 1 93000 21.51

4K 70% Reads 30% Writes 8 303000 52.81

4K 70% Reads 30% Writes 32 380000 168.42

SPDK vhost-scsi Performance Report

Release 17.07

 17

Figure 7: Kernel vhost-scsi vs. SPDK vhost-scsi target: 4KB 100% Random reads, IOPS vs.Latency per VM with increasing queue

depth

Figure 8: Kernel vhost-scsi vs. SPDK vhost-scsi target: 4KB 100% Random writes, IOPS vs. Latency per VM with increasing queue

depth

SPDK vhost-scsi Performance Report

Release 17.07

18

Figure 9: Kernel vhost-scsi vs. SPDK vhost-scsi target: 4KB Random 70% reads 30% writes, IOPS vs.Latency per VM with

increasing queue depth

Conclusion:

1. SPDK vhost-scsi has lower latency and higher througput at all the queue depths (1, 8 and 32)

against Kernel vhost-scsi

SPDK vhost-scsi Performance Report

Release 17.07

 19

Test Case 4: Maximum IOPS

This test case was performed in order to understand maximum IOPS capability of our underlying system

while running VMs using vhost-scsi with SPDK vs. Linux Kernel and at the same utilizing all the cores in

the system. In order to do so, 10 physical cores were assigned for vhost-scsi process and remaining 46

cores for the 48 VMs vCPU. Results in the table represent aggregate IOPS across all the VMs.

Item Description

Test Case Test Maximum IOPS of underlying system with given number of VMs

Test configuration FIO-2.1.10, each VM running block I/O to a single vhost-user-scsi backend device.

vhost-user-scsi process using SPDK.

 48 VMs. Both Kernel and SPDK vhost-scsi implementations were run using 10

separate cores, running vhost-scsi process.

 SPDK: Reactor mask: 0x3F000000F

 Kernel: Used cgroups to let first 10 cores run vhost-scsi process.

 Each VM was configured with 2GB Memory, 1 vCPU and CentOS 7 OS. Each vCPU

utilized a core which was not running the vhost-scsi process.

 There were total 46 cores available to allocate as 10 cores were running vhost-scsi

process. Each of the vCPUs for the 44 VMs were ran on separate physical cores on

the system. The remaining 4 VMs shared each of their vCPUs with 2 physical cores

on the system.

FIO Configuration:

FIO-2.1.10, each VM running block I/O to a single vhost-user-scsi backend device.

VM Configuration:

 48 VMs tested. Both Kernel and SPDK vhost-scsi implementations were run using 10

separate cores, running vhost-scsi process

 Each VM was configured with 2GB Memory, 1 vCPU and CentOS 7 OS.

 There were total 46 cores available to allocate as 10 cores were running vhost-scsi

process. Each of the vCPUs for the 44 VMs were ran on separate physical cores on

the system. The remaining 4 VMs shared each of their vCPUs with 2 physical cores

on the system.

SPDK vhost-scsi target Configuration:

 10 vhost-scsi SPDK cores.

 0x3F000000F. This was chosen a NUMA optimized config which allows the compute

and storage I/O to run on the same socket and in-turn avoids cross-socket

transactions per I/O.

Kernel vhost-scsi Configuration:

 Used cgroups to let first 10 cores run vhost-scsi process.

Note: We did not explore NUMA optimization with kernel vhost-scsi

SPDK vhost-scsi Performance Report

Release 17.07

20

Command line ioengine=libaio

direct=1

rw=randrw

rwmixread= 100 (100% reads), 70 (70% reads, 30% writes) & 0 (100% writes)

thread=1

norandommap=1

time_based=1

runtime=300s

ramp_time=10s

bs=4K

iodepth=32

numjobs=1

[test]

filename=/dev/sda

#sda is vhost-scsi device (Optane drive partition)

Test Result SPDK

Access Pattern Throughput (IOPS)

Avg. Latency (usec) CPU % util. on VM

4K 100% Random Reads 9.5 M 161 100

4K 100% Random Writes 9.3 M 164 100

4K 70% Reads 30%

Writes

9.5 M 159 100

Test Result Linux Kernel

Access Pattern Throughput (IOPS)

Avg. Latency (usec) CPU % util. on VM

4K 100% Random Reads 2.47 M 624 50

4K 100% Random Writes 2.47 M 627 50

4K 70% Reads 30%

Writes

2.53 M 602 50

SPDK vhost-scsi Performance Report

Release 17.07

 21

Figure 10: Kernel vhost-scsi vs. SPDK vhost-scsi target: IOPS vs. Avg. Latency for various I/O workloads using 10 vhost-scsi cores

Conclusion:

1. SPDK vhost-scsi can achieve up to 3.8x more IOPs and up to 74 % lower latency when compared

to Kernel vhost-scsi.

2. It was also observed that the % CPU utilization per VM when using SPDK vhost-scsi target was

100% vs. 50% when using Kernel vhost-s si. VM’s ru i g ith kernel vhost-scsi could not do

more than 50% of the CPU because the vhost-scsi I/O cores were seen running at 100% CPU

which indicated CPU bottleneck with 10 kernel vhost-scsi I/O cores.

Note: Performance comparisons that were performed in this test case were done in such a way to

be apples to apples while using 10 vhost-scsi cores (both with SPDK vs. Kernel)

SPDK vhost-scsi Performance Report

Release 17.07

22

Summary

This report compared performance results while running vhost-scsi using traditional interrupt-driven

kernel vhost-scsi against the accelerated polled-mode driven SPDK implementation. Various local

ephemeral configurations were demonstrated, including rate limiting IOPS, performance per VM, and

maximum performance from underlying system when comparing kernel vs. SPDK vhost-scsi target

implementations. This report provides information regarding methodologies and practices while

benchmarking vhost-scsi using SPDK, as well as, the Linux Kernel. It should be noted that the

performance data showcased in this report is based on specific hardware and software configurations

and that performance results may vary depending on different hardware and software configurations.

SPDK vhost-scsi Performance Report

Release 17.07

 23

DISCLAIMERS

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

For more information go to http://www.intel.com/performance

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute

the instructions in the correct sequence. AES-NI is available on select Intel® processors. For availability, consult your

reseller or system manufacturer. For more information, see http://software.intel.com/en-us/articles/intel-

advanced-encryption-standard-instructions-aes-ni/

Intel and the Intel logo are trademarks of Intel Corporation in the US and other countries

Copyright © 2017 Intel Corporation. All rights reserved.

§

