
SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Kevin O’Leary
Intel

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

02 Intel Inspector features

03 Summary

01 Intel Inspector overview

2

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Intel® Trace Analyzer
& Collector (ITAC)

Intel APS
Intel MPI Tuner

Intel®
VTune™ Profiler

Intel®
Advisor

Intel®
VTune™ Profiler

Tune MPI

Optimize
bandwidth

Thread

Y

N

YN

Y N
Memory

Bandwidth
Sensitive

?

Vectorize

Cluster
Scalable

?

Effective
threading

?

3

Intel® Inspector
Find any

correctness errors
in your threads and

memory!

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 4

Size and complexity of
applications is growing

Reworking defects is 40%-50%
of total project effort

Correctness tools find defects
during development prior to

shipment

Reduce time, effort, and
cost to repair

Find errors earlier when they are less expensive to fix

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Correctness Tools Increase ROI By 12%-21%1

▪ Errors found earlier are less expensive to fix

▪ Several studies, ROI% varies, but earlier is cheaper

Diagnosing Some Errors Can Take Months

▪ Races & deadlocks not easily reproduced

▪ Memory errors can be hard to find without a tool

Debugger Integration Speeds Diagnosis

▪ Breakpoint set just before the problem

▪ Examine variables & threads with the debugger

Debugger Breakpoints

Diagnose in hours instead of months

Intel® Inspector dramatically sped up
our ability to track down difficult to
isolate threading errors before our
packages are released to the field.

Peter von Kaenel, Director,
Software Development,

Harmonic Inc.
1 Cost Factors – Square Project Analysis

CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CyLab
NIST: National Institute of Standards & Technology : Square Project Results

http://intel.ly/inspector-xe

5

http://intel.ly/inspector-xe

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 6

Find and eliminate errors
▪ Memory leaks, invalid access…
▪ Races & deadlocks
▪ Persistence memory issues
▪ C, C++, C#, F# and Fortran (or a mix)

Simple, Reliable, Accurate
▪ No special recompiles

Use any build, any compiler1

▪ Analyzes dynamically generated or linked code
▪ Inspects 3rd party libraries without source

▪ Productive user interface + debugger integration
▪ Command line for automated regression analysis

Fits your existing process

Clicking an error instantly displays source
code snippets and the call stack

1That follows common OS standards.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Inspector tracks all memory allocations and threading APIs
using a binary instrumentation tool called Pin

▪ Dynamic instrumentation system provided by Intel (http://www.pintool.org)

▪ Injected code used for observing the behaviour of the program

▪ Source modification/recompilation is not needed

7

Operating
System

Application

Thread Checking
+ Memory Checking

Pin

Inspector

Results

▪ OS has to be in the support list

▪ One process is analysed at a time

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 8

Recommended Methodology

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 9

1That follows common OS standards.

Intel® Inspector
▪ Dynamic instrumentation

▪ No special builds

▪ Any compiler1

▪ Source not required

Memory Errors Threading Errors

• Invalid Accesses
• Memory Leaks
• Uninit. Memory Accesses

• Races
• Deadlocks
• Cross Stack References

Find errors earlier with less effort

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 10

Memory leak
• a block of memory is allocated
• never deallocated
• not reachable (there is no pointer available to

deallocate the block)
• Severity level = (Error)

Memory not deallocated
• a block of memory is allocated
• never deallocated
• still reachable at application exit (there is a pointer

available to deallocate the block).
• Severity level = (Warning)

Memory growth
• a block of memory is allocated
• not deallocated, within a specific time segment

during application execution.
• Severity level = (Warning)

// Memory leak

char *pStr = (char*) malloc(512);
return;

// Memory not deallocated

static char *pStr = malloc(512);
return;

// Memory growth

// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 11

Uninitialized memory access
• Read of an uninitialized memory location

Invalid Memory Access
• Read or write instruction references memory that is

logically or physically invalid

Kernel Resource Leak
• Kernel object handle is created but never closed

GDI Resource Leak
• GDI object is created but never deleted

// Uninitialized Memory Access

void func()
{

int a;
int b = a * 4;

}

// Invalid Memory Access

char *pStr = (char*) malloc(20);
free(pStr);
strcpy(pStr, "my string");

// Kernel Resource Leak

HANDLE hThread = CreateThread(0,
8192, work0, NULL, 0,

NULL);
return;

// GDI Resource Leak

HPEN pen = CreatePen(0, 0, 0);
return;

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 12

Analyzed as software runs
• Data (workload) -driven execution

• Program needs to be multi-threaded

• Diagnostics reported incrementally as they occur

Includes monitoring of:
• Thread and Sync APIs used

• Thread execution order

• Scheduler impacts results

• Memory accesses between threads

Analysis scope
• Native code: C, C++, Fortran

• Managed or mixed code: C# (.NET 2.0 to 3.5, .NET 4.0 with limitations)

• Code path must be executed to be analyzed

• Workload size doesn’t affect ability to detect a problem

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Thread 1 Thread 2
Shared
Counter

0

Read count  0

Increment 0

Write count ➔ 1

Read count  1

Increment 1

Write count ➔ 2

Thread 1 Thread 2
Shared
Counter

0

Read count  0

Read count  0

Increment 0

Increment 0

Write count ➔ 1

Write count ➔ 1

Correct Incorrect

13

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 14

1. Select Analysis
Type

2. Click Start

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 15

Problem States:
New, Not Fixed,
Fixed, Confirmed,
Not a problem,
Deferred,
Regression

Filters let you
focus on a
module, or
error type, or
just the new
errors or…

Code
snippets
displayed
for
selected
problem

Select a
problem
set

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 16

Source code
locations
displayed for
selected
problem

Call
Stack

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 17

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 18

State Description

New Detected by this run

Not Fixed Previously seen error detected by this run

Not a Problem Set by user (tool will not change)

Confirmed Set by user (tool will not change)

Fixed Set by user (tool will change)

Regression Error detected with previous state of “Fixed”

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 19

(1) Filter – Show only
one source file

Before – All Errors After – Only errors from one source file

Tip: Set the “Investigated” filter to “Not investigated” while investigating problems.
This removes from view the problems you are done with, leaving only the ones left to investigate.

(2) Error count drops

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Speed diagnosis of difficult to find heap errors
20

Memory usage graph
plots memory growth

Select a cause of
memory growth

As your app is running…

See the code snippet
& call stack

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Send results file to developer to analyze with the UI
21

inspxe-cl is the command line:

– Windows: C:\Program Files\Intel\Inspector\bin64\inspxe-cl.exe

– Linux: /opt/intel/inspector/bin64/inspxe-cl

Help:

inspxe-cl –help

Set up command line with GUI

Command examples:

1.inspxe-cl -collect-list

2.inspxe-cl –collect ti2 -- MyApp.exe

3.inspxe-cl –report problems

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 22

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 23

3 debugging modes
supported
1. Analyze without

debugger
2. Enable debugger

when problem
detected

3. Start analysis
when a debug
breakpoint is hit.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Save time. Find and diagnose errors with less effort.

24

Break into the debugger just before the error occurs.

Examine the variables and threads.

Diagnose the problem.

Memory Errors Threading Errors

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Find and diagnose errors with less effort.

25

Precise, easy to edit, team shareable.

Choose which stack frame to
suppress.

Eliminate the false, not the real errors.

Precise Error Suppression Pause/Resume Collection

Speed-up analysis by
limiting its scope.

Analyze only during the execution
of the suspected problem.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 26

Memory
Analysis

Threading
Analysis

View Context of Problem
Stack
Multiple Contributing Source Locations

✓

✓

✓

✓

Collapse multiple “sightings” to one error
(e.g., memory allocated in a loop, then leaked is 1 error)

✓ ✓

Suppression, Filtering, and Workflow Management ✓ ✓

Visual Studio* Integration (Windows*) ✓ ✓

Command line for automated tests ✓ ✓

Time Line visualization ✓ ✓

Memory Growth during a transaction ✓

Trigger Debugger Breakpoint ✓ ✓

Easier & Faster Debugging of Memory & Threading Errors

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 28

▪ When to flush stored data out of cache hierarchy?

▪ Memory store does not become persistent immediately

▪ Data gets persistent only after it is out of cache and arrives at the memory
subsystem

▪ Missing or incorrect cache flushes can leave data in inconsistent or
unrecoverable state in case of power failure or system crash

▪ Excessive cache flushes hurt performance

▪ Testing and existing development tools do not find missing/incorrect/
excessive cache flushes

Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries.
*Other names and brands may be claimed as the property of others. Copyright © 2018, Intel Corporation.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 29

Overview

▪ A run-time tool developers can use to detect programming errors in
Persistent Memory programs. In addition to cache flush misses, this tool
detects:

• Redundant cache flushes and memory fences

• Out-of-order persistent memory stores

• Incorrect undo logging for the Persistent Memory Development Kit (PMDK)

• You can use the Intel® Inspector GUI to visualize the data collected

Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries.
*Other names and brands may be claimed as the property of others. Copyright © 2018, Intel Corporation.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 30

Modernize your Code

▪ To get the most out of your hardware, you need to modernize your code with
vectorization and threading.

▪ Taking a methodical approach such as the one outlined in this presentation,
and taking advantage of the powerful tools in Intel® oneAPI, can make the
modernization task dramatically easier.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

