
Persistent Memory
Hackathon and Workshop

SPDK/PMDK/VTune Summit

September 06, 2019

https://github.com/pmemhackathon/2019-09-06

Agenda

• Essential Background Slides, covering:
• Logistics: how you access persistent memory from your laptop
• The minimum you need to know about persistent memory
• Walk through the first example or two together

• Less talk, more hack…
• Work your way through the examples, in any order after the first three
• Helpers will be available in the room
• If FAQs come up, we’ll present answers to the entire room

2© 2019 SNIA. All Rights Reserved.

Logistics: The webhackathon Tool

© 2019 SNIA. All Rights Reserved. 3

Internet

pmemuser1

…

Go to:
http://devhost.pmemhackathon.io

pmemuser1

pmemuser2

…

devhost.pmemhackathon.io

Go to:
http://devhost.pmemhackathon.io

Username and Password handed out to each attendee

Persistent Memory

containers

Webhackathon Basics
• List of examples presented on main page

• First three recommended to provide essential background
• We will walk through some of these together

• Pick examples that are interesting to you (task, language, etc)
• Use them as a starting point for your own code

• Menu provides:
• Access to these background slides
• Browse your copy of the repo (to download something you want to keep)
• Browser-based shell window for your container (for users who need it)

• Everything you do runs in your own container on the server
• With your own copy of the hackathon repo
• The path to the persistent memory is /pmem

• We’re all friends here: please no denial-of-service attacks on server!

© 2019 SNIA. All Rights Reserved. 4

Essential pmem Programming Background

• Lots of ways to use pmem with existing programs
• Storage APIs
• Libraries or kernels using pmem transparently
• Memory Mode

• This hackathon doesn’t cover the above (too easy!)
• We assume you want direct access to pmem
• We show code, but also concepts
• There are lots of paths you can take, these are just examples

© 2019 SNIA. All Rights Reserved. 5

The SNIA NVM Programming Model

© 2019 SNIA. All Rights Reserved. 6

Persistent Memory

user space
kernel space

Standard
File API

Generic NVDIMM Driver

Application

File System

ApplicationApplication

Standard
Raw Device

Access

Load/
Store

Management Library

Management UI

Standard
File API

pmem-Aware
File System

MMU
Mappings

file memory

“DAX”

Don’t Forget: The NVM Programming Model Starts With
Standard Storage APIs

© 2019 SNIA. All Rights Reserved. 7

Persistent Memory

user space
kernel space

Standard
File API

Generic NVDIMM Driver

Application

File System

ApplicationApplication

Standard
Raw Device

Access

Load/
Store

Management Library

Management UI

Standard
File API

pmem-Aware
File System

MMU
Mappings

file memory

“DAX”

© 2019 SNIA. All Rights Reserved. 8

Persistent Memory

user space
kernel space

Standard
File API

Generic NVDIMM Driver

Application

File System

ApplicationApplication

Standard
Raw Device

Access

Load/
Store

Management Library

Management UI

Standard
File API

pmem-Aware
File System

MMU
Mappings

file memory

“DAX”

Use PM
Like an SSD

© 2019 SNIA. All Rights Reserved. 9

Persistent Memory

user space
kernel space

Standard
File API

Generic NVDIMM Driver

Application

File System

ApplicationApplication

Standard
Raw Device

Access

Load/
Store

Management Library

Management UI

Standard
File API

pmem-Aware
File System

MMU
Mappings

file memory

“DAX”

Use PM
Like an SSD

Use PM
Like an SSD

(no page cache)

© 2019 SNIA. All Rights Reserved. 10

Persistent Memory

user space
kernel space

Standard
File API

Generic NVDIMM Driver

Application

File System

ApplicationApplication

Standard
Raw Device

Access

Load/
Store

Management Library

Management UI

Standard
File API

pmem-Aware
File System

MMU
Mappings

file memory

“DAX”

Use PM
Like an SSD

Use PM
Like an SSD

(no page cache)

Optimized
flush

© 2019 SNIA. All Rights Reserved. 11

user space
kernel space

Standard
File API

Generic NVDIMM Driver

Application

File System

Application

Standard
Raw Device

Access
Management Library

Management UI

Persistent Memory

Application

Load/
Store

Standard
File API

pmem-Aware
File System

MMU
Mappings

file memory

“DAX”
/pmem

Today’s focus

How the Hardware Works

© 2019 SNIA. All Rights Reserved. 12

W
PQ

ADR
-or-

WPQ Flush (kernel only)

Core

L1 L1

L2

L3

WPQ

MOV

DIMM

CP
U

 C
AC

HE
S

CLWB + fence
-or-

CLFLUSHOPT + fence
-or-

CLFLUSH
-or-

NT stores + fence
-or-

WBINVD (kernel only)

Minimum Required
Power fail protected domain:

Memory subsystem

Custom
Power fail protected domain
indicated by ACPI property:

CPU Cache Hierarchy

Not shown:
MCA

ADR Failure Detection

Application
Responsibilities:
Flushing

© 2019 SNIA. All Rights Reserved. 13

DAX mapped file?
(OS provides info)

CPU caches
considered persistent?

(ACPI provides info)

CLWB?
(CPU_ID provides info)

CLFLUSHOPT?
(CPU_ID provides info)

Program Initialization

Use standard API for flushing
(msync/fsync or FlushFileBuffers)

Use CLFLUSH for flushing Use CLFLUSHOPT+SFENCE
for flushing

Use CLWB+SFENCE
for flushing

Stores considered persistent
when globally-visible

no yes

yes

yes

yes

no

no

no

Application
Responsibilities:
Recovery

© 2019 SNIA. All Rights Reserved. 14

Dirty Shutdown?

Known Poison Blocks

Program Initialization

Data set is potentially inconsistent.
Recover.

Repair data set Normal Operation

yes no

noyes

Application
Responsibilities:
Consistency

© 2019 SNIA. All Rights Reserved. 15

open(…);

mmap(…);

strcpy(pmem, "Hello, World!");

msync(…); Crash

1. "\0\0\0\0\0\0\0\0\0\0..."

2. "Hello, W\0\0\0\0\0\0..."

3. "\0\0\0\0\0\0\0\0orld!\0"

4. "Hello, \0\0\0\0\0\0\0\0"

5. "Hello, World!\0"

Result

Application
Responsibilities:
Consistency

© 2019 SNIA. All Rights Reserved. 16

open(…);

mmap(…);

strcpy(pmem, "Hello, World!");

pmem_persist(pmem, 14); Crash

1. "\0\0\0\0\0\0\0\0\0\0..."

2. "Hello, W\0\0\0\0\0\0..."

3. "\0\0\0\0\0\0\0\0orld!\0"

4. "Hello, \0\0\0\0\0\0\0\0"

5. "Hello, World!\0"

Result

pmem_persist() may be faster,
but is still not transactional

The Persistent Memory Development Kit
PMDK http://pmem.io

• PMDK is a collection of libraries
• Developers pull only what they need
• Low level programming support
• Transaction APIs

• Fully validated
• Performance tuned.
• Open Source & Product neutral

© 2019 SNIA. All Rights Reserved. 17

http://pmem.io/

PMDK Libraries

© 2019 SNIA. All Rights Reserved. 18

Support for
volatile

memory usage
Low level support for

local persistent
memory

libpmem

Low level support for
remote access to

persistent memory

librpmem

In Development

NVDIMM

User
Space

Kernel
Space

Application
Load/StoreStandard

File API

pmem-Aware
File System

MMU
Mappings

PMDK
Interface to create arrays of

pmem-resident blocks, of
same size, atomically

updated

Interface for persistent memory
allocation, transactions and

general facilities

Interface to create a
persistent memory

resident log file

libpmemblklibpmemlog libpmemobj

Transaction
Support

C++ C
PCJ/
LLPL Python

Low-level support

PCJ – Persistent
Collection for Java

memkind

pmemkv

Hack, hack, hack…

© 2019 SNIA. All Rights Reserved. 19

http://devhost.pmemhackathon.io

Username: pmemuserX (handed out)

Password: (handed out)

More Background Information

© 2019 SNIA. All Rights Reserved. 20

Read as necessary, or just keep working through
the examples – whatever works best for you

Resources
• PMDK Resources:
• Home: https://pmem.io
• PMDK: https://pmem.io/pmdk
• PMDK Source Code : https://github.com/pmem/PMDK
• Google Group: https://groups.google.com/forum/#!forum/pmem
• Intel Developer Zone: https://software.intel.com/persistent-memory
• Memkind: https://github.com/memkind/memkind (see memkind_pmem(3))
• libpmemkv: https://github.com/pmem/pmemkv

• NDCTL: https://pmem.io/ndctl

• SNIA NVM Programming Model:
https://www.snia.org/tech_activities/standards/curr_standards/npm

• Getting Started Guides: https://docs.pmem.io

© 2019 SNIA. All Rights Reserved. 21

https://pmem.io/pmdk
https://pmem.io/pmdk
https://github.com/pmem/PMDK
https://groups.google.com/forum/
https://software.intel.com/persistent-memory
https://github.com/memkind/memkind
https://github.com/pmem/pmemkv
https://pmem.io/ndctl
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://docs.pmem.io/

More Developer Resources
• Find the PMDK (Persistent Memory Development Kit) at http://pmem.io/pmdk/
• Getting Started

• Intel IDZ persistent memory- https://software.intel.com/en-us/persistent-memory
• Entry into overall architecture - http://pmem.io/2014/08/27/crawl-walk-run.html
• Emulate persistent memory - http://pmem.io/2016/02/22/pm-emulation.html

• Linux Resources
• Linux Community Pmem Wiki - https://nvdimm.wiki.kernel.org/
• Pmem enabling in SUSE Linux Enterprise 12 SP2 - https://www.suse.com/communities/blog/nvdimm-enabling-

suse-linux-enterprise-12-service-pack-2/
• Windows Resources

• Using Byte-Addressable Storage in Windows Server 2016 -https://channel9.msdn.com/Events/Build/2016/P470
• Accelerating SQL Server 2016 using Pmem - https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-

2016-and-Windows-Server-2016-SCM--FAST
• Other Resources

• SNIA Persistent Memory Summit 2018 - https://www.snia.org/pm-summit
• Intel manageability tools for Pmem - https://01.org/ixpdimm-sw/

© 2019 SNIA. All Rights Reserved. 22

http://pmem.io/pmdk/
https://software.intel.com/en-us/persistent-memory
http://pmem.io/2014/08/27/crawl-walk-run.html
http://pmem.io/2016/02/22/pm-emulation.html
https://nvdimm.wiki.kernel.org/
https://www.suse.com/communities/blog/nvdimm-enabling-suse-linux-enterprise-12-service-pack-2/
https://channel9.msdn.com/Events/Build/2016/P470
https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-2016-and-Windows-Server-2016-SCM--FAST
https://www.snia.org/pm-summit
https://01.org/ixpdimm-sw/

Basic libpmemobj Information

This is the most flexible of the PMDK libraries,
supporting general-purpose allocation & transactions

© 2019 SNIA. All Rights Reserved. 23

The Root Object

© 2019 SNIA. All Rights Reserved. 24

Application

pmem pool “myfile”

root object:
• assume it is always there
• created first time accessed
• initially zeroed

Using the Root Object

© 2019 SNIA. All Rights Reserved. 25

Application

“pointers” are really Object IDs
…....
.......

Link pmem data structures in pool
off the root object to find
them on each program run

libpmemobj

C Programming with libpmemobj

© 2019 SNIA. All Rights Reserved. 26

Transaction Syntax

© 2019 SNIA. All Rights Reserved. 27

TX_BEGIN(Pop) {
/* the actual transaction code goes here... */

} TX_ONCOMMIT {
/*
* optional − executed only if the above block
* successfully completes
*/

} TX_ONABORT {
/*
* optional − executed if starting the transaction fails
* or if transaction is aborted by an error or a call to
* pmemobj_tx_abort()
*/

} TX_FINALLY {
/*
* optional − if exists, it is executed after
* TX_ONCOMMIT or TX_ONABORT block
*/

} TX_END /* mandatory */

Properties of Transactions

© 2019 SNIA. All Rights Reserved. 28

TX_BEGIN_PARAM(Pop, TX_PARAM_MUTEX, &D_RW(ep)->mtx, TX_PARAM_NONE) {
TX_ADD(ep);
D_RW(ep)->count++;

} TX_END

Powerfail
Atomicity

Multi-Thread
Atomicity

Caller must
instrument code
for undo logging

C++ Programming with libpmemobj

© 2019 SNIA. All Rights Reserved. 29

C++ Queue Example: Declarations

© 2019 SNIA. All Rights Reserved. 30

/* entry in the queue */
struct pmem_entry {

persistent_ptr<pmem_entry> next;
p<uint64_t> value;

};

persistent_ptr<T>
Pointer is really a position-independent
Object ID in pmem.
Gets rid of need to use C macros like D_RW()

p<T>
Field is pmem-resident and needs to be
maintained persistently.
Gets rid of need to use C macros like TX_ADD()

C++ Queue Example: Transaction

© 2019 SNIA. All Rights Reserved. 31

void push(pool_base &pop, uint64_t value) {
transaction::run(pop, [&] {

auto n = make_persistent<pmem_entry>();

n->value = value;
n->next = nullptr;
if (head == nullptr) {

head = tail = n;
} else {

tail->next = n;
tail = n;

}
});

}

Transactional
(including allocations & frees)

Intel Developer Support & Tools

• PMDK Tools
• Valgrind plugin: pmemcheck
• Debug mode, tracing, pmembench, pmreorder

• New features to support Intel® Optane™ DC persistent memory
• Intel® VTune™ Amplifier – Performance Analysis
• Intel® Inspector – Persistence Inspector finds missing cache flushes & more
• Free downloads available

© 2019 SNIA. All Rights Reserved. 32

pmem.io

software.intel.com/pmem

Possible ways to access persistent memory

© 2019 SNIA. All Rights Reserved. 33

Legacy Storage API

Block Atomicity

Storage API with DAX

persistent memory

user space
kernel space

Standard
File API

Generic NVDIMM Driver

Application

File System

Standard
Raw Device

Access

mmap

Load/
Store

Standard
File API

pmem-
Aware

File System
MMU

MappingsBTT
DevDAX

PMDK

mmap

hardw
are

• No Code Changes Required

• Operates in Blocks like SSD/HDD

• Traditional read/write

• Works with Existing File Systems
• Atomicity at block level

• Block size configurable

• 4K, 512B*

• NVDIMM Driver required

• Support starting Kernel 4.2
• Configured as Boot Device

• Higher Endurance than Enterprise SSDs

• High Performance Block Storage

• Low Latency, higher BW, High IOPs

*Requires Linux

• Code changes may be required*

• Bypasses file system page cache

• Requires DAX enabled file system

• XFS, EXT4, NTFS
• No Kernel Code or interrupts

• No interrupts

• Fastest IO path possible

* Code changes required for load/store direct
access if the application does not already support
this.

Hackathon Contributors…

• Piotr Balcer
• Eduardo Berrocal
• Jim Fister
• Stephen Bates
• Zhiming Li
• Lukasz Plewa

• Szymon Romik
• Andy Rudoff
• Steve Scargall
• Peifeng Si
• Pawel Skowron
• Usha Upadhyayula

© 2019 SNIA. All Rights Reserved. 34

With lots of input & feedback from others along the way…

