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Agenda

• Essential Background Slides, covering:
• Logistics: how you access persistent memory from your laptop
• The minimum you need to know about persistent memory
• Walk through the first example or two together

• Less talk, more hack…
• Work your way through the examples, in any order after the first three
• Helpers will be available in the room
• If FAQs come up, we’ll present answers to the entire room
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Logistics: The webhackathon Tool
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Internet

pmemuser1

…

Go to:
http://devhost.pmemhackathon.io

pmemuser1

pmemuser2

…

devhost.pmemhackathon.io

Go to:
http://devhost.pmemhackathon.io

Username and Password handed out to each attendee

Persistent Memory

containers



Webhackathon Basics
• List of examples presented on main page

• First three recommended to provide essential background
• We will walk through some of these together

• Pick examples that are interesting to you (task, language, etc)
• Use them as a starting point for your own code

• Menu provides:
• Access to these background slides
• Browse your copy of the repo (to download something you want to keep)
• Browser-based shell window for your container (for users who need it)

• Everything you do runs in your own container on the server
• With your own copy of the hackathon repo
• The path to the persistent memory is /pmem

• We’re all friends here: please no denial-of-service attacks on server!
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Essential pmem Programming Background

• Lots of ways to use pmem with existing programs
• Storage APIs
• Libraries or kernels using pmem transparently
• Memory Mode

• This hackathon doesn’t cover the above (too easy!)
• We assume you want direct access to pmem
• We show code, but also concepts
• There are lots of paths you can take, these are just examples
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The SNIA NVM Programming Model
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Don’t Forget: The NVM Programming Model Starts With 
Standard Storage APIs
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How the Hardware Works
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Core

L1 L1

L2

L3

WPQ

MOV

DIMM

CP
U

 C
AC

HE
S

CLWB + fence
-or-

CLFLUSHOPT + fence
-or-

CLFLUSH
-or-

NT stores + fence
-or-

WBINVD (kernel only)

Minimum Required
Power fail protected domain:

Memory subsystem

Custom
Power fail protected domain
indicated by ACPI property:

CPU Cache Hierarchy

Not shown:
MCA

ADR Failure Detection



Application 
Responsibilities: 
Flushing
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DAX mapped file?
(OS provides info)

CPU caches
considered persistent?

(ACPI provides info)

CLWB?
(CPU_ID provides info)

CLFLUSHOPT?
(CPU_ID provides info)

Program Initialization

Use standard API for flushing
(msync/fsync or FlushFileBuffers)

Use CLFLUSH for flushing Use CLFLUSHOPT+SFENCE
for flushing

Use CLWB+SFENCE
for flushing

Stores considered persistent
when globally-visible

no yes

yes

yes

yes

no

no

no



Application 
Responsibilities: 
Recovery
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Dirty Shutdown?

Known Poison Blocks

Program Initialization

Data set is potentially inconsistent.
Recover.

Repair data set Normal Operation

yes no

noyes



Application 
Responsibilities: 
Consistency
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open(…);

mmap(…);

strcpy(pmem, "Hello, World!");

msync(…); Crash

1. "\0\0\0\0\0\0\0\0\0\0..."

2. "Hello, W\0\0\0\0\0\0..."

3. "\0\0\0\0\0\0\0\0orld!\0"

4. "Hello, \0\0\0\0\0\0\0\0"

5. "Hello, World!\0"

Result



Application 
Responsibilities: 
Consistency
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open(…);

mmap(…);

strcpy(pmem, "Hello, World!");

pmem_persist(pmem, 14); Crash

1. "\0\0\0\0\0\0\0\0\0\0..."

2. "Hello, W\0\0\0\0\0\0..."

3. "\0\0\0\0\0\0\0\0orld!\0"

4. "Hello, \0\0\0\0\0\0\0\0"

5. "Hello, World!\0"

Result

pmem_persist() may be faster,
but is still not transactional



The Persistent Memory Development Kit
PMDK http://pmem.io

• PMDK is a collection of libraries
• Developers pull only what they need
• Low level programming support
• Transaction APIs

• Fully validated
• Performance tuned.
• Open Source & Product neutral
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http://pmem.io/


PMDK Libraries
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Hack, hack, hack…
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http://devhost.pmemhackathon.io

Username: pmemuserX (handed out)

Password: (handed out)



More Background Information
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Read as necessary, or just keep working through 
the examples – whatever works best for you



Resources
• PMDK Resources:
• Home: https://pmem.io
• PMDK: https://pmem.io/pmdk
• PMDK Source Code : https://github.com/pmem/PMDK
• Google Group: https://groups.google.com/forum/#!forum/pmem
• Intel Developer Zone: https://software.intel.com/persistent-memory
• Memkind: https://github.com/memkind/memkind (see memkind_pmem(3))
• libpmemkv: https://github.com/pmem/pmemkv

• NDCTL: https://pmem.io/ndctl

• SNIA NVM Programming Model: 
https://www.snia.org/tech_activities/standards/curr_standards/npm

• Getting Started Guides: https://docs.pmem.io 
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https://pmem.io/pmdk
https://pmem.io/pmdk
https://github.com/pmem/PMDK
https://groups.google.com/forum/
https://software.intel.com/persistent-memory
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https://www.snia.org/tech_activities/standards/curr_standards/npm
https://docs.pmem.io/


More Developer Resources
• Find the PMDK (Persistent Memory Development Kit) at http://pmem.io/pmdk/
• Getting Started

• Intel IDZ persistent memory- https://software.intel.com/en-us/persistent-memory
• Entry into overall architecture - http://pmem.io/2014/08/27/crawl-walk-run.html
• Emulate persistent memory - http://pmem.io/2016/02/22/pm-emulation.html

• Linux Resources
• Linux Community Pmem Wiki - https://nvdimm.wiki.kernel.org/
• Pmem enabling in SUSE Linux Enterprise 12 SP2 - https://www.suse.com/communities/blog/nvdimm-enabling-

suse-linux-enterprise-12-service-pack-2/
• Windows Resources

• Using Byte-Addressable Storage in Windows Server 2016 -https://channel9.msdn.com/Events/Build/2016/P470
• Accelerating SQL Server 2016 using Pmem - https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-

2016-and-Windows-Server-2016-SCM--FAST
• Other Resources

• SNIA Persistent Memory Summit 2018 - https://www.snia.org/pm-summit
• Intel manageability tools for Pmem - https://01.org/ixpdimm-sw/
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Basic libpmemobj Information

This is the most flexible of the PMDK libraries,
supporting general-purpose allocation & transactions
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The Root Object
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Application

pmem pool “myfile”

root object:
• assume it is always there
• created first time accessed
• initially zeroed



Using the Root Object
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Application

“pointers” are really Object IDs
…....
.......

Link pmem data structures in pool
off the root object to find
them on each program run

libpmemobj



C Programming with libpmemobj
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Transaction Syntax
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TX_BEGIN(Pop) {
/* the actual transaction code goes here... */

} TX_ONCOMMIT {
/*
* optional − executed only if the above block
* successfully completes
*/

} TX_ONABORT {
/*
* optional − executed if starting the transaction fails
* or if transaction is aborted by an error or a call to
* pmemobj_tx_abort()
*/

} TX_FINALLY {
/*
* optional − if exists, it is executed after
* TX_ONCOMMIT or TX_ONABORT block
*/

} TX_END /* mandatory */



Properties of Transactions
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TX_BEGIN_PARAM(Pop, TX_PARAM_MUTEX, &D_RW(ep)->mtx, TX_PARAM_NONE) {                        
TX_ADD(ep);
D_RW(ep)->count++;

} TX_END

Powerfail
Atomicity

Multi-Thread
Atomicity

Caller must
instrument code
for undo logging 



C++ Programming with libpmemobj
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C++ Queue Example: Declarations
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/* entry in the queue */
struct pmem_entry {

persistent_ptr<pmem_entry> next;
p<uint64_t> value;

};

persistent_ptr<T>
Pointer is really a position-independent
Object ID in pmem.
Gets rid of need to use C macros like D_RW()

p<T>
Field is pmem-resident and needs to be
maintained persistently.
Gets rid of need to use C macros like TX_ADD()



C++ Queue Example: Transaction
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void push(pool_base &pop, uint64_t value) {
transaction::run(pop, [&] {

auto n = make_persistent<pmem_entry>();

n->value = value;
n->next = nullptr;
if (head == nullptr) {

head = tail = n;
} else {

tail->next = n;
tail = n;

}
});

}

Transactional
(including allocations & frees)



Intel Developer Support & Tools

• PMDK Tools
• Valgrind plugin: pmemcheck
• Debug mode, tracing, pmembench, pmreorder

• New features to support Intel® Optane™ DC persistent memory
• Intel® VTune™ Amplifier – Performance Analysis
• Intel® Inspector – Persistence Inspector finds missing cache flushes & more
• Free downloads available
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pmem.io

software.intel.com/pmem



Possible ways to access persistent memory
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Legacy Storage API

Block    Atomicity

Storage API with DAX

persistent memory

user space
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mmap

Load/
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pmem-
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File System
MMU

MappingsBTT
DevDAX

PMDK

mmap

hardw
are

• No Code Changes Required

• Operates in Blocks like SSD/HDD 

• Traditional read/write

• Works with Existing File Systems
• Atomicity at block level

• Block size configurable

• 4K, 512B*

• NVDIMM Driver required

• Support starting Kernel 4.2
• Configured as Boot Device

• Higher Endurance than Enterprise SSDs

• High Performance Block Storage

• Low Latency, higher BW, High IOPs

*Requires Linux

• Code changes may be required*

• Bypasses file system page cache

• Requires DAX enabled file system

• XFS, EXT4, NTFS
• No Kernel Code or interrupts

• No interrupts

• Fastest IO path possible

* Code changes required for load/store direct 
access if the application does not already support 
this.



Hackathon Contributors…

• Piotr Balcer
• Eduardo Berrocal
• Jim Fister
• Stephen Bates
• Zhiming Li
• Lukasz Plewa

• Szymon Romik
• Andy Rudoff
• Steve Scargall
• Peifeng Si
• Pawel Skowron
• Usha Upadhyayula
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With lots of input & feedback from others along the way…


