
© 2019 Mellanox Technologies 11

Sasha Kotchubievsky, Oren Duer| Mellanox Technologies
September, 2019

SPDK, NVME-OF
Acceleration

© 2019 Mellanox Technologies 22

Agenda

▪ Background
▪ Low-level optimizations in NVME-OF RDMA transport
▪ Data protection in RDMA transport
▪ Advanced hardware accelerations in network layer

© 2019 Mellanox Technologies 33

NVME and NVME-OF
▪ NVMe is designed to work over a PCIe bus
▪ The NVMe over Fabrics is the protocol used for transferring NVMe storage commands between the

client nodes over storage fabric
▪ NVME-OF RDMA
▪ NVME-OF TCP
▪ NVME-OF FC

Fabric based Transports

Messages & Memory

Commands use capsules.
Data may use Capsules or
Memory

Examples: RDMA (ROCE,
InfiniBand)

Messages

Commands and data use
messages

Examples: TCP

Memory

Commands and data use
shared memory

Examples: PCI Express

NVME Transports

© 2019 Mellanox Technologies 44

SPDK. NVME-OF Abstraction

NVME-OF Target Client (Initiator)

SPDK
Storage
Protocols

NVME-OF
Target NVME-OF

RDMA

SPDK
Storage
Services

Block Device Abstraction

SPDK
Drivers

NVME Driver

NVME-OF Driver

Application

RDMA

© 2019 Mellanox Technologies 55

NVME-OF RDMA
Optimizations

© 2019 Mellanox Technologies 66

NVME-OF RDMA. Performance optimizations
▪ Scope

▪ NVME-OF Target on x86
▪ NVME-OF Target on ARM
▪ NVME-OF Target forwards IO to backend target

▪ Network cards
▪ “ConnectX-5”
▪ “BlueField”

© 2019 Mellanox Technologies 77

RDMA. Selective signaling

▪ “Selective signaling” reduces PCIe bandwidth and CPU usage by eliminating DMA completion
▪ In IO Read flow, RDMA_WRITE is followed by RDMA_SEND

▪ Completion for RDMA_WRITE can be skipped

▪ Developed by Alexey Marchuk, Mellanox: https://review.gerrithub.io/c/spdk/spdk/+/456469
▪ Available in SPDK v19.07

▪ “Selective signaling” increases IOPs in “randread”
▪ ARM up to 15%

https://review.gerrithub.io/c/spdk/spdk/+/456469

© 2019 Mellanox Technologies 88

RDMA. Work request batching

▪ “Work request batching” reduces CPU use and PCIe bandwidth by using single MMIO operation
(“Doorbell”) for multiple requests

▪ The default approach for WQE (work request element) transferring requires separate MMIO for each
WQE

▪ WQE batching improve:
▪ IO Read flow: RDMA_WRITE is followed by RDMA_SEND
▪ “Heavy” loads (high queue depth): NVME-OF Target needs to submit multiple RDMA operations
▪ Multi –element SGL: Each element needs own RDMA operation

▪ Developed by:
▪ Seth Howell, “Intel”: https://review.gerrithub.io/c/spdk/spdk/+/449265 - NVME-OF Target

▪ Available in SPDK v19.07 . Requires applying fix : https://review.gerrithub.io/c/spdk/spdk/+/466029

▪ Evgenene Kotchetov, “Mellanox” : https://review.gerrithub.io/c/spdk/spdk/+/462585/ - NVME-OF Initiator

▪ Preliminary results:
▪ ARM: randread (queue depth 64) up to 5%, randwrite (queue depth 64) up to 12% increase in IOPs

https://review.gerrithub.io/c/spdk/spdk/+/449265
https://review.gerrithub.io/c/spdk/spdk/+/466029
https://review.gerrithub.io/c/spdk/spdk/+/462585/

© 2019 Mellanox Technologies 99

RDMA. Work request’s payload inlining

▪ Payload inlining reduces PCIe bandwidth by eliminating DMA read for payload
▪ Small payloads up to a few hundred of bytes can be encapsulated into WQE
▪ Payload inlining can be used for NVME-OF response

▪ Capsule size is 16 bytes
▪ The feature is under development (Alexey Marchuk, “Mellanox”):

https://github.com/Mellanox/spdk/commit/8682d067e5ab9470fb3596db0c47411c974ac47f

https://github.com/Mellanox/spdk/commit/8682d067e5ab9470fb3596db0c47411c974ac47f

© 2019 Mellanox Technologies 1010

NVME-OF RDMA
Data protection

© 2019 Mellanox Technologies 1111

Data Corruption

▪ IS A DISSASTER !!

▪ Backups may have bad data

▪ Downtime/Corruptions may be fatal to a company

▪ It is better to Not Return any data, than return a wrong one

▪ Occur as a result of bugs, both SW and HW (drivers, HBAs, Disks, Arrays)

▪ Common failures:

• Write incorrect data to the storage device – may take months for recognition

• Misdirected writes

Error can happen in every entity in the IO path:

© 2019 Mellanox Technologies 1212

I/O path entities

*based on Martin K. Peterson slide

© 2019 Mellanox Technologies 1313

Model

▪ 8 byte of integrity tuple per sector

▪ Guard tag:
▪ Per request property

▪ Protects the data portion of the sector

▪ On the Wire – CRC using well-defined polynomial

▪ OS – usually use cheaper IP checksum algorithm (may use CRC)

▪ I/O controller should convert between types, if needed

▪ Application tag:
▪ Opaque

▪ Free usage by application

▪ Reference tag:
▪ Protect against misdirected writes

▪ Type 1 - 32 LSbits of the LBA are used as base tag and incremented with each segment

▪ Type 2 - 32 LSbits of the LBA used as base tag, can be anything for the rest

▪ Type 3 – Only Guard tag is checked

© 2019 Mellanox Technologies 1414

• Two possibilities for MetaData layout

• Interleaved: Each data block is appended with 8byte integrity payload.

• Not supported by Linux for local devices

• Separate: Integrity payload fields lie in a separate buffer from the data.

• Not supported in Fabrics by definition of the spec (not enough space in the SQE for metadata pointer)

LBA N:

Data

LBA N:

PI

LBA N+1:

Data

LBA N+1:

PI

LBA N:

Data

LBA N:

PI

LBA N+1:

Data

LBA N+1:

PI

NVMEoF – Metadata Handling

© 2019 Mellanox Technologies 1515

NVME-PCI. Data protection

Host NVME Disc

NVME
Controller NVM

LB Data LB Data
LB Data

No Protection

Host NVME Disc

NVME
Controller NVM

LB Data PI LB Data PI

LB Data PI

End-to-End Data Protection

Host NVME Disc

NVME
Controller NVM

LB Data LB Data PI

LB Data

“Insert & Strip Data Protection”

© 2019 Mellanox Technologies 1616

NVME-OF. Data protection

Host NVMF Target

NVMF
Controller NVMe Disc

LB Data LB Data
LB Data

No Protection

Host NVMF Target

NVMF
Controller NVMe DiscLB Data PI

End-to-End Data Protection

“Insert & Strip Data Protection”

Host NVMF Target

NVMF
Controller NVMe Disc

NVMF
Driver

NVMF
Driver

NVMF
Driver

Verify Verify

Insert/Strip

RDMA Transport

RDMA Transport

LB Data PI LB Data PI

LB Data PI
LB Data

LB Data

© 2019 Mellanox Technologies 1717

SPDK. DIF “Insert & Strip” mode

▪ DIF “Insert & Strip” mode in TCP Transport
▪ Shuhei Matsumoto, “Hitachi” : https://review.gerrithub.io/c/spdk/spdk/+/456452 - SW implementation

▪ Available in SPDK v19.07

▪ DIF “Insert & Strip” mode in RDMA Transport
▪ Aleksey Marchuk, Evgeny Kochetov, “Mellanox” : https://review.gerrithub.io/c/spdk/spdk/+/465248 - SW implementation
▪ HW accelerated mode is under development : https://github.com/EugeneKochetov/spdk/tree/nvmf_rdma_sig_offload

https://review.gerrithub.io/c/spdk/spdk/+/456452
https://review.gerrithub.io/c/spdk/spdk/+/465248
https://github.com/EugeneKochetov/spdk/tree/nvmf_rdma_sig_offload

© 2019 Mellanox Technologies 1818

DIF “Insert & Strip” mode. SW vs HW

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

1024 4096 8192

IO
Ps

IO block size

Read, Single core performance

Dif, HW Offload Dif, SW calculation

Queue depth: 32
Block size: 512+8
Disk: Samsung PM1725b
Platform: x86

Higher is better

HW acceleration for DIF data protection
overperforms SW by 200%

© 2019 Mellanox Technologies 1919

SPDK. Memory management in NVME-OF RDMA

NVME-OF Target

SPDK
Storage
Protocols

NVME-OF
Target

NVME-OF
RDMA

SPDK
Storage
Services

Block Device Abstraction

SPDK
Drivers

NVME Driver

IO buffer #0 IO buffer #1

SGL[0] SGL[1]

IOV[0] IOV[1]

IOV

IOV

SGL

Buffers

© 2019 Mellanox Technologies 2020

NVME-OF RDMA. Metadata placement

md#0 md #1 md #2 md #3

SGL[0]

IOV[0] IOV[1]

SGL[1] SGL[2] SGL[3]

IO buffer #0

IV[0]

metadata

IV[1] I4 I5 I6 7

IO buffer #1

IV[2] IV[3]

SGL[0] SGL[1]

DIF Model

DIX Model

Memory

RDMA SGL

Bdev IOV

Memory

RDMA SGL

Bdev IOV

© 2019 Mellanox Technologies 2121

NVME-OF RDMA. Metadata placement

▪ “DIF” model increases number of SGL elements in RDMA layer
▪ “DIX” model increases number of IOV elements transferred to bdev layer
▪ In performance testing “DIF” model overperforms “DIX”
▪ “DIF” model is chosen as default option

▪ Multi-element SGL will be can be replaced by UMR (“User memory region”)

▪ “DIX” model is used for “in-capsule” data

© 2019 Mellanox Technologies 2222

HW acceleration for “DIF”

B B B B

Block signatures

Chunk of data with signature Source: Wire / Memory

Chunk of data with signature Destination: Memory / Wire

Add/Verify & Remove

© 2019 Mellanox Technologies 2323

“User space” API for “DIF”

▪ Signature operation is executed at data moving between two Signature Domains
▪ Wire Domain
▪ Memory Domain

▪ Signature Operations
▪ Add
▪ Verify
▪ Verify & Remove

▪ Signature types
▪ Repeating block signature. All blocks must have equal size
▪ Transaction signature are used for protecting entire transaction
▪ Variable block signature covers data of any size

▪ Using “indirect” memory referencing, both DIF and DIX modes are supported
▪ Planned to be submitted to “upstream” (rdma-core) in 2019

https://github.com/linux-rdma/rdma-core

© 2019 Mellanox Technologies 2424

HW acceleration for data protection. Summary

▪ HW acceleration for guard tag calculation by NIC demonstrates advantage over SW implementation
▪ Roadmap:

▪ User-spaces API for “DIF” manipulation. Submitting to “upstream”
▪ HW acceleration for “Insert & strip” mode in SPDK’s implementation for NVME-OF target
▪ HW acceleration for Data Integrity Field generation in SPDK’s initiator
▪ Verifying DIF in network layer (RDMA) in “initiator” and “target” sides

© 2019 Mellanox Technologies 2525

Advanced hardware
accelerations

© 2019 Mellanox Technologies 2626

Superior Storage Performance

Storage Accelerations

Storage Security

Unique Features

BlueField-2

▪ 8 Arm® A72 CPUs @ 2GHz-2.5GHz
▪ Dual 100Gb/s or Single 200Gb/s ports
▪ 16 lanes of PCIe Gen4.0
▪ Up to 5.4M IOPs @ 4KB
▪ Lowest latency

▪ Data-at-Rest AES-XTS encryption
▪ Authentication/Authorization services
▪ Encryption and decryption of data

to/from storage
▪ Protection between users

▪ NVMe-oF offloads
▪ NVMe-oF SPDK offload
▪ RAID, Erasure Coding, CRC32, CRC64

and T10-Diff

▪ Data (De)Compression
▪ NVMe SNAP™
▪ Deduplication

© 2019 Mellanox Technologies 2727

SmartNIC

NVMe SNAP

▪ Emulate locally attached PCIe NVMe drive

▪ Unmodified NVMe driver on host

▪ NVMe queues serviced in ARM
▪ Then go to network
▪ Admin Queue, IO Queues

▪ Optional: IO path skips ARM
▪ Protocol conversion on IO processor
▪ Must be simple enough
▪ Must be RDMA
▪ For example: NVMe-oF
▪ Lose IOP-level software manipulation option
▪ Admin queue still in ARM

External host (bare metal or VM)

NVMe driver

External targets:
NVMf, iSCSI, iSER,

myIO…

Admin Q IO Q

ARM

HW IO
processor

NVMe emulator

Registers

Dev Mem

NVMe drive

Net

PCIe

© 2019 Mellanox Technologies 2828

SPDK as NVMe emulators standard framework
HOST

NVMe IO queues

Sm
ar

tN
IC

Customer’s
proprietary

protocol

Bdev

vBdev

Customer’s vBdev

NVMe-oF
Initiator

NVMe
local PCI

Linux
POSIX AIO

Optional, e.g. RAID / LVM

SPDK bundle

NVMe
controller

Optional, customers proprietary logic

▪ New: NVMe controller
▪ NVMe device-side registers
▪ NVMe device-side admin commands
▪ NVMe device-side IO commands

▪ Vendor specific library
▪ Bind to host NVMe device emulation

▪ Shared code and .h files
▪ With NVMe driver
▪ With NVMf target

▪ Configuration is similar to NVMf target
▪ Subsystem == emulated NVMe drive
▪ Bind BDEVs as Namespaces

NVMe controller

SP
D

K
 M

an
ag

e
m

e
n

t

NVMf RDMA
target

NVMe registers and
Admin Queue

MLNX SNAP

© 2019 Mellanox Technologies 2929

Zoom in

SPDK NVMe Controller

NVMe controller

HOST

NVMe
Admin
queue

NVMe IO
queues

NVMe
registers

Read/Write
requests to
BDEV

Register NVMe emulation driver
Register NVMe emulated disk
NVMe regs change
Admin request
IO request

Mellanox NVMe SNAP

plugin

(BlueField)Target-like configuration
Subsystem = NVMe disk
Namespace map to BDEV

NVMe regs change
Create admin queue
Admin response
Create IO queue
IO response

NVMe controller provider API

NVMF

target?

© 2019 Mellanox Technologies 3030

NVMe Controller full-path offload
HOST

NVMe registers and
Admin QueueNVMe IO queues

Sm
ar

tN
IC

Customer’s
proprietary

protocol

Bdev

vBdev

Customer’s vBdev

NVMe
over TCP

Linux
POSIX AIO

Optional, e.g. RAID / LVM

SPDK bundle

Optional, customers proprietary logic

▪ NVMe SNAP to NVMf initiator offload

▪ Per emulated device configuration
▪ Don’t offload
▪ Always offload

▪ Fail configuration if not possible

▪ Best effort offload
▪ Offload if possible, software path if not

▪ Best performance!
▪ For simple use cases

SP
D

K
 M

an
ag

e
m

e
n

t
NVMe-oF
Initiator

NVMe
controller

MLNX SNAP

© 2019 Mellanox Technologies 3131

SPDK in-network offloads

▪ vs. local mem-to-mem offloads

▪ Upper application configured to use a bdev
▪ NVMe controller for SNAP
▪ NVMe-oF target

▪ Interrogate vbdevs/bdevs chain
▪ Identify the kind of bdev (NVMf, iSCSI, Crypto…)
▪ Get configuration / create resources
▪ If vbdev, get next (v)bdev(s), repeat

▪ Can the full flow and configuration be
offloaded?
▪ If yes – allow offload, configure device
▪ If no – continue in software

▪ Notification for runtime changes in configs
▪ Thin provisioning new chunk mapped
▪ Volume resized

NVMe SNAP
to host

Bdev

vBdev

SP
D

K
 M

an
ag

e
m

e
n

t

vBdev

NVMe
controller

NVMe-oF
Initiator

MLNX SNAP

NVMe-oF
target

NVMe local
PCI

NVMf target
RDMA to
network

In
terro

gatio
n

 / N
o

tificatio
n

© 2019 Mellanox Technologies 3232

© 2019 Mellanox Technologies 33

Thank You

© 2019 Mellanox Technologies 3434

Backup

© 2019 Mellanox Technologies 3535

NVME-OF RDMA. IO Read. Selective signaling

NVMe Initiator NIC NIC NVME Target

Post SEND
Send Command Capsule

Completion

Completion

ACK

Post WRITE

Write Data

ACK

Completion

Post SEND

Send –Response Capsule

ACK

Completion

Completion

Post NVMe
command
Wait for
completion

© 2019 Mellanox Technologies 3636

NVME-OF RDMA. Request batching

CPU NIC

Batched Doorbell

DMA Read

Work request #1,2

CPU NIC

Doorbell, MMIO

DMA Read

Work request #1

Doorbell, MMIO

DMA Read

Work request #2

DMA Read

