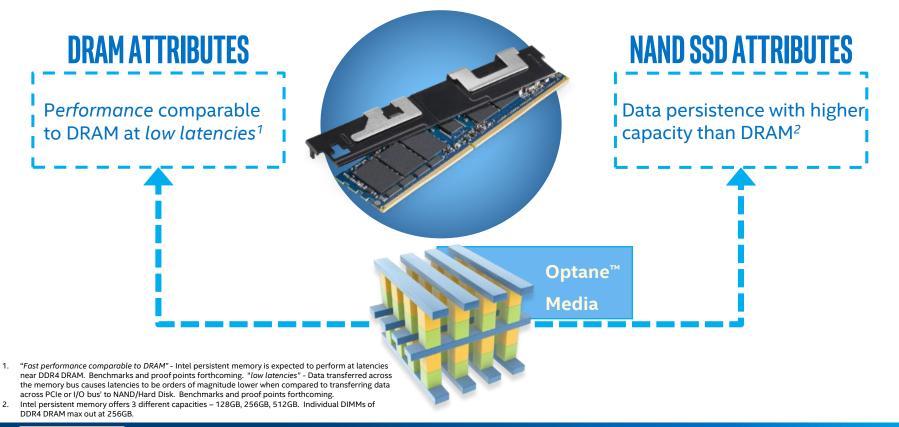


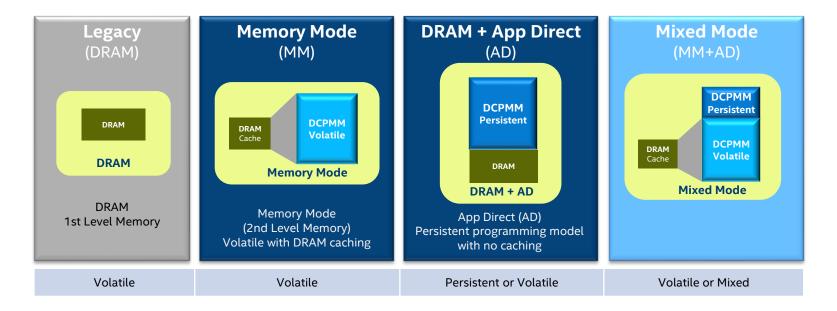
PREPARE FOR THE NEXT GENERATION OF MEMORY: Is your application a good candidate?

Jackson Marusarz


Senior Technical Consulting Engineer Compute Performance & Developer Products Division

Agenda

- Brief introduction to Intel[®] Optane[™] DC Persistent Memory
- Concepts and tools for enabling
 - Workload suitability analysis
 - Profiling and tuning workloads running with Intel Optane DC Persistent Memory
- Case Studies


THE BEST OF BOTH WORLDS WITH INTEL® OPTANE™ DC PERSISTENT MEMORY

Optimization Notice

PROGRAMMING MODELS

Will I benefit from Intel® Optane™ DC Persistent Memory?

- Do you need: Big Memory Fast Storage Memory Resilience?
- Are your workloads running out of DRAM memory?
- Is Disk I/O a large portion of your overhead?
- Does your warmup/data population phase takes a long time?

Use analysis tools to determine:

- How your system and applications may benefit from Intel[®] Optane[™] DC Persistent Memory
- The best and easiest ways to take advantage of Intel[®] Optane[™] DC Persistent Memory

Software Tools For Intel[®] Optane[™] DC Persistent Memory

Intel[®] VTune[™] Amplifier – Performance Analysis

- Platform Profiler find configuration issues and potential for larger memory
- Memory analysis design data structures for hot/warm/cool memory
- Memory analysis tune use of DCPMM memory
- Storage analysis are you CPU or I/O bound?

Intel[®] Inspector – Persistence Inspector

Finds missing/redundant cache flushes, PMDK logging errors, and more

Use cases for tools with Intel® Optane™ DC Persistent Memory

Before you have hardware (workload suitability)

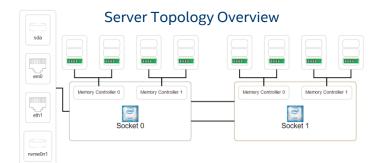
- Transitioning from DRAM-only to Memory Mode
- Transitioning from DRAM-only to App Direct (non-persistent mode)
- Transitioning from DRAM-only to App Direct (persistent mode)

After you have hardware

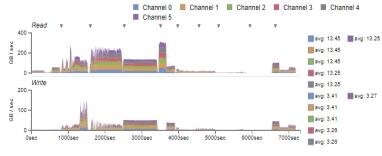
• Tuning existing Intel[®] Optane[™] DC Persistent Memory usages

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel[®] VTune[™] Amplifier - Performance Profiler Analyze & Tune Application Performance & Scalability


🔄 🖽 Collection Log 🕀 Analysis Target Å Analysis Type 🖞 Summary 🗞 Bottom-up 🗞 Caller/Callee 🗞 Top-down Tree 🖽 Platform 🛛 👂										
Grouping: Function / Call Stack 🗸 🗐										
	CPU Ti	Context S	Context ! ^							
Function / Call Stack	Effective Time by Utilization	Over Spin Time	Overhead	Wait Time	Inactive Time	Preempt				
▼ updateBusinessAccount	7.915s	0s	0s	0s	0.055s	ę				
▼ main\$omp\$parallel_for@269	7.915s 🛑	0s	0s	0s	0.055s	9				
▶ <kmp_invoke_microtask [op<="" p="" ←=""></kmp_invoke_microtask>	7.915s 🛑	0s	0s	0s	0.042s	8				
▶ < updateBusinessAccount ← mair	Os	0s	0s	0s	0.013s					
updateCustomerAccount	7.766s 📕	0s	0s	0s	0.052s	1,1				
kmpc_atomic_fixed8_add	0s	0s								
kmpc_critical	0s	2.021s	0s	0s	0.014s	20				
		^	^	^	0.000	>				
Q♥Q+Q−Q♥ 5.55 5.65 5.75 5.85 5.95 5.9945 6.15 6.25 6.35 6.45 Ruler Area										
OMP Worker Thread			Region Inst							
OMP Worker Thread Inner 11111 Ibor	ine entreff and second should be earlied in the rectifier in the	այի հանությեններութ	11	Three		¥				
🛓 interse_opening (TID: 🛛 🔐 🕐 🕐 🖬 kalike in the line of the state of the s										
OMP Worker Thread	ato a si na atala atalan dan ana mateli si bi na a	alan makari Asarat da m	N 1 1	v ⊻g	ontext Switches					
CPU Time		·····		Synchronization						
kitaa haanidada fadaa	hered as a south the hered of the second	WWW. C. March Martin a	\⊢_'		W CPU Time					
<			>	» 🗹 🕌	🖬 Spin and Ov	verhead 🦻				
FILTER 🝸 100.0% 🦕 Any	Proce 🗸 Any Thread 🗸 Any	/ Modu 🗸 🛛 Any Uti 🗸	User fund	tio 🗸 Sh	ow inlir 🗸 🛛 F	unctions 🗸				

Faster, Scalable Code, Faster


- Accurately profile C, C++, Fortran*, Python*, Go*, Java*, or any mix
- Optimize CPU/GPU, threading, memory, cache, MPI, storage & more
- Save time: rich analysis leads to insight
- Data displayed on the source code
- Easy set-up, no special compiles
- Cross-OS support and IDE integration

Intel[®] VTune[™] Amplifier - Platform Profiler

Traffic Patterns

Performance metrics on system topology

- Display current configuration
- Socket → Core → Internal Caches
- Socket → Memory Link → Memory Module
 Identify system configuration issues
- Inefficient memory module placements
- Need for faster storage
- Need for larger/faster memory
- Identify potential software issues
- Low CPU utilization
- NUMA-related issues (near vs. far memory accesses)
- Inefficient usage of memory/storage resources
 Compare different system configurations

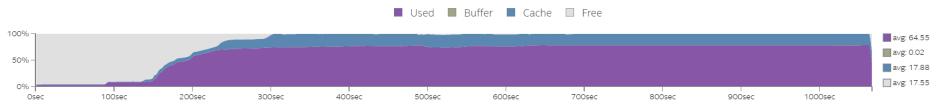
Optimization Notice

BEFORE YOU HAVE HARDWARE

- Transitioning from DRAM-only to Memory mode
- Transitioning from DRAM-only to AppDirect (non-persistent mode)
- Transitioning from DRAM-only to AppDirect (persistent mode)

DRAM-only -> Memory Mode (Big Memory - no code modification)

Look for applications with a memory footprint larger than DRAM but a hot working set size smaller than DRAM

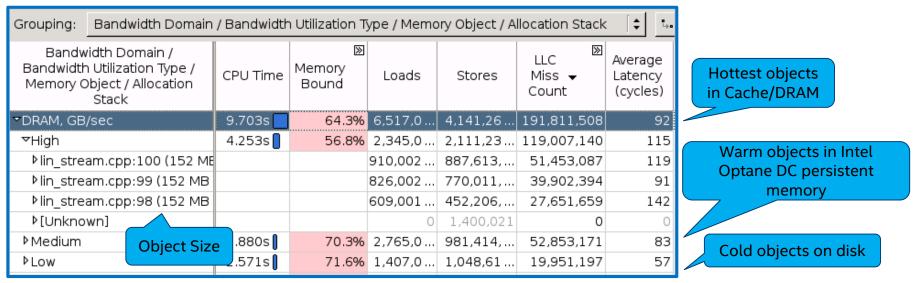

💯 <no current="" project=""> - Intel VTune A</no>	mplifier			-	o ×		2	+ - r	🖉 Os	1s 2s	3s 4s	5 <u>s</u>
th the set is a weight of weight of the set					=	4	package_1	30	6.244			
Memory Consumption			' 		Þ	1	▶ package_0	30	6.244			
Grouping: Function / Call Stack			~ ≮ ₽ ⊶	Allocation Size (Function	on) ~	A M I						
Function / Function Stack	Allocation/Deallocation Delta 🔻	Allocation Size	Deallocation Size ^	Viewing < 1 of 1 → set		2						
▼ foo	92 MB	915,310,048	817,830,048	100.0% (8668892640 (G	k ⊨ package 1	42	2.441			
⇒ foo	92 MB	915,310,048	817,830,048	test_mem.py!foo - te		10	n ⊫ package_1					tify hot objects
w main √ <module></module>	92 MB 92 MB	915,310,048 915,310,048	817,830,048	test mem pylmain+0	0x15 - te	(▶ package_0	42	2.441			.oads/stores) for
	92 MB	915,310,048	817 Men	nory Consump	tion	dtho i uni					wo	rking set size
▼ PyEval_EvalCode	92 MB	915,310,048	817 will s	how your men	nory	4	<u></u>					
⊤ run_mod	92 MB	915,310,048	817	footprint		Grouping: Memory Object / Function / Call Stack						
< >	1				<u> </u>		Memory Object	/ Function / Ca	all Stack	Loads 🔻	Stores	LLC Miss Count 膨
,0: + = ⊮ ⊮	Lesserenters	1s		Memory Consump	tion î		matrix.c:116 (1	28 MB)		161,578,247,202	0	0
bg python2.7 1 GB				Memory Consumption	tion		matrix.c:121 (1	28 MB)		15,043,951,305	0	0
du la							▶ matrix.c:126 (128 MB)		2,196,965,907	70,028,400,789	2,250,135	
Cors					_		[vmlinux]			117,903,537	65,701,971	0

Memory Access Analysis + Dynamic Memory Object Analysis

Memory Consumption Analysis

Memory Consumption with Platform Profiler

Memory Utilization


- Profile system wide
- Longer running workloads
- Correlate with other platform profiler metrics

DRAM-only ->App Direct (volatile) Mode (Big Memory - code modification required)

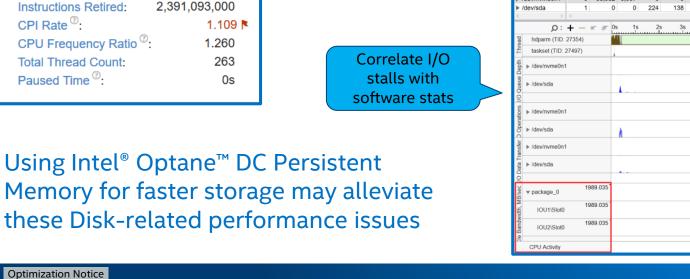
Identify objects to allocate in Intel[®] Optane[™] DC Persistent Memory:

- For objects larger than DRAM allocate in Intel® Optane™ DC Persistent Memory
- If an object is smaller than LLC allocate in Intel® Optane™ DC Persistent Memory because it will likely be cached

Memory Access Analysis + Dynamic Memory Object Analysis

Memory Access

DRAM-only ->App Direct (volatile) Mode (Big Memory - code modification required)


Intel[®] Optane[™] DC Persistent Memory reads are faster than writes:

- Put load heavy objects in Intel[®] Optane[™] DC Persistent Memory
- Put store heavy objects in DRAM

store neavy objects in Br	IC	dentify				
Grouping: Bandwidth Domain	/ Bandwidth) Utilization Ty	ype load/	store ratio	cation Stack	: [‡ <u></u> □
Bandwidth Domain / Bandwidth Utilization Type / Memory Object / Allocation Stack	CPU Time	⊠ Memory Bound	Loads	Stores	LLC Miss ✔ Count	Average Latency (cycles)
▼DRAM, GB/sec	9.703s 📒	64.3%	6,517,0	4,141,26	191,811,508	92
⊽High	4.253s	56.8%	2,345,0	2,111,23	119,007,140	115
♭lin_stream.cpp:100 (152 MB			910,002	887,613,	51,453,087	119
♭lin_stream.cpp:99 (152 MB			826,002	770,011,	39,902,394	91
▶lin_stream.cpp:98 (152 MB			609,001	452,206,	27,651,659	142
Þ[Unknown]			0	1,400,021	0	0
▶Medium	2.880s	70.3%	2,765,0	981,414,	52,853,171	83
ÞLow	2.571s	71.6%	1,407,0	1,048,61	19,951,197	57

Memory Access Analysis + Dynamic Memory Object Analysis

Optimization Notice

2.113s

1.406s

Persistent Memory - code modification required

Identify disk related performance issues with Input and Output Analysis

Time wasted

waiting for disk

Disk Input and Output Disk Input and Output viewpoint (change)

Grouping: Storage Device / Partition

read by I/O Operation .

Good

Storage Device / Partition

/dev/nvme0n1

🗉 🖂 Collection Log \ominus Analysis Target 🙏 Analysis Type 🚯 Summary 📣 Bottom-up 📧 Platform

I/O Queue Depth V

write by I/O Operation

DRAM-only -> App Direct (non-volatile) Mode

Copyright © 2019, Intel Corporation, All rights reserved. *Other names and brands may be claimed as the property of others.

Elapsed Time ⁽²⁾: 6.571s

I/O Wait Time ^②:

CPU Time ⁽²⁾:

Summary Call Stack

3.000

2.000

1 000

Thread Running

Context Switches

I/O Wait

CPU Time I TIO APIs

✓ I/O Queue Depth V Queue Depth

Slow

Slow Good

Fast

Page Faults

I/O Operations Total

Operation Type ✓ ~flush

✓ mead

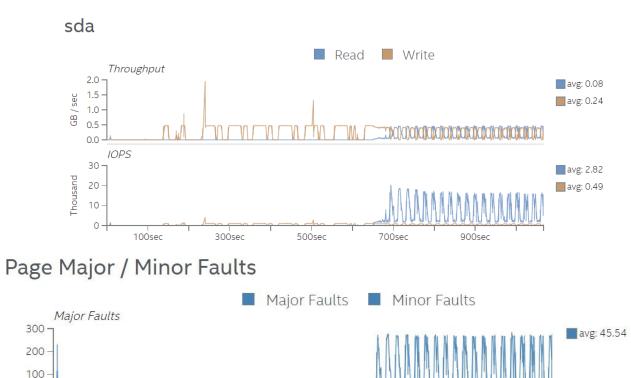
✓ write

I/O Data Transfer Total

Operation Type

Preemption

Synchronization


| ≪ Q | º

2

I flush by I/O Operation

4s 5s

Disk Issues with Platform Profiler

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

0

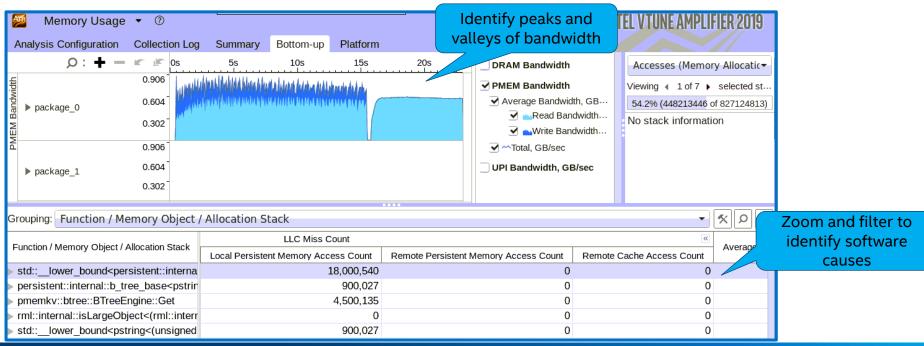
AFTER YOU HAVE HARDWARE

Tuning existing Intel[®] Optane[™] DC Persistent Memory usages

Tuning Intel[®] Optane[™] DC Persistent Memory Systems

Memory Access

Selapsed Time [™] : 22.976s		
CPU Time [®] :	22.612s	
	69.6% 🖻 of Pipeline	Slots
L1 Bound [®] :	12.5% 🖻 of Clocktick	(S
L2 Bound [®] :	0.4% of Clocktick	(S
L3 Bound [®] :	2.9% of Clocktick	(S
③ DRAM Bound ^② :	0.0% 🖻 of Clocktic	Bound by Intel [®] Optane [™] DC
	49.0% of Clocktic	
Persistent Memory Bandwidth Bound ⁽²⁾ :	0.0% of Elapsed	
Local Persistent Memory $^{\odot}$:	100.0% of Clocktick	(S
Remote Persistent Memory ^② :	0.0% of Clocktick	(S
Loads:	10,519,515,576	
Stores:	4,292,228,763	
③ LLC Miss Count ^② :	36,902,214	
Average Latency (cycles) ^② :	41	
Total Thread Count:	16	
Paused Time [®] :	, Os	
*N/A is applied to metrics with undefined value. There is no a	lata to calculate the metric.	


Optimization Notice

Memory Access

Tuning Intel[®] Optane[™] DC Persistent Memory Systems Intel[®] VTune[™] Amplifier (Cont'd)

- View Intel[®] Optane[™] DC Persistent Memory bandwidth over time
- Correlate data with CPU metrics and source code information

Optimization Notice

Tuning Intel[®] Optane[™] DC Persistent Memory Systems VTune[™] Platform Profiler

For Memory mode systems – make sure DRAM Bandwidth is much higher than Intel[®] Optane[™] DC Persistent Memory Bandwidth

Optimization Notice

Find Missing/Extra Flushes/Commits

Intel[®] Inspector - Persistence Inspector

Target User

 Persistent memory programmers

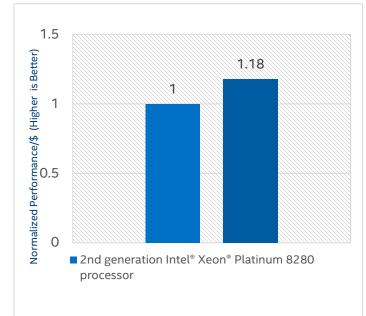
Problem	15								ę	
ID 🔺	۲	Туре		Sources		Module	s	State		
⊞ P1	8	Missing cache flu	sh	MSVCR120D.dll:0	x4B	MSVCR1	20D.dll	P Ne	w	
± P2	8	Missing cache flu	sh	trace.pmem.cpp:	201	tachyon	.exe	R Ne	w	
± P3	Δ	Missing cache flu	sh before unmap()	pmem_windows.	срр	tachyon	.exe	Pe Ne	w	
Descripti	on 🔺		Source	Function	Mo	dule	Variabl	e	^	
Controlled variable trace.pmem.cpp:243 do_render tachyon.exe								1		
241		color	t *pixel = srb[width * y + >	1;	tachyon	.exe!	lo_re		
242		*pixel	<pre>*pixel = render_one_pixel(x, y, local tachyon.exe!threa</pre>							
243	243 rs->pixels_stored++; tachyon.exe!trace							crace		
244		drawing.put_pixel(*pixel); tachyon.exe!trace								
245		}				tachyon	.exe!	cende		
Unflus	hed m	emory store	trace.pmem.cpp	:242 do_render	tack	iyon.exe				
240		{				tachyon	.exe!	io re		
241		color	t *pixel = &rb[width * y + >	1;	tachyon	.exe!1	threa		
242		*pixel	= render one p	ixel(x, y, lo	cal	tachyon	.exe!1	race		
243		rs->pi	xels_stored++;			tachyon	.exe!t	crace		
244		drawin	g.put pixel(*pi			tachyon	ovela	anda		

What does it do?

- Finds persistent memory programming errors
- Detects:
 - Missing / redundant cache flushes
 - Missing store fences
 - Out-of-order persistent memory stores
 - PMDK transaction redo logging errors
- As a design tool, it finds places to insert flushes
- As a performance tool, it finds redundant flushes

How to Use Intel[®] Inspector - Persistence Inspector

Note: PMDK = Persistent Memory Developer Kit (formerly NVML)



CASE STUDIES

http://www.sas.com

SAS (VIYA 3.4)*

XEON

APPLICATION

SAS* is a world leader in analytics and Artificial Intelligence. SAS Viya* provides a unified, open analytics platform replete with cutting-edge algorithms and AI capabilities. SAS Viya is a cloud- enabled, in-memory analytics engine that provides quick, accurate, and reliable analytical insights.

CUSTOMER CHALLENGES

• Customers are currently limited by memory capacity, which restricts the volume of datasets that can be stored close to the CPU, thereby limiting the potential to improve query response times. Expanding the memory footprint to overcome this challenge is often cost-prohibitive for customers.

SOLUTION

- With 2nd generation Intel® Xeon® Scalable processors and Intel® Optane[™] DC persistent memory (Memory Mode), SAS can take advantage of larger available memory capacity per system, while making it a more cost-effective solution for customers.
- Customers can now keep multiple large datasets used for gradient boosting models in memory, with **little to no performance degradation**, and **at a reduced cost** (see chart showing up to 18% performance improvement for a given cost)¹.

VALUE PROPOSITION

• Better performance at similar cost - SAS customers can benefit from improved analytics response times, with better TCO¹, and while meeting performance expectations.

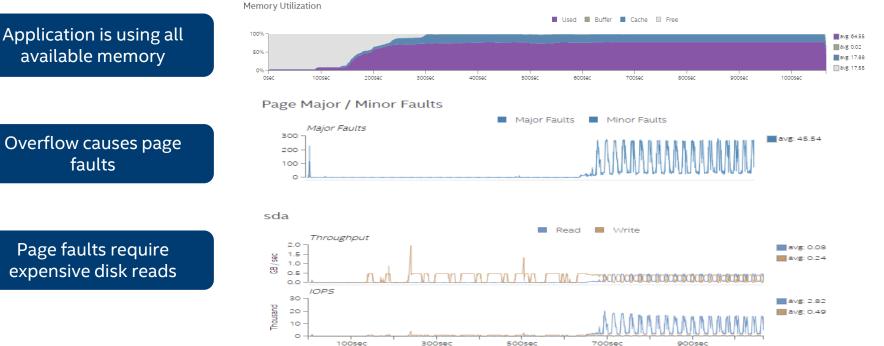
Performance Metric: Completion Time for 3 Concurrent Logistics Regression Tasks (400GB Datasets), Per \$TCO (i.e., Perf/\$TCO)²

1 - Performance results are based on testing by Intel and SAS on 02/15/19 and may not reflect all publicly available security updates. No product or component can be absolutely secure. For complete testing configuration details, see <u>Configuration Section</u>. 2 - Pricing Guidance as of March 31, 2019 & valid until Jun 29, 2019. Intel does not guarantee any costs or cost reduction. You should consult other information and performance tests to assist you in your purchase decision.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

Configuration Details

SAS[®] Viya[®]*; In-memory Analytics: SAS[®] Viya 3.4 VDMML application. Workload: 3 concurrent logistic regression tasks each running on 400GB datasets. Testing by Intel and SAS completed on February 15, 2019. Pricing Guidance as of March 31, 2019 & valid until Jun 29, 2019. Intel does not guarantee any costs or cost reduction. You should consult other information and performance tests to assist you in your purchase decision.


BASELINE: 2S Intel® Xeon® Platinum 8280 processor, 2.7GHz, 28 cores, turbo and HT on, BIOS SE5C620.86B.0D.01.0286.011120190816, 1536GB total memory, 24 slots / 64GB / 2666 MT/s / DDR4 LRDIMM, 1x 800GB, Intel SSD DC S3710 OS Drive + 1x 1.5TB Intel Optane SSD DC P4800X NVMe Drive for CAS_DISK_CACHE + 1x 1.5TB Intel SSD DC P4610 NVMe Drive for application data, CentOS Linux* 7.6 kernel 4.19.8.

NEW: 2S Intel® Xeon® Platinum 8280 processor, 2.7GHz, 28 cores, turbo and HT on, BIOS SE5C620.86B.0D.01.0286.011120190816, 1536GB Intel Optane DC persistent memory configured in Memory Mode(8:1), 12 slots / 128GB / 2666 MT/s, 192GB DRAM, 12 slots / 16GB / 2666 MT/s DDR4 LRDIMM, 1x 800GB, Intel SSD DC S3710 OS Drive + 1x 1.5TB Intel Optane SSD DC P4800X NVMe Drive for CAS_DISK_CACHE + 1x 1.5TB Intel SSD DC P4610 NVMe Drive for application data, CentOS Linux* 7.6 kernel 4.19.8.

GraphX Workload Analysis

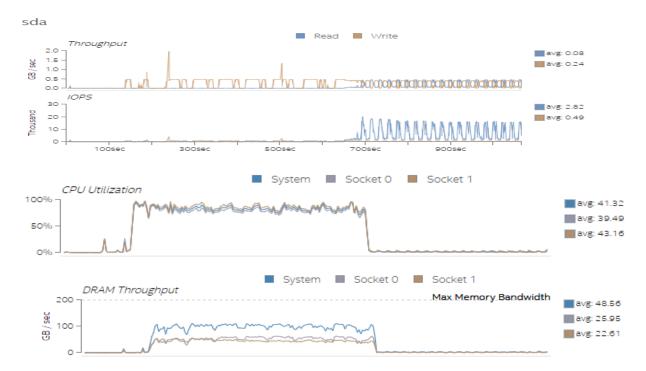
Runs with large datasets are failing

Overflow causes page faults

available memory

Page faults require expensive disk reads

Optimization Notice


GraphX Workload Analysis

Runs with large scale factor are failing

Page faults and disk IO correlate on timeline

CPU Utilization drops

DRAM Throughput drops

Optimization Notice

Graph V Markeland Analysis

Runs

Pag

cor

Conclusion:

- Application is using all available memory and showing high disk and paging activity.
- The application is not bound by the memory bandwidth or CPU saturation. This is an indicator that application is bound by the capacity of the memory.
 - Adding Intel[®] Optane[™] DC Persistent Memory in Memory Mode allowed GraphX to scale to these larger datasets.

avg: 41.32 avg: 39.49 avg: 43.16

0.08 0.24

2.82 0.49

System Socket 0 Socket 1

It's not just a raw performance calculation - it's TCO, performance, and scalability

Summary

- Intel[®] VTune[™] Amplifier brings its best-in-class performance profiling and tuning to Intel[®] Optane[™] DC Persistent Memory systems
- Including use cases:

Before you have hardware

- Transitioning from DRAM-only to Memory mode
- Transitioning from DRAM-only to AppDirect (non-persistent mode)
- Transitioning from DRAM-only to AppDirect (persistent mode)
 After you have hardware
- Tuning existing Intel[®] Optane[™] DC Persistent Memory usages

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks</u>.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804