Yue{‘;Li and W'ei .Ka-,@.gl R

.

Y

MemVerge -
- 09/06/2019

- S———

Agenda

* MemVerge Overview

* Our PMDK experience

— libpmemobj
* Memory allocation

* Concurrent memory allocation

* Summary

About MemVerge

Founded in 2017
Headquartered in Milpitas, California, USA

R&D teams in US and China

Focus: next generation data infrastructure powered by
persistent memory

e Current product: MemVerge Distributed Memory Objects (DMO)

« Beta version is now available for early PoC customers.

https://www.memverge.com/

Data Infrastructure Pain Points

Storage 1O is slow DRAM is 5”?" and
expensive

Could there be a solution that makes storage faster and memory bigger?

A New Class of Memory

* Persistent Memory (aka Storage Class Memory, NVRAM)

— Low latency and high throughput, near the speed of DRAM

— High density and non-volatility, like NAND flash

* |ntel/Micron 3D XPoint

— NVMe SSD (Optane SSD)

— Byte-addressable DIMM
(Optane DC PMEM)

D N OPTANE” 57

SSD PMEM DIMM

3D XPoint™ Technology:
An Innovative, High-Density Design

Stackable
These thin layers of memory can be
stacked to further boost density.

Cross Point Structure
Perpendicular wires connect submicroscopic
ccolumns. An individual memory cell can be
addressed by selecting its top and bottom wire.

Selector

Whereas DRAM requires a transistor
at each memory cell—making it big
and expensive—the amount of
voltage sent to each 3D XPoint™
Technology selector enables its
memory cell to be written to or read
without requiring a transistor.

Non-Volatile

3D XPoint™ Technology is
non-volatile—which means your data
doesn't go away when your power goes
away—making it a great choice for storage.

High Endurance
Unlike other storage memory technologies, 3D XPoint™
Technology is not significantly impacted by the number
of write cycles it can endure, making it more durable.

Memory Cell
[Each memory cell can store a single
bit of data.

Storage Class Memory has Emerged!

* Intel Delivered Optane DC Persistent Memory based on 3D XPoint tech in Q2 2019

— Revenue projected to reach $3.6B by 2023

* Additional major vendors to join the foray by 2022

— Making this a $10B+ market by 2025

* Software ecosystem will be key for technology adoption
— Identifying work load with strong ROI

— Allowing adoption without requiring application rewrite

e \'
- \

Picture source: storagereview.com 6

World’s First

Memory Converged Infrastructure
MemVerge

MemVerge software leverages Storage Class Memory
technology to deliver larger memory and faster storage to
applications without requiring application rewrites

SCM-native Distributed File SCM-native Distributed
System Memory System

Memory “Hypervisor”

Memory Converged Infrastructure Platform

Machine Learning Big Data Analytics Database

\

PyTorch w
(X X)
»J ‘L € . Jupyter o

SCM-native Distributed I} SCM-native Distributed
File System Memory System

Compute Node 1 Compute Node 2 Compute Node 3 Compute Node 4 Compute Node 5

DRAM DRAM DRAM DRAM — DRAM
SCM SCM SCM SCM SCM

MemVerge is an Avid PMDK User

* This presentation

— Share our stories as PMDK user
* libpmemobj
* Focus on memory allocation

 Related Intel webinar on PMDK allocator

https://software.intel.com/en-us/videos/introduction-to-persistent-memory-allocator-and-transactions

Developing with PMEM

Native support by recent Linux releases

— e.g. CentOS/RHEL 7.5+ with vanilla kernel

Great if real PMEM presents
— e.g. Intel Optane DC PMEM

PMEM emulation is easy
— Augmenting grub with memmap=2G!4G
— Works well on VMs, commodity laptops...

— Emulated PMEM device survives across powered reboot

10

PMDK Strengths

PMEM-native data access

— pmem persist and pmem memcpy
— Automatically applies platform-dependent optimization on accessing PMEM

* Avoid your own tedious and error-prone implementations

Transactions are readily available (for atomicity)

Versatile
— Different allocators (libpmemlog, libpmemblk, libpmemobj and libvmmaloc)

— Different data abstractions (raw memory, object store, block, and key-value)

» Support different drivers including pmem block device and device DAX

11

libpmemob;
* Allow objects get allocated and persisted in PMEM

* Simple to use

— Create a pmem pool with pmempool utility,and we are ready to go

* Allocator has a good memory utilization across a wide range of allocation sizes
— Great for 16K and 64K

— Can be better for IMB+

512
4096
16384

int main(int argc, char *argv([]) {
PMEMobjpool *pop = pmemobj_open("/dev/dax0.0", "mvdmo");
if (pop == NULL || argc < 2) {
return 1;
}
uinté4 t n = 0;
uint32 t allocation_size = std::stoul(argv[1]);
for (;;) {
PMEMoid oid;
int rc = pmemobj_alloc(pop, &oid, allocation_size, 1, nullptr, nullptr);
if (rc)
break;
++N;

65536
262144
1048576
2097152

*Assume using 4GB pool

}

uint64 t totsize = 4225761280ULL;

uint64 t utilized = n * allocation_size;

std::cout << totsize << "," << utilized << "," << totsize - utilized << " : "
<< utilized * 1000 / totsize << std::endl;

pmemobj close(pop);

return 0;

12

Understand the Results via

pmempool info

* Helps us understand our utilization results

Yajor

Minor

Chunk size
Chunks per zone
Checksum

Zone 9:

Chunk
Type
Flags
Size idx

Chunk
Type
Flags
Size idx

Chunk
Type
Flags
Size idx

Chunk
Type

3 il

: 0

1 262144
: 65528
! Ox4bf97ca8+7542425 [0OK]

1 0

: used

: ©x1 compact header
: 9

: 9
: used

: ©x1 compact header
: 0

: 18

: used

: Ox1 compact header
: 9

3 2
: used

*Output for 2MB allocations

9 contiguous chunks per 2MB object

Utilization = 2MB / (9 * 256KB) = 88.7%)!

Can we just use 8 chunks? (100% utilization)

13

libpmemobj
Persistent Heap Organization

MemVerge Confidential 14

pmempool info -H -C -b

* Enables heap, chunk and bitmap information

Chunk size
Chunks per zone
Checksum

Zone O:

Chunk

Type

Flags

Size idx
Block size
Bitmap
XXXXXXXX XXXXXXXX XXXXXXXX

Chunk

Type

Flags

Size idx
Block size
Bitmap
XXXXXXXX XXXXXXXX XXXXXXXX

Chunk

Type

Flags

Size idx
Block size
Bitmap -
XXXXXXXX XXXXXXXX XXXXXXXX

: 262144
. 65528
: Ox4bf97ca8f7542425 [0K]

. 0

run

: ©x9 compact header
: 16

: 135296

124 / 31

. 16

run

: @x9 compact header
: 16

: 135296

24 / 3

5 Iy

run

: ©x9 compact header
: 16
: 135296

24 / 31

| MB allocation
16 x 256KB contiguous chunks to create a “run” type area.
Suballocated via bitmap.

Only 3 x IMB allocations can be made from the 16 x 256KB area

— which ideally could fit four.

- Due to overhead

— Explains 74.8 % utilization

15

How to Improve Utilization

e Custom allocation classes

— Let you specify

Allocation unit size
Number of allocation units
Whether allocation unit has a header and what type

The alignment of the units

— libpmemobj has 53 pre-defined allocation classes

Allocator makes decision on which ones to use

— Define additional allocation classes

Via pmemobj ctl set

— Allocate through specific allocation classes

Function pmemobj xalloc () can be parameterized by allocation class

16

Custom Allocation Class Example

* Allocation class has a name, following a naming convention

static void dump_alloc_classes(PMEMobjpool *pop) {
char cls desc[32];
struct pobj alloc class_desc cls;
for (int 1 = 0; 1 < 255; i++) {
snprintf(cls desc, sizeof(cls desc), "heap.alloc class.%d.desc", 1i);
if (pmemobj_ctl _get(pop, cls desc, &cls) >= 0) {
? "%s %lu\n", cls desc, cls.alignment);

"cls.unit size: %lu\n", cls.unit size);
"cls.units per block: %d\n", cls.units per block);
"cls.class id: %d\n", cls.class id);

pmemobj ctl get can retrieve the allocation class.

heap.alloc _class.@.desc ©
cls.unit _size: 262144
cls.units _per block: ©
cls r'Iacc_ir‘l' A
heap.alloc _class.l.desc ©
cls.unit _size: 128
cls.units_per block: 2045
cls . class id: 1
heap.alloc _class.2.desc ©
cls.unit _size: 192
cls.units _per block: 1364
cls.class_id: 2

heap.alloc _class.51.desc ©
cls.unit _size: 246720
cls.units _per block: 17
cls.class_id: 51
heap.alloc _class.52.desc ©
cls.unit _size: 262080
cls.units per block: 16
cls.class_id: 52
heap.alloc _class.53.desc ©
cls.unit _size: 349440
cls.units per block: 12
cls.class_id: 53

17

Custom Allocation Class to Improve Ultilization

. . TATLC 1NT CUSTOM_aLloc_CLass\rrcropjpooL "pop, sSize L unit_size) 1
Class 54 is the first unused class pobj_alloc class desc cls;
cls.alignment = 4096;
cls.header type = POBJ HEADER NONE;
cls.unit size = unit size;

, . — :
Let’s use it for an efficient |MB allocation cls.units per block = 256,

cls.class_id = 54; /* e first class id available after the e-def
4KB alignment (Page aligned) if (pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &cls) < 0) {
printf("Failed to create allocate class for unit size: %lu\n", cls.unit_size);

return -1;

No header

return cls.class_id;

256 units per run nt main(int argc, char *argv[]) {
PMEMobjpool *pop = pmemobj_open("/dev/dax0.0", "mvdmo");
if (pop == NULL) {
return 1;

}
uint32 t allocation size = 1024 * 1024;
int clsid = custom alloc class(pop, allocation size);
if (clsid < 0) {
pmemobj_close(pop);
return -1;
Use pmemobj xalloc() }
uint64 t n = 0;
- with POBJ_CLASS_ID() option fognér:’:)d(4
MEMoid oid;
int rc = pmemobj xalloc(pop, &oid, allocation_size, 1, POBJ_CLASS ID(54), nullptr, nullptr);
if (rc)
break;
++0n;

}

uint64 t totsize = 4225761280ULL;

uint64 t utilized = n * allocation size;

std::cout << totsize << "," << utilized << "," << totsize - utilized << "
<< utilized * 1000 / totsize << std::endl;

pmemobj close(pop);

raturn A.

Utilization becomes 95% for | MB allocation

Before: using default allocation class

Chunk size 1 262144 . .
Chunks per zone . 65528 After: using custom allocation class
Checksum 1 Ox4bf97ca8f7542425 [0K] C:unI': e . 262144
Chunks per zone : 65528
Zone ©: Checksum : 0x4bf97ca8f7542425 [0K]
Chunk : 0 Zone 6:
Type @ Ll Chunk 1 0
Flags : Bx9 compact header Type © run
Size idx : 16 Flags : Oxe header none
Block size : 135296 Size idx : 1025
Bitmap 124/ 3 g}:::psue : %g;a?gss

KAAAXXAKAX KAXXAXXK XAXXXXXX o e e n e

Chunk : 16 XXXXXXXK XXXXXXXK XXKXXXKK XXKXXKKK XXKXXKKK XXKXXKKK XXXXXXKK XXXXXKXX
Type - run XXXXXXXK XXXXXXXK XXXXXXXK XXXXXXXK XXXXXXXK XXXKXXXXK XXXXXXXX XXXXXXX
F}ags_ : Bx9 compact header Chunk . 1025
Size idx : 16 Type : run
Block size : 135296 Flags : Oxe header none
Bitmap 124 / 31 g{zekid:s : 1222576
B ————— ock size :
"""" Bitmap : 255 / 255
XXXXXXXX XXXXXXXK XXKXXXKK XXKXXXKK XXKXXXKX XXKXXXKX XXXXXXKX XXXXXXXX
Chunk : 32 XXXXXXXK XXXXXXXK XXKXXXKK XXKXXKKK XXKXXXKK XXKXXKKK XXXXXXKX XXXXXXXX

Type I run

Flags : Ox9 compact header
Size idx : 16

Block size : 135296

Bitmap :

Tips for Custom Allocation Class

Dramatically improves pool utilization
— Especially when allocating objects with sizes chosen from a fixed small set

— e.g. {4KB,8KB, ..., IMB}

Finding best custom parameters can still be challenging

— Needs experiments
Use pmempool to sanity check the results

Improper use of allocation classes results in very bad utilizations

— E.g. allocate very small objects using our custom class 54...

20

Failures of Parallel Allocation

* Allocation failures can occur even though ample space remains

in PMEM pool

— Multi-threading
— Variant object size

— Customized allocation classes

21

Allocation Arena

libpmemobj uses arena to provide support for multithreaded allocations

— Each thread is assigned a separate arena

— High concurrency

Transient State

Allocator's runtime data structures which are
allocated from normal DRAM for performance
reasons

Application

v A 4 v A 4
Arena 0 Arena 1 Arena . Arena C

locks

AVL Tree of free chunks

Picture source: Intel PMDK webinar

Persistent State

Allocator's on-media data structures which are kept
on non-volatile memory and are updated in fail-safe
atomic way.

zone

chunk headers

chunk 0

chunk M

A

22

A Hypothesis

e Unbalanced use of arenas

— Arena reserve memory per allocation class

— Thread is assigned to an arena at first allocation

) Thread 1 Thread2 M) Thread N

To Validate Our Hypothesis

Two sets of threads

Set |:allocate objects in parallel

bjpool *pool, PMEMoid *objects,
jned object_count, size t size, unsigned alloc_class_id) {
i < object_count; i++) {
alloc(pool &objects[i], size, 0O,
ASS ID(alloc class_id),
nullptr,
(re) {
LOGERR("Allocate object %u size %u failed: %d",

i, size, errno); May fail due to unbalanced
e allocation

May also fail!

TX BEGIN(pool) {
(; 1 < object_count; i++) {
(0ID_IS NULL(objects[i]))

pmemobj_tx_free(objects[i]);

Transactional deallocation

}

} TX_ONABORT { .)
rc = -pmemobj_tx_errno(); also requires allocating log
LOGERR("Free object %u failed: %d", i, rc);

} TX_END; ' in PMEM!

rc;

MemVerge Confidential 24

Solutions in PMDK |.5

* Retry in user application via a different thread

* Arena pre-reservation

25

Solutions in PMDK [.6

* PMDK 1.6 allows a thread to manually change arena

— pmemobj ctl get(“heap.arena.[arena_id].size")

— pmemob] ctl set(“heap.thread.arena id”)

* Multiple solutions can be developed based on this facility

26

Solutions

* Use single arena

* Easy to implement

* Hurt concurrency due to single lock contention

* Allocation class based arena

Solutions cont

* Choose a different arena upon allocation failure

Arena 1 Arena 2 Arena N

-
|

Thread 1 Thread 2 Thread N

Find the arena with the largest free space via
pmemobj ctl get(”heap.arena.[arena id].size”)

Set to use the arena with the largest free space via
pmemob]j ctl set(“heap.arena.thread id”)

28

Evaluation
 Test bed

— CPU:Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz 96 cores
— Dax: | AEP Dimm 128G

* Methodology

— 4 threads allocate objects in parallel

— 8 threads free objects in parallel

— Object size: 4KB, 8KB, ..., 64MB, one allocation class per object size
— Stop after total allocated 4TB objects in total

— Metric: the average time to stop the execution

29

Results

Single arena 46.092s

Use arena for every allocation class 41.072s

Retry allocation in other arena 33.078s

* Allocations are fully randomized, results may change for other allocation patterns

30

Summary

PMEM poses new challenges to software and hardware

— High performance, high memory utilization, less fragmentation...

SPDK, DPDK, PMDK are extremely useful as components in a distributed system.

PMDK has ways to increase performance and productivity for PMEM applications

— but requires advanced programming techniques and developer attention.

— memory allocation is only a small tip of the iceberg

MemVerge and Intel together deliver better scalability and performance at a lower cost
via a disruptive PMEM-optimized data infrastructure

— Al, Big Data, Banking, Animation Studios, Gaming Industry, loT, etc.

— Machine learning, Analytics, and Online systems

31

* We are in Beta! To become our PoC customer

* Join us! We are hiring strong engineering candidates

— Locations: Shanghai, Beijing, Silicon Valley

Ky

https://www.memverge.com/
https://www.memverge.com/careers/

et

\

= .,j,..?"'}\' ».
Check

out'o

ur demo!

