Mellanox

TECHNOLOGIES

SPDK, NVME-OF
Acceleration

Sasha Kotchubievsky, Oren Duer| Mellanox Technologies

September, 2019

© 2019 Mellanox Technologies 1 ‘

Agenda

" Background

" Low-level optimizations in NVME-OF RDMA transport
“ Data protection in RDMA transport

" Advanced hardware accelerations in network layer

© 2019 Mellanox Technologies 2 ‘

NVME and NVME-OF

" NVMe is designed to work over a PCle bus

" The NVMe over Fabrics is the protocol used for transferring NVMe storage commands between the

client nodes over storage fabric
" NVME-OF RDMA

" NVME-OF TCP

" NVME-OF FC

NVME Transports

/YN

Mellanox

_

Fabric based Transports

/

© 2019 Mellanox Technologies

; 4

/YN
SPDK. NVME-OF Abstraction Gt

s N ~ /
4 /

NVME-OF Target Client (Initiator)

——

/SPDK

Storage
Protocols

N

/SPDK

Storage
Services

N\

SPDK
Drivers

© 2019 Mellanox Technologies 4 ‘

NVME-OF RDMA
Optimizations

NVME-OF RDMA. Performance optimizations e

" Scope
" NVME-OF Target on x86
" NVME-OF Target on ARM
® NVME-OF Target forwards 10 to backend target

" Network cards
" “ConnectX-5”
= “BlueField”

© 2019 Mellanox Technologies 6

RDMA. Selective signaling Mellanox

= “Selective signaling” reduces PCle bandwidth and CPU usage by eliminating DMA completion
" In IO Read flow, RDMA_WRITE is followed by RDMA_SEND
" Completion for RDMA_WRITE can be skipped

" Developed by Alexey Marchuk, Mellanox: https://review.gerrithub.io/c/spdk/spdk/+/456469
" Available in SPDK v19.07

= “Selective signaling” increases IOPs in “randread”
" ARM up to 15%

© 2019 Mellanox Technologies 7 ‘\":ie,,

https://review.gerrithub.io/c/spdk/spdk/+/456469

. A/
RDMA. Work request batching Mellaros

" “Work request batching” reduces CPU use and PCle bandwidth by using single MMIO operation
(“Doorbell”) for multiple requests

" The default approach for WQE (work request element) transferring requires separate MMIO for each
WQE
" WQE batching improve:
“ |O Read flow: RDMA_WRITE is followed by RDMA_SEND

" “Heavy” loads (high queue depth): NVME-OF Target needs to submit multiple RDMA operations
" Multi —element SGL: Each element needs own RDMA operation

" Developed by:
" Seth Howell, “Intel”: https://review.gerrithub.io/c/spdk/spdk/+/449265 - NVME-OF Target
" Available in SPDK v19.07 . Requires applying fix : https://review.gerrithub.io/c/spdk/spdk/+/466029
" Evgenene Kotchetov, “Mellanox” : https://review.gerrithub.io/c/spdk/spdk/+/462585/ - NVME-OF Initiator
" Preliminary results:
® ARM: randread (queue depth 64) up to 5%, randwrite (queue depth 64) up to 12% increase in IOPs

© 2019 Mellanox Technologies 8 N

https://review.gerrithub.io/c/spdk/spdk/+/449265
https://review.gerrithub.io/c/spdk/spdk/+/466029
https://review.gerrithub.io/c/spdk/spdk/+/462585/

RDMA. Work request’s payload inlining Melanox

" Payload inlining reduces PCle bandwidth by eliminating DMA read for payload
" Small payloads up to a few hundred of bytes can be encapsulated into WQE

" Payload inlining can be used for NVME-OF response
" Capsule size is 16 bytes

" The feature is under development (Alexey Marchuk, “Mellanox”):
https://github.com/Mellanox/spdk/commit/8682d067e5ab9470fb3596db0c47411c974ac47f

© 2019 Mellanox Technologies 9 N

https://github.com/Mellanox/spdk/commit/8682d067e5ab9470fb3596db0c47411c974ac47f

NVME-OF RDMA
Data protection

Data Corruption Mellanox

IS A DISSASTER !!
Backups may have bad data
Downtime/Corruptions may be fatal to a company
It is better to Not Return any data, than return a wrong one
Occur as a result of bugs, both SW and HW (drivers, HBAs, Disks, Arrays)
Common failures:
* Write incorrect data to the storage device — may take months for recognition
* Misdirected writes Application HBA Storage Array Disk Drives
Error can happen in every entity in the 10 path:

1/0 path entities

Mellanox

TECHNOLOGIES

DIX + DIF
Data Integrity Extensions + T10 Data Integrity Field combined protection envelope
Data Integrity Ext. protection envelope
T10 Data Integrity Field protection envelope
HARD A
Oracle HARD protection envelope
Normal 1I/O A T T $TED

vendar specific
integrity measures

vendor specific
integrity measures

vendaor specific
integrity measures

vendor specific
integrity measures

vendor specific

transport CRC integrity measures

] [I!O ControllerJ [

e I.."'-

J [Disk Array] [Disk Drive J

)

[Application J [os

*based on Martin K. Peterson slide

© 2019 Mellanox Technologies 12

Mo d e | Mellanox

0 512 514 516 519 ()
512 bytes of data GRD APP REF

= 8 byte of integrity tuple per sector

* Guard tag:
= Per request property
* Protects the data portion of the sector
® On the Wire — CRC using well-defined polynomial
= OS — usually use cheaper IP checksum algorithm (may use CRC)
I/O controller should convert between types, if needed

= Application tag:
" Opaque
* Free usage by application

" Reference tag:
= Protect against misdirected writes
" Type 1 - 32 LShits of the LBA are used as base tag and incremented with each segment
= Type 2 - 32 LShits of the LBA used as base tag, can be anything for the rest
= Type 3 — Only Guard tag is checked

16-bit guard tag (CRC of 512-byte data portion) —
16-bit application tag
32-bit reference tag

© 2019 Mellanox Technologies 13

AN
NVMEoF — Metadata Handling A

* Two possibilities for MetaData layout
* Interleaved: Each data block is appended with 8byte integrity payload.

* Not supported by Linux for local devices
LBA N: LBA N+1.:
PI Pl

* Separate: Integrity payload fields lie in a separate buffer from the data.

 Not supported in Fabrics by definition of the spec (not enough space in the SQE for metadata pointer)

LBA N: LBA N+1:
Pl Pl

© 2019 Mellanox Technologies 14 ‘

NVME-PCI. Data protection

N

Ny
A

\

A
h
A
“
Y
A

Mellanox

No Protection

T —— . lBData | NVME - lBData
e ——————l> e ——
Controller ML
Host NVME Disc
End-to-End Data Protection
- LBData - LBData
. iBData ” VE i
e ——————l> e ——
= Controller D
Host NVME Disc
“Insert & Strip Data Protection”
- LBData - LlBData
 iBData VE i
e ——————l> e ——
Controller N
Host NVME Disc

© 2019 Mellanox Technologies 15 ‘

NVME-OF. Data protection A

TECHNOLOGIES

No Protection

NVME | - - LBData i S ~ 1BData

. .
Driver (=] A—] Controller (——r N\/Me Disc

Host NVMF Target

Verif Verify d-to-End Data Protection
‘ — . ~ lBpata Pl S o .
e ——
- lBData Pl Driver '-».Euq) Controller NVMe Disc
Host RDMA Transport NVME Target
 BData NVMF EENTIDSEN NVMF ~ lBData Pl .
[————————— |
Driver %25 T— Controller NVMe Disc
Host ransport NVMF Target

© 2019 Mellanox Technologies 16 ‘

SPDK. DIF “Insert & Strip” mode Mellnox

" DIF “Insert & Strip” mode in TCP Transport
® Shuhei Matsumoto, “Hitachi” : https://review.gerrithub.io/c/spdk/spdk/+/456452 - SW implementation
® Available in SPDK v19.07
" DIF “Insert & Strip” mode in RDMA Transport

" Aleksey Marchuk, Evgeny Kochetov, “Mellanox” : https://review.gerrithub.io/c/spdk/spdk/+/465248 - SW implementation
" HW accelerated mode is under development : https://github.com/EugeneKochetov/spdk/tree/nvmf rdma sig offload

© 2019 Mellanox Technologies 17 \"\'\m
.

https://review.gerrithub.io/c/spdk/spdk/+/456452
https://review.gerrithub.io/c/spdk/spdk/+/465248
https://github.com/EugeneKochetov/spdk/tree/nvmf_rdma_sig_offload

. A/
DIF “Insert & Strip” mode. SW vs HW Melanon

Read, Single core performance
400,000

350,000

300,000 Higher is better

250,000 HW acceleration for DIF data protection
overperforms SW by 200%

&
& 200,000

150,000
100,000

50,000

Queue depth: 32
Block size: 512+8
Disk: Samsung PM1725b

1024 4096 8192 Platform: x86

|0 block size

== Dif, HW Offload ===Dif, SW calculation

© 2019 Mellanox Technologies 18

an
SPDK. Memory management in NVME-OF RDMA Mellanox

7/
NVME-OF Target

Buffers
/SPDK

Storage SGL 1O buffer #0 1O buffer #1
Protocols
3 SGL[1]
/SPDK
Storage
Services |OV[1]
-

SPDK
Drivers

© 2019 Mellanox Technologies 19 ‘

NVME-OF RDMA. Metadata placement

Memory

RDMA SGL

Bdev IOV

Memory

RDMA SGL

Bdev IOV

md#0

md #1

SGL[O]

<-

SGL[1]

SGL[2]

(

md#2 md #3

SGL[3]

|IOV[0]

IOV[1]

SGL[O)

\
IV[O] \

IV[1]

metadata

SGL{1)

\

IV[2]

N

IV[3] 41 5| 6

V" \(
A
A
A
N
X

Mellanox

EEEEEEEEEEEE

DIF Model

DIX Model

© 2019 Mellanox Technologies 20 ‘

¥,
NVME-OF RDMA. Metadata placement e

" “DIF” model increases number of SGL elements in RDMA layer
" “DIX” model increases number of IOV elements transferred to bdev layer
" In performance testing “DIF” model overperforms “DIX”

" “DIF” model is chosen as default option
" Multi-element SGL will be can be replaced by UMR (“User memory region”)

= “DIX” model is used for “in-capsule” data

© 2019 Mellanox Technologies 21

HW acceleration for “DIF” fellanox

Block signatures

TM\I_

V

Chunk of data with signature Source: Wire / Memory

Add/Verify & Remove

Chunk of data with signature Destination: Memory / Wire

© 2019 Mellanox Technologies 22

“User space” API for “DIF” MAEH&%S

" Signature operation is executed at data moving between two Signature Domains
" Wire Domain
" Memory Domain
" Signature Operations
= Add
" Verify
" Verify & Remove
® Signature types
" Repeating block signature. All blocks must have equal size
" Transaction signature are used for protecting entire transaction
" Variable block signature covers data of any size

" Using “indirect” memory referencing, both DIF and DIX modes are supported
" Planned to be submitted to “upstream” (rdma-core) in 2019

© 2019 Mellanox Technologies 23

https://github.com/linux-rdma/rdma-core

HW acceleration for data protection. Summary Melanox

" HW acceleration for guard tag calculation by NIC demonstrates advantage over SW implementation

" Roadmap:

User-spaces API for “DIF” manipulation. Submitting to “upstream”

HW acceleration for “Insert & strip” mode in SPDK’s implementation for NVME-OF target
HW acceleration for Data Integrity Field generation in SPDK’s initiator

Verifying DIF in network layer (RDMA) in “initiator” and “target” sides

© 2019 Mellanox Technologies 24

Advanced hardware
accelerations

BlueField-2 A

Superior Storage Performance Storage Security

= 8Arm® A72 CPUs @ 2GHz-2.5GHz = Data-at-Rest AES-XTS encryption

= Dual 100Gb/s or Single 200Gb/s ports = Authentication/Authorization services
= 16 lanes of PCle Gen4.0 = Encryption and decryption of data

= Upto5.4MIOPs @ 4KB to/from storage
" Lowest latency = Protection between users

Storage Accelerations Unique Features

= NVMe-oF offloads = Data (De)Compression
= NVMe-oF SPDK offload = NVMe SNAP™
= RAID, Erasure Coding, CRC32, CRC64 = Deduplication

and T10-Diff

© 2019 Mellanox Technologies 26 ‘

NVMe SNAP

" Emulate locally attached PCle NVMe drive
" Unmodified NVMe driver on host

" NVMe queues serviced in ARM
" Then go to network
" Admin Queue, 10 Queues

" Optional: 10 path skips ARM
® Protocol conversion on IO processor
" Must be simple enough
" Must be RDMA
“ For example: NVMe-oF
" Lose IOP-level software manipulation option
® Admin queue still in ARM

External host (bare metal or VM)

———

' NVMe drlve

PCle

mm

SmartNIC

ARM

Dev Mem HW 10

‘ processor

=

© 2019 Mellanox Technologies 27 ‘

SPDK as NVMe emulators standard framework

NVMe controller { HOST }
" New: NVMe controller NVMe registers and
" NVMe device-side registers NVMe IO queues Admin Queue

" NVMe device-side admin commands
" NVMe device-side |0 commands
{ __ SPDKbundm

" Vendor specific library
" Bind to host NVMe device emulation

" Shared code and .h files
" With NVMe driver i
= With NVMf target e

" Configuration is similar to NVMf target
" Subsystem == emulated NVMe drive
" Bind BDEVs as Namespaces

SPDK NVMe Controller fellanox

Zoom in [- } O
"\%
A X
NVMe IO NVMe |NVMe
queues Admin |registers

Register NVMe emulation driver
Register NVMe emulated disk
NVMe regs change
Admin request
IO request
NVMe controller provider API

Target-like configuration
Subsystem = NVMe disk
Namespace map to BDEV

NVMe regs change
Create admin queue
Admin response
Create 10 queue

IO response

Read/Write
requests to
BDEV

\
© 2019 Mellanox Technologies 29 \‘x\

NVMe Controller full-path offload

e

" NVMe SNAP to NVMf initiator offload /7 \
NVMe 10 queues

NVMe registers and
Admin Queue

" Per emulated device configuration
“ Don’t offload
“ Always offload
" Fail configuration if not possible
" Best effort offload
" Offload if possible, software path if not

" Best performance!
" For simple use cases

Y\

SPDK in-network offloads -
NVMf target
to host network

" vs. local mem-to-mem offloads

il

MLNX SNAP

" Upper application configured to use a bdev
" NVMe controller for SNAP
" NVMe-oF target

" Interrogate vbdevs/bdevs chain

" |dentify the kind of bdev (NVMf, iSCSI, Crypto...)

" Get configuration / create resources —

" |If vbdev, get next (v)bdev(s), repeat —
I

" Can the full flow and configuration be
offloaded?
" |f yes — allow offload, configure device
" If no — continue in software

uoI1ed1110N / uoileSouJaiu|

" Notification for runtime changes in configs
® Thin provisioning new chunk mapped
" Volume resized

\ \

2019 Mellanox Technologies 31 ‘

TECHNOLOGIES

A k i YEAH ANNI\IEHSAHY

Mellanox

TECHNOLOGIES

© 2019 Mellanox Technologies 32

A

Mellanox

CHNOLOGIES

TE

Thank You

© 2019 Mellanox Technologies 33 ‘

S

Mellanox

TECHNOLOGIES

Backup

© 2019 Mellanox Technologies 34 ‘

NVME-OF RDMA. 10 Read. Selective signhaling

NVMe Initiator NIC

Completion

Completion

| Post SEND\J\

/1-

Send Comman

] /4
Write Data

NIC

d Capsule

1 —

Completlon_

| Post WRITE

AN

Mellanox

NVME Target

i
Post SEND—

Completion

Completion

Post NVMe
command
Wait for
completion

© 2019 Mellanox Technologies 35

NVME-OF RDMA. Request batching Mellanox

CPU NIC CPU NIC

Work request #1 [Doorbell, MMIO___} Work request #1,2 Batched Doorbell __|
R I
— DMA Read — DMA Read
 » »
-
—— DMA Read
— »
Doorbell, MMIO
Work request #2 |: T
[
— DMA Read
\
\ 4 v \ 4 v

© 2019 Mellanox Technologies 36

