Persistent Memory

Hackathon and Workshop
SPDK/PMDK/VTune Summit

September 06, 2019

https://github.com/pmemhackathon/2019-09-06

-
SNIA.

Agenda

* Essential Background Slides, covering:
* Logistics: how you access persistent memory from your laptop
* The minimum you need to know about persistent memory
* Walk through the first example or two together

e Less talk, more hack...
* Work your way through the examples, in any order after the first three
* Helpers will be available in the room
* If FAQs come up, we’ll present answers to the entire room

-
SNIA.

Logistics: The webhackathon Tool

pmemuserl
devhost.pmemhackathon.io B
containers
pmemuserl —
Go to:

http://devhost.pmemhackathon. io

pmemuser2

Go to:
http://devhost.pmemhackathon. io

Username and Password handed out to each attendee

=
SN IA © 2019 SNIA. All Rights Reserved. 3

-
SNIA.

Webhackathon Basics

* List of examples presented on main page

* First three recommended to provide essential background

* We will walk through some of these together
* Pick examples that are interesting to you (task, language, etc)
e Use them as a starting point for your own code

 Menu provides:
* Access to these background slides
* Browse your copy of the repo (to download something you want to keep)
* Browser-based shell window for your container (for users who need it)

e Everything you do runs in your own container on the server
* With your own copy of the hackathon repo
* The path to the persistent memory is /pmem

 We're all friends here: please no denial-of-service attacks on server!

Essential pmem Programming Background

* Lots of ways to use pmem with existing programs
* Storage APlIs
* Libraries or kernels using pmem transparently
* Memory Mode

* This hackathon doesn’t cover the above (too easy!)
* We assume you want direct access to pmem
* We show code, but also concepts
* There are lots of paths you can take, these are just examples

-
SNIA.

he SNIA NVM Programming Model
fle memory

aoeds 4asn

9eds [au4d)

- — — ‘
Standard Standard Standard Load/
1 Raw Device File API File API Store
— -
{4 »
L Y DAX
(N
MMU
Mappings
v

=
SN IA © 2019 SNIA. All Rights Reserved.

Don’t Forget: The NVM Programming Model Starts With
Standard Storage APIs

4 D

- - - c

a A s a g

Standard Standard Standard Load/ -

1 Raw Device File API File API Store g

— - m

{4 »

_ 1 DAX)
(A 4 \

MMU ~

Mappings : 3

| o

(7]

°

)

(o]

)

=
\ © 2019 SNIA. All Rights Reserved. 7
SNIA :

L
SNIA.

A

A

y

3

Standard
Raw Device

— -

Standard
File API

Standard
File API

_
-

MMU
Mappings

S -

© 2019 SNIA. All Rights Reserved.

aoeds 4asn

9eds [au4d)

- - c

A A 4 3

Standard Standard Standard Load/ -

Raw Device File API File API Store g

Access]
{4 D AX"

N

MMU i ~

Mappings ! e

1 :

| B

¥ [7)

°

)

(o]

)

=
\ © 2019 SNIA. All Rights Reserved. 9
SNIA :

L
SNIA.

A

A

y

— -

3

Standard
Raw Device

Standard
File API

Standard
File API

_
-

MMU
Mappings

S -

© 2019 SNIA. All Rights Reserved.

aoeds 4asn

9eds [au4d)

10

Today’s focus

A a
Standard ‘ Load/
File API Store
/pmem
{4 DAX"
MMU
Mappings

SN IA l © 2019 SNIA. All Rights Reserved. 11

MoV

.Illllllllllllllllllll.lllllllllllllllllllllllllllllllllﬁ

L
SNIA.

-

How the Hardware Works

/ Core \

RN

/

Not shown:
MCA
ADR Failure Detection

CLWB + fence
-or- Custom

CLFLUSHOPT + fence Power fail protected domain
-or- indicated by ACPI property:
CLFLUSH CPU Cache Hierarchy
-or-
NT stores + fence
-or-
WBINVD (kernel only)

CPU CACHES

ADR Minimum Required
Or

WPQ Flush (kernel only) Power fail protected domain:
Memory subsystem

WPQ

DIMM

© 2019 SNIA. All Rights Reserved.

12

Application
Responsibilities:
-lushing 0

[Program Initialization J

Use standard API for flushing
(msync/fsync or FlushFileBuffers)

CLFLUSHOPT?
(CPU_ID provides info)

no

Use CLFLUSH for flushing

SNIA.

DAX mapped file?
(OS provides info)

CLWB?
(CPU_ID provides info)

considered persistent?
(ACPI provides info)

CPU caches

yes

yes

Stores considered persistent
when globally-visible

Use CLWB+SFENCE
for flushing

yes

Use CLFLUSHOPT+SFENCE
for flushing

[Program Initialization J

Application
Responsibilities:
Recovery yes

Dirty Shutdown?

Data set is potentially inconsistent.

Known Poison Blocks

yes no

Repair data set Normal Operation

-
SNIA.

Application
Responsibilities:
Consistency

open(..);
mmap(..);

strcpy(pmem, "Hello, World!");

msync(...); G (Cr35h

-
SNIA.

Result

“\0\o\0\o\o\o\o\e\o\o..."
"Hello, W\0\0\o\e\o\o..."
"\0\0\0\0\o0\o\o\oorld!\0"
"Hello, \0\0\0\o0\o0\oe\o\e"

"Hello, World!\0"

Application
Responsibilities:

Consistency
open(..);
pen(..) .
mmap(..);

p(..) 5
strcpy(pmem, "Hello, World!"); 3
pmem_persist(pmem, 14) ; @ (Cr3sh A

pmem_persist() may be faster, 5.

but is still not transactional

=
SN IA © 2019 SNIA. All Rights Reserved.

Result

“\0\o\0\o\o\o\o\e\o\o..."
"Hello, W\0\0\o\e\o\o..."
"\0\0\0\0\o0\o\o\oorld!\0"
"Hello, \0\0\0\o0\o0\oe\o\e"

"Hello, World!\0"

16

The Persistent Memory Development Kit
PMDK http://pmem.io

* PMDK is a collection of libraries
* Developers pull only what they need
* Low level programming support
* Transaction APlIs
* Fully validated
* Performance tuned.

* Open Source & Product neutral

=
SN IA © 2019 SNIA. All Rights Reserved. 17

http://pmem.io/

PMDK Libraries

Application

Standard Load/Store
File API
User

1 1
1 1

-

Transaction

Support v
MMU i
pmem-Aware Mappings |
libpmemobj File System i

\ libpmemlog

libpmemblk j
Kernel

Space
g A
. —
Low-level support
| llopmem | librpmem |
- J

s
SN IA © 2019 SNIA. All Rights Reserved. 18

Hack, hack, hack...

http://devhost.pmemhackathon.1io

Username: pmemuserX (handed out)

Password: (handed out)

-
SNIA.

More Background Information

Read as necessary, or just keep working through
the examples — whatever works best for you

-
SNIA.

A
SNIA.

Resources

* PMDK Resources:

Home: https://pmem.io

PMDK: https://pmem.io/pmdk

PMDK Source Code : https://github.com/pmem/PMDK

Google Group: https://groups.google.com/forum/#!forum/pmem

Intel Developer Zone: https://software.intel.com/persistent-memory
Memkind: https://github.com/memkind/memkind (see memkind_pmem(3))
libpmemkv: https://github.com/pmem/pmemkv

 NDCTL: https://pmem.io/ndctl

* SNIA NVM Programming Model:
https://www.shia.org/tech activities/standards/curr standards/npm

* Getting Started Guides: https://docs.pmem.io

© 2019 SNIA. All Rights Reserved.

21

https://pmem.io/pmdk
https://pmem.io/pmdk
https://github.com/pmem/PMDK
https://groups.google.com/forum/
https://software.intel.com/persistent-memory
https://github.com/memkind/memkind
https://github.com/pmem/pmemkv
https://pmem.io/ndctl
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://docs.pmem.io/

More Developer Resources

Find the PMDK (Persistent Memory Development Kit) at http://pmem.io/pmdk/
Getting Started

* Intel IDZ persistent memory- https://software.intel.com/en-us/persistent-memory
» Entry into overall architecture - http://pmem.io/2014/08/27 /crawl-walk-run.html
* Emulate persistent memory - http://pmem.io/2016/02/22/pm-emulation.html|

Linux Resources
* Linux Community Pmem Wiki - https://nvdimm.wiki.kernel.org/

* Pmem enabling in SUSE Linux Enterprise 12 SP2 - https://www.suse.com/communities/blog/nvdimm-enabling-
suse-linux-enterprise-12-service-pack-2/

Windows Resources
» Using Byte-Addressable Storage in Windows Server 2016 -https://channel9.msdn.com/Events/Build/2016/P470

* Accelerating SQL Server 2016 using Pmem - https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-
2016-and-Windows-Server-2016-SCM--FAST

Other Resources

* SNIA Persistent Memory Summit 2018 - https://www.snia.org/pm-summit
* Intel manageability tools for Pmem - https://01.org/ixpdimm-sw/

=
SN IA © 2019 SNIA. All Rights Reserved. 22

http://pmem.io/pmdk/
https://software.intel.com/en-us/persistent-memory
http://pmem.io/2014/08/27/crawl-walk-run.html
http://pmem.io/2016/02/22/pm-emulation.html
https://nvdimm.wiki.kernel.org/
https://www.suse.com/communities/blog/nvdimm-enabling-suse-linux-enterprise-12-service-pack-2/
https://channel9.msdn.com/Events/Build/2016/P470
https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-2016-and-Windows-Server-2016-SCM--FAST
https://www.snia.org/pm-summit
https://01.org/ixpdimm-sw/

A
SNIA.

Basic libpmemobj Information

This is the most flexible of the PMDK libraries,

supporting general-purpose allocation & transactions

© 2019 SNIA. All Rights Reserved.

23

The Root Object

[Application

pmem pool “myfile”

A
SNIA.

root object:

e assume it is always there

e created first time accessed
* initially zeroed

© 2019 SNIA. All Rights Reserved.

24

|
SNIA.

Using the Root Object

Application

libpmemobj

Link pmem data structures in pool
off the root object to find
them on each program run

“pointers” are really Object IDs . ,.-,

© 2019 SNIA. All Rights Reserved.

25

C Programming with libpmemob]

-
SNIA.

-
SNIA.

Transaction Syntax

TX_BEGIN(Pop) {

} TX_ONCOMMIT {

} TX_ONABORT {

} TX_FINALLY {

/* the actual transaction code goes here... */

/*
* optional - executed only if the above block
* successfully completes

*/

/*

* optional - executed if starting the transaction fails
* or if transaction is aborted by an error or a call to
* pmemobj_tx_abort()

*/

/*
* optional - if exists, it is executed after
* TX_ONCOMMIT or TX_ONABORT block

*/

} TX_END /* mandatory */

A
SNIA

Properties of Transactions

Powerfail Multi-Thread
Atomicity Atomicity

/ v

TX_BEGIN_PARAM(Pop, TX_PARAM MUTEX, & RW(ep)->mtx, TX_PARAM NONE) {
TX_ADD(ep);
D RW(ep)->count++;

} TX_END

Caller must
instrument code

for undo logging

© 2019 SNIA. All Rights Reserved.

28

C++ Programming with libpmemob]

-
SNIA.

C++ Queue Example: Declarations

/* entry 1n the queue */

struct pmem _entry {
persistent ptr<pmem entry> next;
p<uint64 t> value;

s

Pointer is really a position-independent
persistent ptr<T> Object ID in pmem.
Gets rid of need to use C macros like D_RW()

Field is pmem-resident and needs to be
p<T> maintained persistently.
Gets rid of need to use C macros like TX_ADD()

-
SNIA.

C++ Queue Example: Transaction

void push(pool base &pop, uint64 t value) {
transaction: :run(pop, [&] {

auto n = make persistent<pmem entry>();

n->value = value;

n->next = nullptr;

if (head == nullptr) {
head = tail = n;

} else { Transactional
ta 1]_ ->heXxt = n 5 (including allocations & frees)
tail = n;

_ 1)
SNIA. }

Intel Developer Support & Tools

e PMDK Tools

* Valgrind plugin: pmemcheck
 Debug mode, tracing, pmembench, pmreorder

pmem.io

* New features to support Intel® Optane™ DC persistent memory
* Intel® VTune™ Amplifier — Performance Analysis
* Intel® Inspector — Persistence Inspector finds missing cache flushes & more
* Free downloads available

software.intel.com/pmem

=
SN IA © 2019 SNIA. All Rights Reserved. 32

Possible ways to access persistent memory

No Code Changes Required
Operates in Blocks like SSD/HDD
* Traditional read/write
* Works with Existing File Systems
* Atomicity at block level
* Block size configurable
. 4K, 512B*
NVDIMM Driver required
e Support starting Kernel 4.2
Configured as Boot Device
Higher Endurance than Enterprise SSDs
High Performance Block Storage
* Low Latency, higher BW, High IOPs

*Requires Linux

L
SNIA.

Legacy Storage API

Storage API with DAX

——

Standard
Raw Device
Access

A
Standard
File API

e ———
i }
mmap mmap

Load/ T

Store

PMDK
J

File Syste

BTT

Block Atomicity

V)

persistent memory

© 2019 SNIA. All Rights Reserved.

9aeds Jasn

doeds [pud)

aiempuey

Code changes may be required*

Bypasses file system page cache

Requires DAX enabled file system
. XFS, EXT4, NTFS

No Kernel Code or interrupts

No interrupts

Fastest 10 path possible

* Code changes required for load/store direct
access if the application does not already support
this.

33

Hackathon Contributors...

* Piotr Balcer * Szymon Romik

* Eduardo Berrocal * Andy Rudoff

* Jim Fister * Steve Scargall

e Stephen Bates * Peifeng Si

e Zhiming Li * Pawel Skowron

* Lukasz Plewa * Usha Upadhyayula

With lots of input & feedback from others along the way...

-
SNIA.

