
Szymon Romik
<szymon.romik@intel.com>
Intel® Data Center Group



Persistent Memory programming made easy with pmemkv

Agenda
Why pmemkv?

 Persistent Memory programming is difficult
 key-value store

pmemkv design
 goals for pmemkv
 architecture
 configuration
 life-cycle (persistent libpmemobj-based engines)

Engines
 overview
 multiple engines within the same memory pool

Language bindings
pmemkv is simple!

 API
 C++ example
 NodeJS example

Latencies and performance
Q&A

2



Why pmemkv?

3



Persistent Memory programming made easy with pmemkv 4

Why pmemkv?
Persistent Memory programming is difficult

fd = open("/my/file", O_RDWR);
…
base = mmap(NULL, filesize,

PROT_READ|PROT_WRITE,
MAP_SHARED_VALIDATE|MAP_SYNC, fd, 0);

close(fd);
…
base[100] = 'X';
strcpy(base, "hello there");
msync(…);
…

App Direct

Persistent Memory

u
se

r sp
a

ce
k

e
rn

e
l sp

a
ce

Application

Load/
Store

Standard
File API

pmem-Aware
File System

MMU
Mappings

PMDK

• Different modes for using Persistent Memory:
• Memory Mode
• Storage over App Direct
• App Direct

• A pmem-aware file system exposes persistent memory to applications as files
• In-place persistence (no paging, context switching, interrupts, nor kernel code executes)
• Byte addressable like memory (Load/store access, no page caching)
• Cache Coherent

It looks easy! But…



Persistent Memory programming made easy with pmemkv 5

Why pmemkv?

• Where is your data when crash happens?
• SNIA NVM programming model requires new responsibility from user application: flushing
• PMDK libpmem provides API for optimized flushing and primitives like memcpy/memmove/memset

W
P

Q

ADR
-or-

WPQ Flush (kernel only)

Core

L1 L1

L2

L3

WPQ

MOV

DIMM

C
P

U
 C

A
C

H
E

S
CLWB + fence

-or-
CLFLUSHOPT + fence

-or-
CLFLUSH

-or-
NT stores + fence

-or-
WBINVD (kernel only)

Minimum Required
Power fail protected domain:

Memory subsystem

Custom
Power fail protected domain
indicated by ACPI property:

CPU Cache Hierarchy

Persistent Memory programming is difficult



Persistent Memory programming made easy with pmemkv 6

Why pmemkv?

• pmem_persist is faster than msync(), but it is still not transactional
• SNIA NVM programming model requires new responsibility from user application: consistency
• PMDK libpmemobj provides transactional API, Persistent Memory allocator etc.

open(…);
mmap(…);
strcpy(pmem, "Hello, World!");
pmem_persist(pmem, 14); Crash

1. "\0\0\0\0\0\0\0\0\0\0..."
2. "Hello, W\0\0\0\0\0\0..."
3. "\0\0\0\0\0\0\0\0orld!\0"
4. "Hello, \0\0\0\0\0\0\0\0"
5. "Hello, World!\0"

Result?

struct data {
p<long long> x;

}

auto pop = pool<data>::("/path/to/poolfile", "layout string");
auto datap = pop.root();

transaction::run(pop, [&]{
datap->x = 5;

});

Persistent Memory programming is difficult

Learn more about libpmemobj and C++ 
programming during session:

“Creating C++ Apps with libpmemobj”



Persistent Memory programming made easy with pmemkv 7

Why pmemkv?

• API flexibility increases complexity
• API flexibility not always desired

• Usually the bigger barrier to adoption, the better performance gains
• Don’t have to be true for some specific workloads

• Large addressable market of cloud developers for an easy KV store
• Data stored in cloud will be the majority of all stored data in nearby future

• Key-Value data store provides straightforward API which can easily utilize Persistent 
Memory advantages
• Nothing new to learn in order to start using Persistent Memory in efficient way

• Simple API makes creation of different language bindings relatively easy
• Important in cloud native computing, where many high-level languages are being 

used

Q: How to make Persistent Memory programming easier?
A: Local Key-Value data store



Persistent Memory programming made easy with pmemkv 8

Why pmemkv?
• Key-value store can take advantage from persistence and big capacity of Persistent Memory
• Key-value store can utilize Persistent Memory byte addressability

• huge performance gain for relatively small key and values



Pmemkv design

9



Persistent Memory programming made easy with pmemkv 10

pmemkv design

Technical:

• Local key/value store (no networking)
• Idiomatic language bindings
• Simple, familiar, bulletproof API
• Easily extended with new engines
• Optimized for persistent memory 

(limit copying to/from DRAM)
• Flexible configuration, not limited to a 

single storage algorithm
• Generic tests

goals for pmemkv

Community:

• Open source, developed in the open 
and friendly licensing
• https://github.com/pmem/pmemkv

• Outside contributions are welcome
• Intel provides stewardship, validation 

on real hardware, and code reviews
• Standard/comparable benchmarks



Persistent Memory programming made easy with pmemkv 11

pmemkv design

P
M

D
K

libpmemobj

libpmemobj++

pmemkv core (C++)

C API

C++ API (header 
only)

p
m

e
m

k
v

C++ 
applications

NAPI

Node.js 
bindings

JNI

Java 
bindings

FFI

Ruby 
bindings

C
applications

Ruby 
applications

Java 
applications

JavaScript 
applications

memkind TBB
pmemkv
“native” 
engines

b
in

d
in

g
s

applications

pluggable engines

• pmemkv core is a frontend for engines
• Core implementation written in C++, not 

related to Persistent Memory
• Pluggable engines

• Some engines are implemented in 
pmemkv, some engines are imported 
from external projects

• Persistent engines are implemented with 
libpmemobj (PMDK)

• Native API for pmemkv is written C/C++
• pmemkv design allows for easy integration 

with high-level language bindings

architecture



Persistent Memory programming made easy with pmemkv 12

pmemkv design

• Flexible configuration API
• Works with different kinds of engines

• Every engine has documented supported config 
parameters individually

• Unordered map
• Takes name configuration value as a k-v pair

• Supported configuration types:
• int64/uint64/double
• string
• Arbitrary data (pointer and size)

• Resides on stack
• Takes optional destructor as an additional parameter if 

custom configuration parameter allocates memory 

configuration

config cfg;

status s = cfg.put_string("path", path);
assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

s = cfg.put_uint64("force_create", 1);
assert(s == status::OK);

Typical config structure example for libpmemobj-based engines



Persistent Memory programming made easy with pmemkv 13

pmemkv design
life-cycle (persistent engines based on libpmemobj)

Persistent MemoryDRAM

Application start



Persistent Memory programming made easy with pmemkv 14

pmemkv design
life-cycle (persistent engines based on libpmemobj)

Persistent MemoryDRAM

config cfg;

status s = cfg.put_string("path", “/daxfs/file”);
assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

cfg

config structure, 
resides on stack



Persistent Memory programming made easy with pmemkv 15

pmemkv design
life-cycle (persistent engines based on libpmemobj)

Persistent MemoryDRAM

config cfg;

status s = cfg.put_string(“path", “/daxfs/file”);
assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

cfg

db object – volatile 
object for managing 

engine

kv



Persistent Memory programming made easy with pmemkv 16

pmemkv design
life-cycle (persistent engines based on libpmemobj)

Persistent MemoryDRAM

config cfg;

status s = cfg.put_string("path", “/daxfs/file”);
assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

if (kv->open("cmap", cfg) != status::OK) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

kv.open() 
- creates/opens persistent memory pool

- checks consistency and perform recovery
- takes ownership for cfg structure

kv

cfg

/daxfs/file

cmap

k v



Persistent Memory programming made easy with pmemkv 17

pmemkv design
life-cycle (persistent engines based on libpmemobj)

Persistent MemoryDRAM

config cfg;

status s = cfg.put_string("path", “/daxfs/file”);
assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

if (kv->open("cmap", cfg) != status::OK) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

// busy work here

kv

cfg

/daxfs/file

cmap

k v



Persistent Memory programming made easy with pmemkv 18

pmemkv design
life-cycle (persistent engines based on libpmemobj)

Persistent MemoryDRAM

config cfg;

status s = cfg.put_string("path", “/daxfs/file”);
assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

if (kv->open("cmap", cfg) != status::OK) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

// busy work here

kv->close();

/daxfs/file

cmap

k v

kv.close() 
- close database connection

- Persistent Memory data remain saved

kv

cfg



Persistent Memory programming made easy with pmemkv 19

pmemkv design
life-cycle (persistent engines based on libpmemobj)

Persistent MemoryDRAM

config cfg;

status s = cfg.put_string("path", “/daxfs/file”);
assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

if (kv->open("cmap", cfg) != status::OK) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

// busy work here

kv->close();

delete kv;

/daxfs/file

cmap

k v

Safety deletion of volatile data



Engines

20



Persistent Memory programming made easy with pmemkv 21

Engines

• Engine contributions are welcome!
• Types:

• ordered/unordered
• persistent/volatile
• concurrent/single threaded

• Engines are optimized for different 
workloads & capabilities

• All engines work with all language 
bindings

• Generic tests for engines incl:
• memcheck
• helgrind/drd
• pmemcheck
• pmemreorder

Engine Name Description Experimental? Persistent? Concurrent? Sorted?

blackhole
Accepts everything, 
returns nothing

No - - -

cmap Concurrent hash map No Yes Yes No

vsmap Volatile sorted hash map No No No Yes

vcmap
Volatile concurrent hash 
map

No No Yes No

tree3 Persistent B+ tree Yes Yes No No

stree Sorted persistent B+ tree Yes Yes No Yes

caching
Caching for remote 
Memcached or Redis
server

Yes Yes No -

csmap
Sorted concurrent map
(under development)

Yes Yes Yes Yes

overview

https://github.com/pmem/pmemkv/blob/master/ENGINES.md#blackhole
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#cmap
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#vsmap
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#vcmap
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#tree3
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#stree
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#caching


Persistent Memory programming made easy with pmemkv 22

Engines

• pmemkv API (config API) does not limit user for correlating single engine with single memory pool 
(libpmemobj)

• It is possible to pass persistent_ptr argument to config structure and attach engine to the pointer 
(ongoning work on generic API for libpmemobj-based engines)

• Engines are reachable from root object

multiple engines within the same memory pool

Persistent Memory

/daxfs/file (libpmemobj memory pool)

cmap1

k v

cmap2

k v

root object

persistent_ptr 1
persistent_ptr 2

Learn more about libpmemobj and persistent_ptr
during session:

“Creating C++ Apps with libpmemobj”



Persistent Memory programming made easy with pmemkv 23

Engines
multiple engines within the same memory pool

vstruct Root {
pmem::obj::persistent_ptr<PMEMoid> ptr1;
pmem::obj::persistent_ptr<PMEMoid> ptr2;

};
// libpmemobj setup here
config cfg_1;
config cfg_2;
status ret = cfg_1.put_object("oid", &(pop.root()->ptr1), 
nullptr);
assert(ret == status::OK);
ret = cfg_2.put_object("oid", &(pop.root()->ptr2), nullptr);
assert(ret == status::OK);

db *kv_1 = new db();
status s = kv_1->open("cmap", std::move(cfg_1));
assert(s == status::OK);

db *kv_2 = new db();
s = kv_2->open("cmap", std::move(cfg_2));
assert(s == status::OK);

Prototyped API for using pmemkv
with libpmemobj++ simultaneously 
(implementation work ongoing)

Learn more about libpmemobj during session:
“Creating C++ Apps with libpmemobj”



Language bindings

24



Persistent Memory programming made easy with pmemkv 25

Language bindings

Simple API = easy to implement high-level language bindings with small performance overhead

• Currently 4 available language bindings for pmemkv:
• Java https://github.com/pmem/pmemkv-java

• NodeJS https://github.com/pmem/pmemkv-nodejs

• Ruby https://github.com/pmem/pmemkv-ruby

• Python https://github.com/pmem/pmemkv-python

• Their APIs are not functionally equal to native C/C++ counterpart
• Configuration possible only by JSON string passed to open() function
• Multiple engines within single memory pool not possible
• Above API gaps are under development

https://github.com/pmem/pmemkv-java
https://github.com/pmem/pmemkv-nodejs
https://github.com/pmem/pmemkv-ruby
https://github.com/pmem/pmemkv-python


Pmemkv is simple!

26



Persistent Memory programming made easy with pmemkv 27

pmemkv is simple!

• Well understood key-value API
• Nothing new to learn
• Inspired by rocksDB and levelDB

• Life-cycle API
• open()/close()

• Operations API
• put(key, value)
• get(key, value/v_callback)
• remove(key)
• exists(key)

pmemkv is not limited to the API above – in future, specific engines might provide extensions and 
methods like batch_update()

API

• other
• errormsg()

• Iteration API
• count_all()
• get_all(kv_callback)

• +range versions of above for ordered engines
• below/above/between



Persistent Memory programming made easy with pmemkv 28

pmemkv is simple!

config cfg;
// setup config here
status ret = kv.open("cmap", cfg);
assert(ret == status::OK);

ret = kv.put("John", "123-456-789");
assert(ret == status::OK);

std::string number;
ret = kv.get("John", &number);
assert(ret == status::OK);

ret = kv.get_all([](string_view name, string_view num) {
std::cout << name.data() << " " << num.data() << std::endl;

});
assert(ret == status::OK);
assert(kv.exists("John") == status::OK);

ret = (kv.remove("John");
assert(ret == status::OK);

kv.close();

C++ example

Direct access to Persistent Memory by callback; it 
make sense because we need to lock others from 

removing the value while someone has a direct 
pointer to it.

Get value by copying to DRAM



Persistent Memory programming made easy with pmemkv 29

pmemkv is simple!

const db = new Database('cmap', '{"path":"/daxfs/kvfile","size":1073741824}');

db.put('John', '123-456-789');

assert(db.get('John') === '123-456-789');

db.get_all((k, v) => console.log(`name: ${k}, number: ${v}`));

db.remove('John');

assert(!db.exists('John'));

db.stop();

NodeJS example

• Similar simplicity with other high-level language bindings



Latencies and performance

30



Persistent Memory programming made easy with pmemkv 31

Latencies and performance

• Language bindings
• number of round trips between high-level language & native code
• Create high-level object (string, byte[], reference type, callback/closure)
• Translate bytes to UTF-8
• String interning, reference counting or GC

• pmemkv core (native code)
• Searching indexes in DRAM
• Updating indexes in DRAM
• Managing transactions
• Allocating persistent memory

• Persistent Memory
• HW read and write latency

• Performance varies based on traffic pattern
• Contiguous 4 cacheline (256B) granularity vs. single random cacheline (64B) granularity
• Read vs. writes



Persistent Memory programming made easy with pmemkv 32

Latencies and performance

• pmemkv_tools is a separate github repository with 
benchmark tool inspired by db_bnch
• https://github.com/pmem/pmemkv-tools

• Test results for cmap (persistent concurrent hashmap)
• Throughput scales with a number of threads
• P99 latency – flat

cmap performance

https://github.com/pmem/pmemkv-tools


Q&A

33



34


