
Storage Performance Development Kit (SPDK)
Persistent Memory Development Kit (PMDK)

Intel® VTune™ Profiler
Virtual Forum

Andy Rudoff, Piotr Balcer

Intel® Corporation

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

Agenda

02 Direction and goals of PMDK
What are we doing and why

03 Current state of the project
What have we done so far

04 A look into the future
What is next in our journey

01 Brief historical overview
How we came to be

2

Storage Performance Development Kit (SPDK)
Persistent Memory Development Kit (PMDK)

Intel® VTune™ Profiler
Virtual Forum

01
Brief historical overview

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 4

Back When We Heard:
“Persistent memory is coming…”

Byte-addressable, use it like memory

▪ But it is persistent

Actually had been shipping from some vendors

▪ Later named NVDIMM-N

▪ Small capacity 16-32 GB

▪ All access was through a driver interface when I first started looking at them

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 5

Persistent memory First Steps…
Step 1: how should it be exposed to applications

▪ How to name it, re-attach to it

▪ How to enforce permissions

▪ How to back it up, manage it

▪ And some less technical goals, but just as important

– Represent the interests of the ISVs

– Avoid vendor lock-in to a product-specific API

– As an Intel employee, acknowledge that Intel-specific doesn’t work here

Headed to SNIA…

Persistent Memory

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

Storage File Memory

Load/Store

Management Library

Management UI

Standard

File API

Mgmt.

PM-Aware
File System

MMU

Mappings

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 6

Ancient history
June 2012

▪ Formed the NVM Programming TWG

▪ Immediate participation from key OSVs, ISVs, IHVs

January 2013

▪ Held the first PM Summit (actually called “NVM Summit”)

July 2013

▪ Created first GitHub thought experiments (“linux-examples”)

January 2014

▪ TWG published rev 1.0 of the NVM Programming Model

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 7

SNIA Model Success… and then what?!
Open a pmem file on a pmem-aware file system

Map it into your address space

Okay, you’ve got a pointer to 3TB of memory, have fun!

▪ The model is necessary, but not sufficient for an easy to program resource

Gathering requirements yielded fairly obvious top priorities:

▪ Need a way to track pmem allocations (like malloc/free, but pmem-aware)

▪ Need a way to make transactional updates

▪ Need a library of pmem-aware containers: lists, queues, etc.

▪ Need to make pmem programming not so error-prone

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 8

The first few tries

// volatile
char *ptr = malloc(size);

// persistent
char *ptr = pm_malloc(size);

// crash before using ptr => pmem leak!

NAME
libpmemalloc -- Persistent Memory malloc-like library

SYNOPSIS
#include <pmemalloc.h>
cc ... -lpmemalloc

void *pmemalloc_init(const char *path, size_t size);
void *pmemalloc_static_area(void *pmp);
void *pmemalloc_reserve(void *pmp, size_t size);
void pmemalloc_persist(void *pmp, void **parentp_,

void *ptr_);
void pmemalloc_onactive(void *pmp, void *ptr_,

void **parentp_, void *nptr_);
void pmemalloc_onfree(void *pmp, void *ptr_,

void **parentp_, void *nptr_);
void pmemalloc_activate(void *pmp, void *ptr_);
void pmemalloc_free(void *pmp, void *ptr_);
void pmemalloc_check(const char *path);

PMEM(pmp, ptr_)

Storage Performance Development Kit (SPDK)
Persistent Memory Development Kit (PMDK)

Intel® VTune™ Profiler
Virtual Forum

02
Direction and goals of PMDK

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

Solving real problems using persistent memory
PMEM is multidimensional. It’s both memory and storage.

▪ As memory, it’s more affordable and bigger than DRAM.

– Enabling previously impossible (or impossibly expensive) use-cases on
multi-terabyte heterogenous memory systems.

▪ As storage, it’s an order of magnitude faster compared to other solutions.

– Enabling ultra-low latency retrievals and transactions, potentially also
reducing overall memory cost by bypassing the cache.

▪ As both, it’s unique.

– Enabling new designs that require new unique solutions.

10

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 11

Persistent memory as memory
• Persistent Memory is bigger, but slower than DRAM.

• PMEM is one kind of memory that can be present in a heterogeneous
memory system.

• Applications typically assume that all memory is the same.

• The OS kernel can be made to emulate this status quo (Memory
Tiering).

• … but, even today, that’s simply not the case.

• NUMA, High-Bandwidth Memory, PMEM and more.

• PMDK aids applications is intelligent and scalable memory placement.

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 12

Persistent memory as storage
• Persistent Memory is smaller, but faster than traditional storage.

• This is not unprecedented. SSDs were a similar disruption.

• Techniques developed then, make sense now.

• Storage caching & tiering, separating data from write-ahead logs, …

• Thanks to DAX, Persistent Memory can also reduce the reliance on page
cache in applications that use memory-mapped I/O.

• This reduces cost and guarantees stable latency unhindered by page faults.

• PMDK aids in modifications of existing storage solutions.

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 13

Persistent memory as both storage and memory
• Database storage engine design is essentially a study on how to mask the

large difference between storage and memory.

• We don’t have to do that any more... sort of :)

• Persistent Memory is a new tier that bridges the gap between Memory and
Storage.

• Enables new techniques that reduce access latency and write amplification.

• Fault tolerant algorithms still need to log data, but can now do so using
a single load/store instructions at cacheline granularity.

• PMDK aids in using novel techniques that merge memory and storage.

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 14

General directions and goals
“Make easy things easy and hard things possible”

- Larry Wall, about Perl programming language.

• PMDKs goal was, is, and always will be making Persistent Memory
programming easy.

• But also enable solving complex and possibly challenging problems
commonly encountered by users.

• This is done through a multi-layered stack of solutions, with each building
block adding new functionality on top of the previous one.

• Applications can choose their desired level of abstraction.

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 15

Durability, Consistency, reliability, Performance
• Performance isn’t everything…

• Things that are fast, and superficially appear to work, are not only not
useful, but actively harmful.

• PMDK’s primary focus is on making sure that
the functionality it provides is reliable.

• We run thousands of tests, some with
novel techniques, like byte-level crash
consistency checking.

• But at the same time, we don’t
neglect perform.

100.00%

167.49%
199.07%

377.12%
351.09%

511.33% 510.59%

549.66%

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

libpmemobj relative performance across versions

(B-Tree benchmark)

Storage Performance Development Kit (SPDK)
Persistent Memory Development Kit (PMDK)

Intel® VTune™ Profiler
Virtual Forum

03
Current state of the project

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 17

PMDK Libraries

Support for

volatile
memory usage

Low level support for

local persistent

memory

libpmem

Low level support for
remote access to

persistent memory

librpmem

NVDIMM

User
Space

Kernel
Space

Application

Load/Store
Standard
File API

pmem-Aware
File System

MMU
Mappings

PMDK

Interface to create arrays of

pmem-resident blocks, of

same size, atomically

updated

Interface for persistent memory

allocation, transactions and

general facilities

Interface to create a

persistent memory

resident log file

libpmemblklibpmemlog libpmemobj

Transaction
Support

C++ C Java Python

Low-level support

LLPL (Java)
Low-Level

Persistent Library

memkind

pmemkv

vmemcache

http://pmem.io
https://github.com/pmem/pmdk

C++
Persistent
Containers

Language support
High Level Interfaces

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory

18

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory

Memory Mode

19

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 20

Memory Mode

• Not really a part of PMDK…

• … but it’s the easiest way to take advantage of Persistent Memory

• Memory is automatically placed in PMEM, with caching in DRAM

char *memory = malloc(sizeof(struct my_object));
strcpy(memory, “Hello World”);

When To Use
• modifying applications is not feasible
• massive amounts of memory is required (more TB)
• CPU utilization is low in shared environment (more VMs)

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory

libmemkind

21

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 22

libmemkind

• Explicitly manage allocations from PMEM, allowing for fine-grained control of
memory placement

struct memkind *pmem_kind = NULL;
size_t max_size = 1 << 30; /* gigabyte */

/* Create PMEM partition with specific size */
memkind_create_pmem(PMEM_DIR, max_size, &pmem_kind);

/* allocate 512 bytes from 1 GB available */
char *pmem_string = (char *)memkind_malloc(pmem_kind, 512);

/* deallocate the pmem object */
memkind_free(pmem_kind, pmem_string);

When To Use
• application can be modified
• different tiers of objects (hot, warm) can be identified
• persistence is not required

• Application can decide what type of memory to use for objects.

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory

libvmemcache

23

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 24

libvmemcache

• Seamless and easy-to-use LRU caching solution for persistent memory
Keys reside in DRAM, values reside in PMEM

• Designed for easy integration with existing systems

VMEMcache *cache = vmemcache_new();
vmemcache_add(cache, "/tmp");

const char *key = "foo";
vmemcache_put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];
ssize_t len = vmemcache_get(cache, key, strlen(key),

buf, sizeof(buf), 0, NULL);

vmemcache_delete(cache);

When To Use
• caching large quantities of data
• low latency of operations is needed
• persistence is not required

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory

libpmemkv

25

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 26

libpmemkv
• Local/embedded key-value datastore optimized for persistent memory.

Provides different language bindings and storage engines.

// add the given key-value pair
if (kv->put(argv[2], argv[3]) != status::OK) {

cerr << db::errormsg() << endl;
exit(1);

}
// lookup the given key and print the value
auto ret = kv->get(argv[2], [&](string_view value) {

cout << argv[2] << "=\"" << value.data() << "\"" << endl;
});
if (ret != status::OK) {

cerr << db::errormsg() << endl;
exit(1);

}

When To Use
• storing large quantities of data
• low latency of operations is needed
• persistence is required

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory
libpmemobj

27

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 28

libpmemobj
• Transactional object store, providing memory allocation, transactions, and

general facilities for persistent memory programming.

• Flexible and relatively easy way to leverage PMEM

When To Use
• direct byte-level access to objects is needed
• using custom storage-layer algorithms
• persistence is required

static void
doubly_linked_list_insert(pool_base &pop, persistent_ptr<doubly_linked_list_node> prev,

uint64_t data) {
transaction::run(pop, [&] {

auto node = make_persistent<doubly_linked_list_node>();
auto next = prev->next;
node->prev = prev; node->next = next; node->data = data;

prev->next = node;
next->prev = node;

});
}

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory

libpmem

29

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 30

libpmem

• Low-level library that provides basic primitives needed for persistent
memory programming and optimized memcpy/memmove/memset

When To Use
• modifying application that already uses memory mapped I/O
• other libraries are too high-level
• only need low-level PMEM-optimized primitives (memcpy etc)

void *pmemaddr = pmem_map_file("/mnt/pmem/data", BUF_LEN,
PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len, &is_pmem));

const char *data = "foo";
if (is_pmem) {

pmem_memcpy_persist(pmemaddr, data, strlen(data));
} else {

memcpy(pmemaddr, data, strlen(data));
pmem_msync(pmemaddr, strlen(data));

}
close(srcfd);
pmem_unmap(pmemaddr, mapped_len);

• The very basics needed for PMEM programming

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory

libpmem

libpmemobj

libpmemkvlibvmemcache

libmemkind

Memory Mode

31

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

Persistent Memory

NVDIMMs

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

mmap

Load/Store
Management Library

Management UI

Standard

File API

pmem-Aware
File System

MMU

Mappings

Hardware

CPU DDR

Block

PMDK

32

Programming Model Tools

pmempool
pmemcheck
pmreorderdaxio

daxctl

Persistence Inspector
VTune Amplifier

Valgrind

VTune Platform Profiler

FIO

MLC

pmembench
PMEMOBJ_LOG_LEVEL

Administration, Benchmark, Debug, Performance

ipmctl
ndctl

Storage Performance Development Kit (SPDK)
Persistent Memory Development Kit (PMDK)

Intel® VTune™ Profiler
Virtual Forum

04
A look into the future

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

Easy to use and powerful low-level persistence primitives

34

• We are introducing a new, improved, library for low-level programming.
libpmem2

• First-class OS abstraction | RAS APIs | Flexible mapping API

pmem2_config_new(&cfg);
pmem2_source_from_fd(&src, fd);
pmem2_config_set_required_store_granularity(cfg,​

PMEM2_GRANULARITY_PAGE);

pmem2_map(cfg, src, &map));

char *addr = pmem2_map_get_address(map);​
pmem2_get_memcpy(map)(addr, "hello, persistent memory", ...);

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 35

Easy to use Scalable solutions
• Concurrent programming is *hard*, and Persistent Memory only makes it

harder.

• But we are observing significant interest in this area.

• Two solutions:
improved atomic operations | built-in scalable data structures

• libpmemkv – PMDK’s Key-Value store, already supports scalable operations
out of the box.

• libpmemobj++ - new STL-like ordered and unordered map for PMEM.

• libpmemobj – new atomic operations for easier lock-free programming.

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 36

Better support for Heterogeneous memory systems
• Remember memkind example?

• It explicitly allocates memory from PMEM.

• … but does that matter?

• We expect that future hardware platforms will have a wide range of different
memory tiers available.

• Ideally, applications would be modified *once* and scale from
homogenous single-node systems to multi-node heterogeneous ones.

char *fast_string = (char *)memkind_malloc(KIND_FASTMEM, 512);
char *capc_string = (char *)memkind_malloc(KIND_CAPACITY, 512);

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum 37

Call to action
• “Solving real problems using persistent memory”

• Do you have a real problem that Persistent Memory can help solve?

• Great! Get involved and tell us about it.

• Do you think this is an interesting research opportunity?

• So do we! Get involved and share your ideas with the community.

• Want to just play around with examples?

• You can get started right now. No need for real hardware.

https://pmem.io/

SPDK, PMDK & Intel® VTune™ Profiler Virtual Forum

Programming Persistent Memory -- A Comprehensive
Guide for Developers

38

This is the first book to fully
explain the revolutionary
persistent memory technology
and how developers can fully
utilize it.

eBook is freely available online.

https://pmem.io/book/

https://pmem.io/book/

Storage Performance Development Kit (SPDK)
Persistent Memory Development Kit (PMDK)

Intel® VTune™ Profiler
Virtual Forum

	PMDK - State of the project
	Agenda
	Slide 3
	Back When We Heard: “Persistent memory is coming…”
	Persistent memory First Steps…
	Ancient history
	SNIA Model Success… and then what?!
	The first few tries
	Slide 9
	Solving real problems using persistent memory
	Persistent memory as memory
	Persistent memory as storage
	Persistent memory as both storage and memory
	General directions and goals
	Durability, Consistency, reliability, Performance
	Slide 16
	PMDK Libraries
	Slide 18
	Slide 19
	Memory Mode
	Slide 21
	libmemkind
	Slide 23
	libvmemcache
	Slide 25
	libpmemkv
	Slide 27
	libpmemobj
	Slide 29
	libpmem
	Slide 31
	Programming Model Tools
	Slide 33
	Easy to use and powerful low-level persistence primitives
	Easy to use Scalable solutions
	Better support for Heterogeneous memory systems
	Call to action
	Programming Persistent Memory -- A Comprehensive Guide for Developers
	Slide 39

