
Szymon Romik
<szymon.romik@intel.com>
Intel® Data Center Group

Creating C++ Apps with libpmemobj

Agenda
• App Direct mode

• PMDK and libpmemobj

• Persistent Memory pool

• Persistent pointer

• Root object

• Transactions

• pmem::obj::p

• Persistent Memory allocations

• Persistent Memory containers

• Example

• C++ standard limitations

2

App direct mode

3

Creating C++ Apps with libpmemobj 4

App Direct mode

fd = open("/my/file", O_RDWR);
…
base = mmap(NULL, filesize,

PROT_READ|PROT_WRITE,
MAP_SHARED_VALIDATE|MAP_SYNC, fd, 0);

close(fd);
…
base[100] = 'X';
strcpy(base, "hello there");
msync(…);
…

App Direct

Persistent Memory

u
se

r sp
a

ce
k

e
rn

e
l sp

a
ce

Application

Load/
Store

Standard
File API

pmem-Aware
File System

MMU
Mappings

PMDK

Different modes for using Persistent Memory:
• Memory Mode
• Storage over App Direct
• App Direct

In-place persistence (no paging, context switching, interrupts, nor kernel code executes)
Byte addressable like memory (Load/store access, no page caching)
Cache Coherent
A pmem-aware file system exposes persistent memory to applications as files.

Application must take responsibility for recovery, consistency and atomicity.

Pmdk and libpmemobj

5

Creating C++ Apps with libpmemobj 6

PMDK and libpmemobj

• http://pmem.io/

• open-source https://github.com/pmem

• vendor-agnostic

• user-space

• production quality, fully documented

• performance optimized and tuned

libpmem

libpmemobj

libpmemobj++

Software stack:

Low level support for local persistent memory

Interface for persistent memory allocation,

transactions and general facilities

C++ idiomatic bindings for libpmemobj

http://pmem.io/
https://github.com/pmem

Creating C++ Apps with libpmemobj 7

libpmemobj

Atomic APIs Transactional APIs
Action APIs

Pool Management APIs

Configurati
on APIs

Persistent Memory Allocator

Unified logs

Offset Pointers

persistence primitives

Primitive
s APIs

libpmem

Persistent memory pool

8

Creating C++ Apps with libpmemobj 9

Pool Management APIs

0x0 0xFFFFFFFF

HEAP STACK
sbrk() alloca()

Memory Mapping Area

FSDAX volume

File A

File B

File C

• Persistent Memory is usually exposed by the OS through a
DAX-enabled file system.

• Memory Mapping is used to take advantage of byte-
addressability of PMEM

• mmap() does not guarantee the address of the mapping.
Especially if Address Space Layout Randomization (ASLR) is
enabled.

mmap()

Creating C++ Apps with libpmemobj 10

Pool Management APIs

0x0 0xFFFFFFFF

HEAP STACK
sbrk() alloca()

pmem::obj::pool

FSDAX volume

File A

pmem::obj::pool

File C

pmem::obj::pool::open()

• libpmemobj abstracts away the underlying storage, providing
unified APIs for managing files

• The entire library adapts to what type of storage is being used,
and does the right thing for correctness.

• This means msync() when DAX is not supported.
• It also works seamlessly for devdax devices

http://pmem.io/libpmemobj-cpp/master/doxygen/classpmem_1_1obj_1_1pool.html

http://pmem.io/libpmemobj-cpp/master/doxygen/classpmem_1_1obj_1_1pool.html

Creating C++ Apps with libpmemobj 11

Pool Management APIs
pool<> class example

if (access(path.c_str(), F_OK) != 0) {
pop = pool<root>::create(path, "some_layout", PMEMOBJ_MIN_POOL, S_IRWXU);

} else {
pop = pool<root>::open(path, "some_layout");

}

• Class template, where the template parameter is the type of the root object

• Supports basic operations

• open – opens an existing pmempobj pool

• create – creates a new pmemobj pool

• close – closes an already opened/created pool

• root – returns persistent pointer to root object associated with pool

• Inherits from pool_base

Persistent pointer

12

Creating C++ Apps with libpmemobj 13

Persistent Pointer

0x40000000 0x4F000000

Object A

void *objB =
0x4B400000;

Object B

• The base pointer of the mapping can change between application instances
• This means that any raw pointers between two memory locations can become invalid
• Must either fix all the pointers at the start of the application

• Potentially terabytes of data to go through…
• Or use a custom data structure which isn’t relative to the base pointer

pmem::obj::pool

Creating C++ Apps with libpmemobj 14

Persistent Pointer

0x40000000 0x4F000000

Object B

Object A

persistent_ptr
objB ={…,

0xB400000};

http://pmem.io/libpmemobj-cpp/master/doxygen/classpmem_1_1obj_1_1persistent__ptr.html

• libpmemobj provides 16 byte offset pointers, which contain an offset relative to the beginning
of the mapping.

• Is a random access iterator
• Has primitives for flushing contents to persistence
• Does not manage object lifetime
• Does not automatically add contents to the transaction
• But it does add itself to the transaction

pmem::obj::pool

http://pmem.io/libpmemobj-cpp/master/doxygen/classpmem_1_1obj_1_1persistent__ptr.html

Root object

15

Creating C++ Apps with libpmemobj 16

Root object

0x40000000 0x4F000000

pmem::obj::pool

Root object

persistent_ptr<A> objA;
persistent_ptr<C> objC;

Object A

persistent_ptr
objB;

Object B Object C

• All data structures of an application start at the root object.
• Has user-defined size, always exists and is initially zeroed.

• Applications should make sure that all objects are always reachable through some path that
starts at the root object.

• Unreachable objects are effectively persistent memory leaks.

http://pmem.io/libpmemobj-cpp/master/doxygen/classpmem_1_1obj_1_1pool.html#a85b71b78e8229b009639835a5ad159d2

http://pmem.io/libpmemobj-cpp/master/doxygen/classpmem_1_1obj_1_1pool.html#a85b71b78e8229b009639835a5ad159d2

Creating C++ Apps with libpmemobj 17

Root object
Retrieving root object from pool handle example

struct foo {
persistent_ptr<bar> barp;
long long x;

};

pop = pool<foo>::create(…); // use “foo” type as a root

persistent_ptr<foo> r = pop.root();
assert(r->barp == nullptr); // how to allocate an object of type “bar” in

// persistent memory?

r->x = 100; // how to assign new value and guarantee data consistency?
// What if crash happens during execution of this line?

transactions

18

Creating C++ Apps with libpmemobj 19

Transactional API

• libpmemobj provides ACID (Atomicity, Consistency, Isolation, Durability)
transactions for persistent memory

• Atomicity means that a transaction either succeeds or fails completely

• Consistency means that the transaction transforms pmem::obj::pool
from one consistent state to another. This means that a pool won’t get
corrupted by a transaction.

• Isolation means that transactions can be executed as if the operations were
executed serially on the pool. This is optional, and requires user-provided
locks.

• Durability means that once a transaction is committed, it remains
committed even in the case of system failures

Creating C++ Apps with libpmemobj 20

Transactional API
Transaction example

auto pop = pool<root>::open("/path/to/poolfile", "layout string");

transaction::run(pop, [] {
// do some work...

}, persistent_mtx, persistent_shmtx);

• Undo log based transactions

• In case of interruption it is rolled-back or completed upon next pool open

• Take an std::function object as transaction body

• No explicit transaction commit

• Available with every C++11 compliant compiler

• Throw an exception when the transaction is aborted

• Take an arbitrary number of locks

• Can be nested

Pmem::obj::p

21

Creating C++ Apps with libpmemobj 22

pmem::obj::p class
Code with manual snapshotting example

struct data {
long long x;

}

auto pop = pool<data>::("/path/to/poolfile", "layout string");
auto datap = pop.root();

transaction::run(pop, [&]{
pmemobj_tx_add_range(root, 0, sizeof (struct data)); // native C API
datap->x = 5;

});

• If we won’t snapshot data and the crash will occur during execution of transaction, the old
value of “x” field won’t be rolled-back

Creating C++ Apps with libpmemobj 23

pmem::obj::p class

• Template class

• Overloads operator= for snapshotting in a transaction

• Overloads a bunch of other operators for seamless integration

• Arithmetic

• Logical

• Should be used for fundamental types

• No convenient way to access members of aggregate types

• No operator. to overload

Creating C++ Apps with libpmemobj 24

pmem::obj::p class
Code with pmem::obj:p example

struct data {
p<long long> x;

}

auto pop = pool<data>::("/path/to/poolfile", "layout string");
auto datap = pop.root();

transaction::run(pop, [&]{
datap->x = 5; // no need for implicit snapshotting

});

• More C++ idiomatic approach

• To modify your application and start using Persistent Memory, we should focus on
modifying data structures, not functions

Persistent memory allocations

25

Creating C++ Apps with libpmemobj 26

Persistent Memory allocations

• Can be used only within transactions

• Use transaction logic to enable allocation/delete rollback of persistent state

• make_persistent calls appropriate constructor

• Syntax similar to std::make_shared

• delete_persistent calls the destructor

• Not similar to anything found in std

Creating C++ Apps with libpmemobj 27

Persistent Memory allocations
Transactional allocation example

struct data {
data(p<int> a, p<int> b) : a(a), b(b) {}
p<int> a;
p<int> b;

}
transaction::run(pop, [&]{

persistent_ptr<data> ptr = make_persistent<data>(1, 2);
assert(ptr->a == 1);
assert(ptr->b == 2);

// more code here

delete_persistent<data>(ptr);
});

Persistent memory Containers

28

Creating C++ Apps with libpmemobj 29

Persistent Memory containers
• compatible interface with STL counterparts (almost)

• Takes care of adding elements to a transaction

• In operator[]/at() when obtainig non-const reference

• On iterator dereference

• In other methods which allow write access to data

• Works with std algorithms

• All functions which may alter container properties are atomic

• This includes: resize(), reserve(), push_back() and others

• Transactions are used internally

• Strong exception guarantee

• Currently (libpmemobj++ 1.7) available containers:

• array

• vector

• string (implemented basisc operations)

• concurrent_hash_map (no STL counterpart, used as an engine for pmemkv)

Creating C++ Apps with libpmemobj 30

Persistent Memory containers
vector usage example

transaction::run(pop, [&] {
root->vec_p = make_persistent<vector<int>>();

});

vector_type &pvector = *(root->vec_p);

pvector.resize(10);
pvector = {5, 4, 3, 2, 1};
pvector.push_back(0);

transaction::run(pop, [&]{
std::sort(pvector.begin(), pvector.end()); // 0,1,2,3,4,5

delete_persistent<vector<int>>(ptr);
});

example

31

Creating C++ Apps with libpmemobj 32

Example
volatile queue -> persistent queue

struct queue_node {
int value;
struct queue_node *next;

};

struct queue {
…
void
push(int value)
{

auto node = new queue_node;
node->value = value;
node->next = nullptr;

if (head == nullptr) {
head = tail = node;

} else {
tail->next = node;
tail = node;

}
}

struct queue_node {
p<int> value;
persistent_ptr<struct queue_node> next;

};

struct queue {
…
void
push(pool_base &pop, int value)
{

transaction::run(pop, [&] {
auto node = make_persistent<queue_node>();
node->value = value;
node->next = nullptr;

if (head == nullptr) {
head = tail = node;

} else {
tail->next = node;
tail = node;

}
});

}

Creating C++ Apps with libpmemobj 33

Example
volatile queue -> persistent queue

int
pop(pool_base &pop) {

int value;
transaction::run(pop, [&] {
if (head == nullptr)

throw std::out_of_range("no elements");

auto head_ptr = head;
value = head->value;

head = head->next;
delete_persistent<queue_node>(head_ptr);

if (head == nullptr)
tail = nullptr;

});

return value;
}

…

int
pop() {

if (head == nullptr)
throw std::out_of_range("no elements");

auto head_ptr = head;
auto value = head->value;

head = head->next;
delete head_ptr;

if (head == nullptr)
tail = nullptr;

return value;
}

…

C++ standard limitations

34

Creating C++ Apps with libpmemobj 35

C++ standard limitations

• Object lifetime begins when initialization is completed (constructor is called) and end when
destructor calls starts

• Similar problem to transmitting data over network (where the C++ application is given an array of
bytes but might be able to recognize the type of object sent)

• problem is well known and is being addressed by WG21 (The C++ Standards Committee Working
Group)

• For now, we must rely on undefined behavior

• Snapshotting – data is being copied with memcpy() and it means that we may break the inherent
behavior of the object which may rely on the copy constructor

• std::is_trivially_copyable should guarantee safe copying raw bytes, but is a restrictive type-
trait (no user provided copy/move constructors)

Creating C++ Apps with libpmemobj 36

C++ standard limitations

• Object layout:

• might differ between compilers/compiler flags/ABI

• compiler may do some layout-related optimizations and is free to shuffle order of members with
same specifier type (public/protected/public)

• No polimorfic types are allowed: there is no reliable and portable way to implement vtable
rebuilding after reopening the pool

• the bit representation of stored object type must be always the same and application should be
able to retrieve stored object from memory mapped file without serialization.

• std::is_standard_layout guarantee fixed layout, but is very restrictive type-trait

someType A = *reinterpret_cast<someType*>(mmap(...));

Creating C++ Apps with libpmemobj 37

C++ standard limitations

• Storing volatile memory pointers in persistent memory is almost always a design error

• Using pmem::obj::persistent_ptr<> class template is safe, and it provides only way to access
specific memory area after application crash

• It doesn't satisfy requirements of std::is_trivially_copyable check

• We rely on undefined behavior

• Type restrictions should not be a problem for native Persistent Memory applications – to fully utilize
PMEM advantages, user should consider data oriented design principles

class rootType {
int* vptr;

}

...

int val = 1; /* variable on stack */
pmem::obj::transaction::run(pop, [&](){

root->vptr = &val;
};);

38

