
1

Lessons Learned from MemVerge
Yue Li and Wei Kang

MemVerge
09/06/2019

Agenda
• MemVerge Overview

• Our PMDK experience

– libpmemobj

• Memory allocation

• Concurrent memory allocation

• Summary

2

About MemVerge

3

• Founded in 2017

• Headquartered in Milpitas, California, USA

• R&D teams in US and China

• Focus: next generation data infrastructure powered by

persistent memory

• Current product: MemVerge Distributed Memory Objects (DMO)

• Beta version is now available for early PoC customers.

• https://www.memverge.com/#beta

https://www.memverge.com/

Data Infrastructure Pain Points

4

DRAM is small and
expensiveStorage IO is slow

Could there be a solution that makes storage faster and memory bigger?

A New Class of Memory
• Persistent Memory (aka Storage Class Memory, NVRAM)

– Low latency and high throughput, near the speed of DRAM

– High density and non-volatility, like NAND flash

5

• Intel/Micron 3D XPoint
– NVMe SSD （Optane SSD)
– Byte-addressable DIMM

(Optane DC PMEM)

SSD PMEM DIMM

6

Storage Class Memory has Emerged!

• Intel Delivered Optane DC Persistent Memory based on 3D XPoint tech in Q2 2019

– Revenue projected to reach $3.6B by 2023

• Additional major vendors to join the foray by 2022

– Making this a $10B+ market by 2025

• Software ecosystem will be key for technology adoption

– Identifying work load with strong ROI

– Allowing adoption without requiring application rewrite

Picture source: storagereview.com

7

MemVerge software leverages Storage Class Memory
technology to deliver larger memory and faster storage to

applications without requiring application rewrites

World’s First
Memory Converged Infrastructure

Memory “Hypervisor”

SCM-native Distributed File
System

SCM-native Distributed
Memory System

8

Memory Converged Infrastructure Platform

...

…

Distributed Memory Objects (DMO)

DRAM

Compute Node 3

SCM
SSD

DRAM

Compute Node 4

SCM
SSD

DRAM

Compute Node 5

SCM
SSD

DRAM

Compute Node 2

SCM
SSD

DRAM

Compute Node 1

SCM
SSD

Memory “Hypervisor”

SCM-native Distributed
File System

SCM-native Distributed
Memory System

DatabaseBig Data AnalyticsMachine Learning

MemVerge is an Avid PMDK User

• This presentation

– Share our stories as PMDK user

• libpmemobj

• Focus on memory allocation

• Related Intel webinar on PMDK allocator

9

https://software.intel.com/en-us/videos/introduction-to-persistent-memory-allocator-and-transactions

https://software.intel.com/en-us/videos/introduction-to-persistent-memory-allocator-and-transactions

Developing with PMEM

• Native support by recent Linux releases

– e.g. CentOS/RHEL 7.5+ with vanilla kernel

• Great if real PMEM presents

– e.g. Intel Optane DC PMEM

• PMEM emulation is easy

– Augmenting grub with memmap=2G!4G

– Works well on VMs, commodity laptops…

– Emulated PMEM device survives across powered reboot

10

PMDK Strengths

• PMEM-native data access

– pmem_persist and pmem_memcpy

– Automatically applies platform-dependent optimization on accessing PMEM

• Avoid your own tedious and error-prone implementations

• Transactions are readily available (for atomicity)

• Versatile

– Different allocators (libpmemlog, libpmemblk, libpmemobj and libvmmaloc)

– Different data abstractions (raw memory, object store, block, and key-value)

• Support different drivers including pmem block device and device DAX

11

libpmemobj
• Allow objects get allocated and persisted in PMEM

• Simple to use

– Create a pmem pool with pmempool utility, and we are ready to go

• Allocator has a good memory utilization across a wide range of allocation sizes

– Great for 16K and 64K

– Can be better for 1MB+

12

Allocation Size Utilization %

512 87.2

4096 92.1

16384 97.4

65536 98.2

262144 93.6

1048576 74.8

2097152 88.7
*Assume using 4GB pool

Understand the Results via
pmempool info

• Helps us understand our utilization results

13

9 contiguous chunks per 2MB object

Utilization = 2MB / (9 * 256KB) = 88.7%!

Can we just use 8 chunks? (100% utilization)

*Output for 2MB allocations

MemVerge Confidential 14

Zone 0 Zone N

…

…

…

…

…

Run 0
Chunk …

libpmemobj
Persistent Heap Organization

Block Block

…

pmempool info -H -C -b

15

• Enables heap, chunk and bitmap information

• 1 MB allocation

• 16 x 256KB contiguous chunks to create a “run” type area.

• Suballocated via bitmap.

• Only 3 x 1MB allocations can be made from the 16 x 256KB area

– which ideally could fit four.

– Due to overhead

– Explains 74.8 % utilization

How to Improve Utilization

• Custom allocation classes

– Let you specify

• Allocation unit size

• Number of allocation units

• Whether allocation unit has a header and what type

• The alignment of the units

– libpmemobj has 53 pre-defined allocation classes

• Allocator makes decision on which ones to use

– Define additional allocation classes

• Via pmemobj_ctl_set

– Allocate through specific allocation classes

• Function pmemobj_xalloc() can be parameterized by allocation class

16

Custom Allocation Class Example

17

• Allocation class has a name, following a naming convention

pmemobj_ctl_get can retrieve the allocation class.

• Class 54 is the first unused class

• Let’s use it for an efficient 1MB allocation

• 4KB alignment (page aligned)

• No header

• 256 units per run

• Use pmemobj_xalloc()

– with POBJ_CLASS_ID() option

Custom Allocation Class to Improve Utilization

Utilization becomes 95% for 1MB allocation

After: using custom allocation class
Before: using default allocation class

Tips for Custom Allocation Class

• Dramatically improves pool utilization

– Especially when allocating objects with sizes chosen from a fixed small set

– e.g. {4KB, 8KB, …, 1MB}

• Finding best custom parameters can still be challenging

– Needs experiments

• Use pmempool to sanity check the results

• Improper use of allocation classes results in very bad utilizations

– E.g. allocate very small objects using our custom class 54…

20

Failures of Parallel Allocation

21

• Allocation failures can occur even though ample space remains

in PMEM pool

– Multi-threading

– Variant object size

– Customized allocation classes

Allocation Arena

22

• libpmemobj uses arena to provide support for multithreaded allocations

– Each thread is assigned a separate arena

– High concurrency

Picture source: Intel PMDK webinar

A Hypothesis

23

• Unbalanced use of arenas
– Arena reserve memory per allocation class

– Thread is assigned to an arena at first allocation

…

Arena 1 Arena 2 Arena N

Thread 1 Thread 2 Thread N

To Validate Our Hypothesis
• Two sets of threads

– Set 1: allocate objects in parallel

– Set 2: free objects allocated by Set 1 in parallel

MemVerge Confidential 24

May fail due to unbalanced
allocation

May also fail!

Transactional deallocation
also requires allocating log
in PMEM!

Solutions in PMDK 1.5

• Retry in user application via a different thread

• Arena pre-reservation

25

Solutions in PMDK 1.6

• PMDK 1.6 allows a thread to manually change arena

– pmemobj_ctl_get(“heap.arena.[arena_id].size”)

– pmemobj_ctl_set(“heap.thread.arena_id”)

• Multiple solutions can be developed based on this facility

26

Solutions

• Use single arena

27

• Easy to implement

• Hurt concurrency due to single lock contention

• Allocation class based arena

• Simple to implement

• Minor conflicts on arena (when you have many threads allocating same sized objects)

Solutions cont.

• Choose a different arena upon allocation failure

28

…

Arena 1 Arena 2 Arena N

Thread 1 Thread 2 Thread N

Find the arena with the largest free space via
pmemobj_ctl_get(“heap.arena.[arena_id].size”)

Set to use the arena with the largest free space via
pmemobj_ctl_set(“heap.arena.thread_id”)

Evaluation

29

• Test bed
– CPU: Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz 96 cores

– Dax: 1 AEP Dimm 128G

• Methodology
– 4 threads allocate objects in parallel

– 8 threads free objects in parallel

– Object size: 4KB, 8KB, …, 64MB, one allocation class per object size

– Stop after total allocated 4TB objects in total

– Metric: the average time to stop the execution

Results

30

Solution Time

Single arena 46.092s

Use arena for every allocation class 41.072s

Retry allocation in other arena 33.078s

* Allocations are fully randomized, results may change for other allocation patterns

Summary

31

• PMEM poses new challenges to software and hardware

– High performance, high memory utilization, less fragmentation…

• SPDK, DPDK, PMDK are extremely useful as components in a distributed system.

• PMDK has ways to increase performance and productivity for PMEM applications

– but requires advanced programming techniques and developer attention.

– memory allocation is only a small tip of the iceberg

• MemVerge and Intel together deliver better scalability and performance at a lower cost
via a disruptive PMEM-optimized data infrastructure

– AI, Big Data, Banking, Animation Studios, Gaming Industry, IoT, etc.

– Machine learning, Analytics, and Online systems

• We are in Beta! To become our PoC customer

– https://www.memverge.com/#beta

• Join us! We are hiring strong engineering candidates

– Locations: Shanghai, Beijing, Silicon Valley

– https://www.memverge.com/careers/

32

https://www.memverge.com/
https://www.memverge.com/careers/

Risks and Future Outlooks

• Scaling of 3D Xpoint
– Current 3D XPoint is PCM based, which may have scaling issue

– Density may not persistently increase year by year

– Affect the cost

• Dependency on Intel execution

• But, some other kinds of SCM may be introduced in the future under
the same framework
– STT-RAM

– Z-NAND (Samsung)

– ReRAM (Toshiba/WD/Crossbar)

33

Check out our demo!

