PMDK Summit | Beijing | September 2019

Introducing AxoMem

Sean Whiteley, Founder | axomem.io

‘5% axomem

The Apollo program led to the IT doctrine of application & data separation.

* The Saturn V Rocket had ~3 million parts e |BM with others delivered ‘Information Control

+ This resulted in a huge Bill Of Materials System and Data Language/Interface’ in April 1968

e The new IBM/360 mainframes max memory * This became IMS —the IBM DBMS still used today.

capacity was 8 megabytes Which led to DB2, Oracle, SQL Server, NoSQL, Redis,
network latency, certifications...

... and a $46+billion DBMS industry @

289 axo

Intel® Optane™ DC Persistent Memory launched

* More than ample memory (in both capacity and latency) for
a wide range of applications.

 PMDK provides a suite of libraries for developers to interface
to Persistent memory.

* Its also tackling topics that were traditionally DBMS
(transactions, replication, etc).

How build a modern business application that only
requires CPU and Memory?

How to architect an x86 application with high
multiprocessing and direct access to 24TB memory?

How to efficiently integrate with traditional IT systems?

How to monitor, back up/restore, patch and upgrade those
applications (the operations aspects)?

PERSISTENT APPLICATIONS

Persistent Memory and PMDK can radically simplify data management complexity in applications

TRADITIONAL ARCHITECTURE

Serialise (eg SQL) !
De Serialise

Application Database Server

PERSISTENT APPLICATION

‘5% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio H? > Nucleus

Announcing AxoMem Nucleus

An open source framework for Persistent Applications

AXOMEM NUCLEUS <— Annownced here ot PMDK SumunH

Nucleus is an Open Source accelerator for building native Persistent Memory applications

Q Simple framework for building apps) Built in ReST Server

&J Allows developers to start building their own business apps HT TP, Extremely fast ReST-based server and easy-to-use JSON
while Nucleus handles common functions. library. Developers can easily add their own routes.

I_B‘ Use C++ variables and containers a Built in Configuration and Logging

C++ Developers can use any of the PMDK-supported C++ igz Conf/ini based configuration, and flexible logging engine

types and not have to worry about serialisation. ore-integrated.

Cross Platform support G> Open Source
Tested on Linux (Fedora v29+) and Windows 10 (VS 2017 I | High flexibility for re-use and incorporating 39 party
v15), using cmake build system. contributions and modules.

@% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio > Code

EXAMPLE CODE

Example of using native LibPMemOQObj-C++ semantics and adding a ReST API

Main.cpp

int main(int argc, char *argv[]) {

return nucleus::Nucleus<MyApp>(argc, argv).Run();
}s
MyApp Header

class MyApp {

public:
MyApp(); // this at pool creation or app reset. It does..
~MyApp(); // this happens when the class instance is being..

void Initialize(); // this happens at object creation, typically..
void Start(); // this happens each time the applications runs

private:
// These are the persistent memory objects for this class.
persistent_ptr<string> p_message;
p<int> p_update_count;

}s

MyApp Constructor

MyApp: :MyApp ()
: p_message{make_persistent<experimental::string>("Hello World")}
, p_update_count{e}

{
}

Logging::1log()->debug("MyApp Persistent Constructor called");

‘ﬁ?% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io

Add ReST API - GET

router->http_get(
R"(/api/vl/app/message)",
[&](auto req, auto params) {

json j = "{}"_Json;

j["data"]["value"] = p_message->c_str();

1)

return req->create_response()
.set_body(j.dump())
.done();

Add a ReST API - UPDATE

router->http_put(
R"(/api/vl/app/message)",
[&](auto req, auto params) {

auto j_req = json::parse(req->body());
std::string message value = j _req["value"];
Logging::log()->trace("MyApp Message is being set to {}.", message_value);

pmem: :obj: :transaction: :run(
PoolManager: :getPoolManager().getPoolForTransaction(), [&] {
p_message->assign(message_value);
p_update_count++;

1)

1)

@axomemio

json j = "{}"_json;
j["response"]["message"] = fmt::format("Message value updated {} time(s)
so far", p_update_count);

return req->create_response()

.set_body(j.dump())
.done();

> Vid Build /

BUILD AND RUN NUCLEUS

Example of using native LibPMemOQObj-C++ semantics and adding a ReST API

Building

[sean@Localhost build]$ cd bin

[sean@localhost bin]$./nucleus

(2019-09-05 19:06:05.872] [main] [info] Logging has been initialised with name main and loglevel debug and

saved to ./nucleus.log

[2019-09-05 19:06:05.872] [main] [info] Built with Nucleus. See https://axomem.io for more info, and follow
us on Twitter @axomemio for updates

[2019-09-05 19:06:05.872] [main] [info] Nucleus is starting

[2019-09-05 19:06:05.872] [main] [debug] Creating PoolManager with pool file ./nucleus.pmem

[2019-09-05 19:06:05.872] [main] [info] Creating new pool ./nucleus.pmem with layout 'myapp v0.0.1" and siz

e 1073741824

[2019-09-05 19:06:05.929] [main] [info] Pool successfully created.

[2019-09-05 19:06:05.929] [main] [warning] Please remember Nucleus is alpha. Things *will* change and there
Will be bugs!

(2019-09-05 19:06:05.933] [main] [debug] MyApp persistent object not yet initialized - persisting MyApp Obj

ect

[2019-09-05 19:06:05.933] [main] [debug] MyApp Persistent Constructor called

[2019-09-05 19:06:05.935] [main] [debug] AppManager is opening Application

[2019-09-05 19:06:05.935] [main] [debug] Current App State is NEW

[2019-09-05 19:06:05.935] [main] [info] AppManager: App initializing after first persistence

[2019-09-05 19:06:05.937] [main] [debug] MyApp is starting

[2019-09-05 19:06:05.939] [main] [debug] AppManager is creating ReST Server

[2019-09-05 19:06:05.939] [main] [info] ReST Server configured on port 8080 with 4 threads across 96 CPUs
[2019-09-05 19:06:05.940] [main] [debug] AppManager Entering Main thread run loop with App State RUNNING

kkk

Nucleus is running. Default site is http://localhost:8080/api/vl/ready

Press CTRL-C once to shutdown normally. May require up to 3 presses in abnormal termination
XXk

Running

[sean@localhost ~]$ curl http://127.0.0.1:8080/api/v1/app/message -w "\n\n"
{"data":{"value":"Hello World"}}

[sean@localhost ~]$ curl -1 -X PUT -d '{"value":"Hello PRC"}" http://127.0.0.1:8080/api/v1/app/message -w "
\n\n n

HTTP/1.1 200 0K

Connection: keep-alive

Content-Length: 65

Access-Control-Allow-Origin: *

{"response":{"message": "Message value updated 1 time(s) so far"}}

[sean@localhost ~]$ curl http://127.0.0.1:8080/api/v1/app/message -w "\n\n"
{"data":{"value":"Hello PRC"}}

[sean@localhost ~]$ I

”‘“‘3%; axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio > GitH 8

AVAILABLE NOW ON GITHUB

Nucleus released to the community to start engagement on Persistent App development

axomem f nucleus ¢ Unwatch~ 4 W Unstar 5 YFork 1

{»Code (1) Issues 16 il Pull requests 0 [l"l] Projects 0 EE|Wiki W) Security il Insights £} Settings

AxoMem Nucleus: Accelerate building Persistent Memory native applications Edit
persistent-memory frameworks accelerators pmem c-plus-plus Manage topics
‘D 24 commits I 3 branches € 1release 42 1 contributor gz GPL-2.0
||

https://github.com/axomem/nucleus

Current Features Near-term targets

* Easy to get example MyApp running — clone, cmake then e Launch at PMDK Summit

make (hopefull
(hop V) * Increase usage and get feedback from developers

* Easy to expand —add more classes, add ReST end Points
* Expand examples, test framework, benchmarks

e Supports Linux and Windows

‘@%‘% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio Do? > Vid TBase 9

AxoMem ThingBase & xScape

Build data-oriented applications that support Al, Automation & Visualisationifg; ,

@% axomem

DEMO — THINGBASE & XSCAPE

11

World xFleet Fleet
Factbook Manager

223 2.6K

https://youtu.be/d2z ytTySiw
> Intro AxoMem xScape Ul Demo

INTRODUCING THINGBASE AND XSCAPE

Analyze, visualize and automate in large-scale data environments

End-user oriented data visualisation Runtime Analytics and Al execution
Native 3D Ul to visualize complex relationships supporting Real-time or scheduled execution of algorithms driving
multiple display devices including VR & AR enterprise automation based on ML and Al
High capacity and throughput * Consistent data interface
Supports hundreds of millions of operations per second Hosted algorithms consume data from disparate sources

and scaling from mobile-scale to multi-terabyte scale using one data interface

Persistent Memory Support IOT & Graph oriented

Capable of supporting 24TB on a single server, or scaling Billions of records in flexible data model and supporting
horizontally to hundreds of TB at memory-like speed large time-series structures

Note: AxoMem products are pre-beta and features may change

@% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio SAVISTEIS 13

INSIGHT FROM VISUALISATION

Engaging visualisations from high-level dashboards to detailed views with fast, continuous navigation

* Examples from previous client engagements.
‘5% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio > Interact 14

ENGAGING INTERACTION

Targeting devices from browsers through to interactive room-level displays

Tablet

High-Spec Wall Touch Panel & Room-Level Displays
Workstation* Digital Signage

m%% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio Fut? > Vid MagicL 15

DEMO — XSCAPE AUGMENTED REALITY

16

https://youtu.
Pret > Bil donc AxoMem XSCEIp‘(;BAU'g

PERFORMANCE SNAPSHOT - 2 SOCKET SERVER

23 billion trades loaded for 555 S&P500 securities. Loading speed 2m+ records/sec. Reading 1+ billion /sec

Data Characteristics

Loading trades for 555 S&P500 companies since 2009
23 billion trades in 555 separate CSV files

* Average per security =41m trades

* Max is 357 million trades (Bank of America)

Persistent Memory Pool split across two regions (sockets) in
AppDirect mode, using FS-DAX on ext4 filesystem

Trades loaded into single PMemQObj array per company

All companies and trades in the same memory space

Server Characteristics

2x next gen Intel® Xeon® Scalable processors (Cascade Lake)
3TB total Intel® Optane™ DC Persistent Memory
768GB RAM, 1.2 TB SSD

Data Ingestion
 Ingesting ~2m+ records per second from CSV
e Every row is a persistent memory transaction commit

« Multiple CSV Import optimizations for speed

Data Reading - example

 (alculating average trade size across companies
 Single threaded = 40m reads /sec

« Multithreading reaches over 1 billion reads / sec

« Not NUMA optimized yet — more gains expected

Restart Time

 Restart time less than 500 milliseconds to shutdown +
restart idle application

‘ﬁ?% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio 18

PERFORMANCE SNAPSHOT — ANALYTICS (READ)

Example read rate for averaging calculations across 20 billion trades, 4 data elements per trade

[2019-09-65 22:30:11.115] [main]

= |[2019-09-05 22:30:11.115] [main]

"itemcount"®:

Sessions

"items_per_sec":

"elapsed_time_ms":

[2019-09-05 22:30:21.379] [main]

34274.743,
23777172761,
693722851

[info] AppReadTest: Current work rate i1s 1,944,350,277. Total work is 19,566,812,846
[debug] Exiting read_test - joining all created threads to wait till they are finished
[debug] Result from app_readtest (not accurate - see thread throughput in logs):

< SPHERE TABLE GRID DATASET
Trade Size Trade Size
Avg->Run Avg Monitor
L3

- 0

https://youtu.be/eZc6B95-GDO

: Ma&os l 8 Tools

~—[2019-09-05 22:31:37.176] [main] [debug] Opening 48 threads for app_ readtest function
375,135,236. Total work 1s 375,170,313
847,305,563. Total work 1is 1, 222 691,329

[2019-09-05 22:31:38.180] [main]

[info]

[2019-09-05 22:31:39.180] [main] [infol
[2019-09-05 22:31:40.180] [main] [infol
[2019-09-05 22:31:41.181] [main] [infol
[2019-09-05 22:31:42.181] [main] [info]
[2019-09-05 22:31:43.181] [main] [infol
[2019-09-05 22:31:44.181] [main] [infol
[2019-09-05 22:31:45.181] [main] [info]
[2019-09-05 22:31:46.182] [main] [info]
[2019-09-05 22:31:47.182] [main] [infol
[2019-09-05 22:31:48.182] [main] [infol
[2019-09-05 22:31:49.182] [main] [infol
[2019-09-05 22:31:50.182] [main] [info]
[2019-09-05 22:31:51.183] [main] [infol

AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:
AppReadTest:

Current work
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
Current work rate
[2019-09-05 22:31:51.183] [main] [debug] Exiting read_test - joining all created threads

rate

1s
is
is
is
is
is
is
is
is
is
is
is
is

1,073,673,326.
1,292,302,190.
1,099,658,640.
1,374,957,616.
1,120,624,192.
1,421,933,000.
1,733,896,236.
1,787,692,681.
2,064,661,163.
2,111,416,598.
2,173,704,788.
1,920,917,327.

Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total

to wait t111 they are finished

work
work
work
work
work
work
work
work
work
work
work
work 1

is
is
is
is
is
is
is
is
is
1s
1s

2,296,572,882
3,589,119, 420
4,688,978,517
6,064,166,890
7,184,978,047
8,607,132,515
10,341,332,794
12,129,356,615
14,194,540,109
16,306,332,711
18,480,559,332
20,401,803,004

[2019-09-05 22:31:57.645] [main] [debug] Result from app_readtest (not accurate - see thread throughput in logs):

"elapsed_time_ms": 20468.785,
"itemcount”: 24682552611,
"items_per_sec": 1205863121

|
2 | I 251] 49 [] 731]
2 |l 1 26 [] se ([1 74 []
3 [1 271] s1(1 751]
4 [] 28 ([] 52 1 76 []
| 1 2901] 531 1 27]
6 [] 30 [] 54(1 781]
Z: 1 311 1 551 1 79[]
8 [I 32] 56 [] 8o []
9 1 331 1 571] 81]
10 [1 34 [] 58 ([1 82 []
a g | 1 351 1 59 [1 83]
12 [1 36 [] 60 [1 84]
13 [I 3721] 611] 851]
14 [] 38 1 621] 86 []
15 [1 39 [] 63 [] 871]
16 [] 40 [] 64][1 88|]
17 [1 a1l] 65 ([] 89 []
18 [] a4l] 66 [1 90 []
19 [1 43 [1 670] 91 []
20 [1 a4 [] 68 [1 92 []
21 [] 45 [] 69 [] 93 []
22 [1 46 [] 70 [] 94 []
23 [] 47 [1 71] o5]
24 [] 8 [1 72 1[I 1 96 []
Mem[] IIIIIIIIIIIlIIlIIIIlIIIIIIlIIlIIIIIIII3 796/7536] Tasks: 57, 53 thr; 1 running

wpl || 1 Load average: 0.11 2.03 1.54

[@lHelp
[2] o:

PID USER PRI NI VIRT RES
@setup [Esearch@Filter[Frree

./cmake-build-release/thingbase*

SHR S CPU%

MEM%

sortBy[@Nice

Uptime:

TIME+ Command

-@@Nice +FKill

5 days, 20:29:25

@lquit

"localhost.localdomain®

22:36 05-Sep-19

#8 axomem Introducing AxoMem © 2019 AxoMem Pte Ltd.

https://axomem.io @axomemio

> Sum Prod

19

AxoMem Products

NUCLEUS THINGBASE XSCAPE

Framework for building Fast, flexible platform for Cross-platform app enabling
Persistent Memory building dynamic datascapes fluid 3D web, VR and AR
Applications. including analytics, Al and visualization of small or large
automation. datascapes.

https://github.com/
axomem/nucleus

Note: AxoMem products are pre-beta and features may change

“"i‘i% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio > Demos

PMDK SUMMIT PRC DEMOS AND HANDS-ON

Drop by and see the demos, and get started on PMDK development in the Hands-on session

(/api/v1l/app/message)”,
](auto req, auto params) {

auto j_req = json::parse(req->body());
std::string message value = j_req["value"];
Logging::log()->trace("MyApp Message is being set to {

pmem: :obj: :transaction::run(
PoolManager::getPoolManager().getPoolForTransactio
p_message->assign(message value);
p_update count++;

1)
zigﬁazn:nZE%:Féngi:cn"1 _ fmt. . format("Moccace value
Touch-screen Demo VR Demo Hands On Lab
ThingBase running on a ThingBase running on Join the Hands-on session to
touchscreen in the main hall* Samsung S8 & learn more about PMDK

Oculus Gear VR

& axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio > End 2]

CONTACT AXOMEM

Let’s start a conversation!

57181 - THANK YOU!

Address Phone & Email Links

AxoMem Pte Ltd Direct Line: +65 3138 4141 https://axomem.io/

14 Robinson Road #08-01A info@axomem.io twitter.com/axomemio
Singapore 048545, Singapore linkedin.com/company/axomem

https://qithub.com/axomem

‘ﬂ% axomem Introducing AxoMem © 2019 AxoMem Pte Ltd. https://axomem.io @axomemio 22

