gglNG INTEL" VTUNE™ AMPLIFIER FOR PROFILING AND
| AL e

I

WA

Wang Yang Q PARALLEL
Intel IAGS CPDP STUDIO XE
August, 2019 ‘

Intel® VTune™ Amplifier — Tool Suite Options

INTEL" VTUNE™ AMPLIFIER

AVAILABLE INDIVIDUALLY

oy — _ ‘ i il = Analyze & Tune Application
Manuf., Retail, Drones, Robots... Fast, Dense, High Quality Transcoding Performance & Scalability

INTEL® PARALLEL STUDIO INTEL" MEDIA SERVER STUDIO T T s
PROFESSIONAL & CLUSTER EDITIONS PROFESSIONAL EDITION th a_t saves time
Improve performance, Deliver fast, high density & RN GELE

scalability, & reliability for quality media/video processing
parallel applications
n

PARALLEL SYSTEM MEDIA 'ic

STUDIO XE STUDIO SERVERSTUDID =

AL | 1LY

intel.ly/parallel-studio-xe intel.ly/vtune-amplifier-xe

Free/discounted versions are available for Students & Academia

Optimization Notice . L
Copyright © 2018, Intel Corporation. All rights reserved. ‘ |nte 2

*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/qualify-for-free-software/

What's Inside Intel® Parallel Studio XE

Comprehensive Software Development Tool Suite

CLUSTER EDITION
COMPOSER EDITION PROFESSIONAL EDITION

BUILD ANALYZE SCALE
Compilers & Libraries Analysis Tools Cluster Tools

Intel® Math Kernel Library

++ . Performance Profiler Message Passing Interface Librar
IC: c{ rfran’ Intel® Data Analytics 8 8 Y

Sl Acceleration Library

Memory, Thread & MPI Tuning & Analysis

Intel Threading Building Blocks Persistence Debugger

C++ Threading

Intel® Integrated Performance Primitives Cluster Diagnostic Expert System

Image, Signal & Data Processing Vectorization Optimization
Thread Prototyping

Intel® Distribution for Python* & Flow Graph Analysis
High Performance Python

Operating System: Windows*, Linux*, MacOS™

Intel® Architecture Platforms

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/intel-mkl

Analyze & Tune Application Performance

Intel” VTune™ Amplifier—Performance Profiler

Advanced Hotspots Hotspots ~ @

INTEL VTUNE AMPLIFIER 2013

‘Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping:| Function / Call Stack

“[[%](o][=]

CPU Time ¥ @ | Context Switch Time |« | Context Swite ~
Function / Call Stack ' MIEE?‘S:;TW%EV %‘:!iztlmn. Over 8 Spin Time OvTe‘rnl]‘aead Wait Time | Inactive Time | Preemption
updateBusinessAccount 79155 B [] 0s 0s 0s 0.0558 934
mainSompSparallel_for@269 | 7.915s [] 0s 0s 0s 0.055s 934
~ _ kmp_invoke microtas| 7.915s N 0s 0s 0s 0.042s 815
updateBusinessAccoun 0s 0s 0s 0s 0.013s 119
updateCustomerAccount 7.766s | 0s 0s 0s 0.052s 1111
__kmpc_atomic_fixeds_add 2.772s | 05 05
__kmpc_critical 0s 2021s 0s 0s 0.014s 262 v
< > € >
D= w5 [ved <] *
B OMP Worker Thread #2 (T [ERunning
£ OMP Waorker Thread #3 (Tl S
[Preemption

ntmtest_openmp (TID: 12732)
OMP Worker Thread #1 (T1._
CPU Time

[CISynchronization
wuCPU Time
waSpin and Overh..
[J ®CPU CLK UNH... ~

FILTER

100.0%

% ‘ ‘Anmec\/| |AnyThread V‘ ‘AnyMch‘ ‘AnyLV| | |Userfunct\\/‘ ‘Shnwm\\f‘ ‘Funcnnrv

Learn More: software.intel.com/intel-vtune-amplifier-xe

Optimization Notice

Copyright © 2018, Intel Corporation.

All rights reserved.

Save Time Optimizing Code

» Accurately profile C, C++, Fortran*, Python*, Go*, Java*,
or any mix

Optimize CPU, threading, memory, cache, storage & more
Save time: rich analysis leads to insight
Take advantage of Priority Support

— Connects customers to Intel engineers for confidential inquiries (paid versions)

What's New in 2019 Release (partial list)
= New Platform Profiler! - Longer Data Collection

= A more accessible user interface provides a simplified
profiling workflow

» Smarter, faster Application Performance Snapshot: Analyze
CPU utilization of physical cores, pause/resume, more... (Linux*)

» Improved JIT profiling for server-side/cloud applications

*Other names and brands may be claimed as the property of others.

https://supporttickets.intel.com/

Rich Set of Profiling Capabilities for Multiple Markets

Intel® VTune Amplifier
Single Thread Multithreaded
Optimize single-threaded Effectively use all available cores.
performance.
TRRR) RRRRERNR
HPC & CLoud Memory & Storage
Access specialized, in-depth Management
analyses for HPC and cloud Diagnose memory, storage, and
computing. data plane bottlenecks.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

[l

System

See a system-level view of
application performance.

"

Analyze & Filter Data

Mine data for answers.

Media & OpenCL™ Applications

Deliver high-performance image
and video processing pipelines.

7"\
o_o

Environment

Fits your environment and
workflow.

*Other names and brands may be claimed as the property of others.

Find Answers Fast

Intel” VTune™ Amplifier

Advanced Hotspots Hotspots = &

INTEL VTUNE AMPLIFIER 2019
Caller/Callee Top-down Tree Platiorm
“|[x]o]=]

Context Swite »

Analysis Configuration Collection Log Summary Bottom-up

Grouping:| Function / Call Stack

Adjust Data Grouping

CPU Time ¥

-

Context Switch Time [«

Function - Call Stack Function / Call Stack Effactive Time by Utilization » Overhead
Module - Function - Call Stack Bide BPoor B0k Bideal B Over Spin Time e Wait Time | Inactive Time | Preemption
. . updateBusinessAccount 79155 B] Os 0s Os 0.055s 934
Source File - Function - Call Stack mainsompSparallel_for@269 | 7.915s @ O 0s 0s 0s 00555 934
Thread - Function - Call Stack 79155 0s 0s 0s 0.042s 815
... (Partial list shown) updateBusinessAccount 0s 0s 0s 0s 0.013s 118
updateCustomerAccount 7.766s | Os 0s Os 0.052s 1.111
b A A » _kmpe_atomic_fixeds_add 2772s | Os 0s
Do u le ClICk Fu nCtlon / __kmpc_critical 0s 2.021s 0s 0s 0.014s 262 | v
- < > <€ >
I
to View Source TR T] —
. - A [ERunning
Click [»] for Call Stack T |
#| ove worer eas 3 1. AN AN |
- . - . reemption
Filter by Timeline Selection mtest_openmp (10 12732) | A [Synchronization
: . . | ¢y P wacPU Time
(or by Grid Selection) Y AT | o
< >] ®CPU_CLK_UNH..
Zoom In And Filter On Selection FILTER 1000% 4 | Any T sad ~| |AnyMocv] [Any L~ | || Userfuncti | |Show inl +| |Functior v
a F

Filter In by Selection D%

Rermowe All Filters

Filter by Process
& Other Controls

Tuning Opportunities Shown in Pink.
Hover for Tips

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

See Profile Data On Source / Asm

Double Click from Grid or Timeline

View Source / Asm or both CPU Time Right click for instruction reference manual

4

| .
‘M m . . L_A Assembly grouping: [Address |i_

ST_Tlr:;e Source CPU Time: Total ... fl Address a SEiL:E... Asselibly CPU Time: Total ... i =
D ldle @ Poor [OCk L Didle @ Poor OOk _
. . 0.017s| 0x418b6d 580 crp dword pti ep-0x130], 0x 0.120s] =
Q u |C k AS m n aV | g atl O n O 0:418b74 580 jz 0xdlEbed < ack 58> 0379s[0 f
0x418b76 Block 54:
Select Sou rce to h Ig h I Ig ht Asm % | 18676 581 mov edx, dword ptr [ebp-0x130 0.090s| E
o |_ 0:418b7c 581 mov eax, dword ptr [edx+0xd] U.Ulﬂsl —]
cur = g-»cells[voxindex]: 0 : 0cd18b7f 581 mov ecx, dword ptr [eax] ERLER .-
580 while (cur != NULL) { 0499z 0x418b81 581 mov edx, dword ptr [ebp+0xc] 2.5005- —
if {ry->mbox[cur->ohj->id] ! 0:d18b84 581 mov eax, dword ptr [eds+0x10]| 0.030s| =
582 ry->rbox [cur->obj->id] = ¢ 0.5475. 0418087 581 mov edx, dword ptr [ebp+0xc] E
583 cur->obj->methods->interse| 1.769s ([| 0:d18b8a 581 mov eax, dword ptr [eaxt+ecx*d| 0.040s| l ‘I
584 1 = xd18b&d 581 cmp eax, dword ptr [edx+0xc] 1.2625- E
585 CuUr = Cur->next; 0.5685) = 0x418b90 581 jz 0x418bdé <Block 57> =
586] 0.070s| 19 ox418b92 Block 55: =
587 CUrvoX.Z += 3tep.z; 0.070s| =! Ox418b92 582 mov ecx, dword ptr [¢ ax190| 03310
588 if (ry->maxdist < tmax.z || cu 0.1005| '\0x418b98 582 mov edx, dword ptr [l ®4] 0.1165'
Selected 1 row(s): 77955 -/ Highlighted 9 re s): 7.7955 -
] | [N R 3 . LR uc|mi 3

Scroll Bar “Heat Map” is an overview of hot spots Click jump to scroll Asm

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

T
; mtel

Timeline Visualizes Thread Behavior

Intel” VTune™ Amplifier

< Transitions ik CPU Time

Locks & Waits Basic Hotspots Advanced Hotspots
L B T T T T T — T T T T T T T T T T
Coo Qb Q- 29,86 29.57s 29.88s 29.8% 29,9¢ F |Ruler Area 29.9% 29,965 29,93 30.05s 30.1s 301t
o arm wrs T T T = fruvrers_arsrrneren, A reenrvn e, e T
. Tt . . = Frame =
WWinMaINCRTS Ertu. . Thread T —
rhread (0x1364) B Running) PO .
8 [thread (ox1350)) waits Ve mmim mm el
£ [Thread (0x1374) =7 User Task S) |~ e T —]
Thread (0x137c) Transition ey | (TIPS
[Thread (0x1384) Thread Concurrency [Se—— [e o T
e e T
Thvead Conaurency | S A48 « SUSMMIOIINR |0 St |||) o oo ot
« I’ » | » = r
/ B \ = User Task
=P Frame b Transition \ =
Frame Transition Start: 29.958s Duration: 0.018s
H ove rs: Start: 29.858s Duration: 0.017s wWinMainCRTStartup ((:12d4) to Thread (0:138c) (29.899s to 29.899s) Task Type: Smoke:FrameWork: execute(): Other
Frame: 72 Sync Object: TBB Scheduler Task End Call Stack: Frameworl::Execute
Frame Domain: Smoke:Framework:execute(}| | Object Creation File: taskmanagertbb.cpp
Frame Type: Good Object Creation Line: 318 CPU Time
Frame Rate: 59.8242179 94.233472%

Optional: Use API to mark frames and user tasks ®®Frame <= User Task

Optional: Add a mark during collection [@MeiTimdine]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VTune™ Amplifier 2019

Easier Setup, More Intelligible Results

Fresh, Accessible Analysis Setup
= Simplified workflow

= More familiar terminology

= More logical groupings

Performance Insights
= Suggestions for further analysis

Improved Displays
= New hardware pipeline display

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hotspots Microarchitecture

Want to find out where your app spends Want to see how efficiently your code is
time and optimize your algorithms? using the underlying hardware?

Hotspots Memory General Memory Access
Consumption Exploration

Parallelism
Want to assess the compute efficiency of your multi-threaded app?

2 @

Threading HPC
Performance
Characterization

Hotspots Insights
If you see significant hotspots in the Top Hotspots list, switch to the
Bottom-up view for in-depth analysis per function. Otherwise, use the
Caller/Callee view to track critical paths for these hotspots.

Explore Additional Insights
Parallefism . 17 g% (15 622 out of 88 logical CPUs) &
Use © Concurrency to explore more opportunities to increase parallelism
in your application.

Intel® VTune™ Amplifier Performance Profiler 2019

New workflow provides easier to learn tuning workflow and a simplified setup

Project.. |5 % P & O = O | welcome Configure Analysis %
Configure Analysis

o @

(W10 684 Android Device
(ADB)

VTune Amplifier installation directory on the remote system
Jopt/intel/vtune_amplifier_2019.0.1.564226

SSH de

testery,

Temporary directory on the remote system

1tmp

% Hotspots
\WapLdg find out where your app
T

Remote Linux
(SSH)

Parallelism

INTELVTUNEANPLITER201S

AN
<
N

Microarchitecture
Want o see how efficiently your
code is using the underlying
hardware?

Microarchitecture Memory Access
Exploration

Want to assess the compute efficiency of your multi-threaded
app?

@

what

Attach to Profile System

S|
=% Process

Applica,

Ihomefiester/Source/DiskiO/DIsKIO

Application parameters:

| Use application directory as working directory

Working directory

Advanced »

Threading HPC
Performance
Characterization

x

Launch Platform Analysis
Application 3 & 3

System CPU/GPU GPU GPUI

nkemel GPU Rendering

5! Overview Concurrency ~ Compute/Media Profiing (preview)

Hotspots

input and CPUIFPGA
Output Interaction
(preview)

Custom Analysis

&

00"

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

INTEL CONFIDENTIAL

*Other names and brands may be claimed as the property of others.

how

run

Start

Start Paused

Search Binaries
Search Source

Command Line

Hotspots Analysis — Your first step for optimization

Use this mode for:

e Profiles longer than a few seconds
¢ Profiling a single process or a process-tree
e Profiling Python and Intel runtimes

Use this mode for:

o Profiles shorter than a few seconds
¢ Profiling all processes on a system, including
kernel

Optimization Notice

@ Hotspots oo (€7

Identify the most time consuming functions and drill down to see time spent on
each line of source code. Focus optimization efforts on hot code for the

User-Mode Sampling @ Overhead

Hardware Event-Based Sampling @
CPU sampling interval, ms

1

Collect stacks

| Show additional performance insights

» Details

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Case Study: Hotspot Analysis

& GitHub, Inc. [US] \ https://github.com/madler/zlib/blob/master/adler32.c

/* initial Adler-32 value (deferred check for len == 1 speed) */
if (buf == Z_NULL)

return 1L;

° Case abOUt Adler32 CheCksum /* in case short lengths are provided, keep it somewhat fast */
if (len < 16) {

calculation while (len) ¢

adler += *buf++;
sum2 += adler;

* A developer who works on storage)

if (adler >= BASE)

applications needs to calculate the

MOD28(sum2) ; /* only added so many BASE's */

adler32 checksum for big files [e G s
° Opensou rce Adler32 implementation ;;112 ugi’ﬁlﬂix) { S
Was used: Source COde Here Zoz{NMAX / ;.6; /* NMAX is divisible by 16 */
DO16(buf); /* 16 sums unrolled */

buf += 16;

* Runthe VTune “Advance Hotspots” e
MOD(adler);

analysis for the sample application oo (aun);
and investigate the result

/* do remaining bytes (less than NMAX, still just one modulo) */

if (len) { /* avoid modulos if none remaining */

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://github.com/madler/zlib/blob/master/adler32.c

Hotspots for Adler32 opensource implementation

% Advanced Hotspots Hotspots vi @ INTEL VTUNE AMPLIFIER 2017 FOR
B8 Collection Log| | @ Analysis Target A sis Type| | K Summary | [PRERGIURIE | % Caller/Callee| | % Top-down Tree| BB Platform | Ba adle
Grouping:| Process / Module / Function / Thread / Call Stack vH ~
Process / Module / Function / Thread / Call ... CPUTime ¥ » | Instructions Retired | CPI Rate | CPU Frequency Ratio | Module
w test_adler32_os 46.567s D 353,579,000.000 0.468 1.5650
p libc-2.17s0 32954s D 241,412,600,000 0.486 1.651
v test_adler32_os 12207s D 111,890.400.000 0.386 1.542

» adler32

test_adL

2170s |

p test Stifes 7.866.400.000 44

» [Importth\ok rand] 1.317s | 8.312,200.000 0614 test_adl
p test_Stime 0.019s 158.700.000 test_adl
p test_Stimes 0.004 18.400.000 0 test_adl
p test_btimes test_adl

p test Stimes 00 test_adl

Function to be CPU Time and CPl is relatively

optimized Instructions good

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Source/Assembly correlated view in VTune

| Advanced Hotspots Hotspots viewpoint (change) @ INTEL VTUNE AMPLIFIER 2017 FOR SYSTEM

ion Log| | @ Analysis Target pe| | Bl Summary| % Bottom-up| ¢% Caller/Callee | #% Top-down Tree B Platform | Fe adler

mm B B2 | %0 <9 % & | %]| Q|| Assembly grouping: |Address

i Check the assembly

from Intel IPP library

So. i Sour...

L.~ Source Effectiv Address a s Assembly Effectiv d d f- d th
D Idle @ Poor D¢ @ Idle @ Poor CO e a'n We In e

103 if (adler >= BASE) 0x400e20 Block 12: o a

104 adler —= BASE: D0 114 movaxp (sril), srisa | loop is not vectorized

105 MOD28 (sum2) ; /* only added so mar 0x400e24 115 add §0x10, %rll 115.265ms

106 return adler | (sum2 << 1€); 0x400e28 114 movzxb -0xf(%rll), $rldd

107 1 0x400e2d 114 movzxb -Oxe($rll), %rla2d 314.725ms-

108 0x400e32 114 movzxb -0xd(%rll), tebp ms|

109 /* do length NMAX blocks -- requires just one mg 0x400e37 114 movzxb -Oxc(%$rll), %ebx

110 while (len >= MMAX) { | 0x400e3c 114 movzxb -0xb(Erll), rlod |

il len -= MMAX: 0.002s | 0x400e41 114 add $r15, 3rl3 282.651ms [l

112 n = NMAX / 16; /* NMBX is divisible = 0x400edd 114 movzxb -Oxa(%rll), $ro9d |

Y S B = 009 14 movab -0xd(sril), trsa

(114 | DO16 (buf) ; /* 16 sums unrolled | 53285 | 0x400ede 114 add $ri3, srid . .

L T B T o5 14 mevoe oenniy, e 3 Use the optimized

116 } while (--n);: — 0x400e56 114 movzxb -0x7(srll), tedi

17 MOD(adler) ; 0x400eSb 114 add rl4, $ri2 Adl 3 2 f t

118 MOD (sum2) ; 0.0135| = 0x400e5e 114 add %rl4, %rl3 e r u n C Io n

19 } B 00061 114 movzxb -0xS(3rll), tesi 280.646ms [l

120 = | 0x400e66 114 add $rl2, $rbp |

121 /* do remaining bytes (less than NMAX, 3till jus = 0x400e69 114 add %rl2, %rl3

122 if (len) { /* avoid modulos if m 0x400ebc 114 movzxb -0x4(%rll), Secx Shou ld help!

123 while (len >= 16) { 0.010s| Ox400e71 114 add $rbp, %rbx 327,755"\5-

124 len -= 16; 0x400e74 114 add $rbp, $ri3 |

125 DO16 (buf) ; 2272 0x400e77 114 movzxb -0x3(3rll), %edx

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of oth

Switch to the IPP implementation

/= s==s=====1 = TE]
uLong ZEXPORT adler32{adler, buf, len) finclude “'ippdc.h
uLong adler;
const Bytef =buf;

ulnt len; ILong ZEXPORT adler32_ipp(adler, buf, len})
{ . uLong adler;

unsigned long sum2;

unsigned n; const BytEF =huf ;

ulnt len;

/* split adler-32 into component sums s/
sum2 = (adler >> 16) & B=fFff;

adler &= OxFPFF; Ipp32u resAdlerd3?2 = (Ipp32u)adler;

... if{ 2 _HULL == buf)} returm 1L;
/= initial Adler-32 value {deferred check for len == 1 speed) =/

if (buf == Z_HULL) [ippSHdlEF32_Bu{huF, len, &resAdler32);]

-

return 1L;

return {({ulLong)resAdlerd2 & OG=fFFFFFFF);

/* do length NHAX blocks -- requires just one modulo operation =/ }
while (len »>= HHAX) {
len —= HHAX;
n = HMAX / 16; /= NMAYX is divisible by 16 =/
do {
DO16{buf); F= 16 sums unrolled =/

) wile (-n); Use the optimized IPP
oD s function to take advantage
of HW features!

H

/% return recombined sums #*/
return adler | {(sum2 << 16);

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorized code can get significant performance

Grouping:| Process / Module / Function / Thread / Call Stack CPU Tlme reduced from 8.65

Process | Module / Function / Thread / Call . CPU Time ¥ » | Instructions Retired | CPI Rate

vtest_adler32_ipp 389075 RN 290,876:400,000 ‘ to 2.3s, +3.7times
» libc-2 1750 312065 NS 241153,600.088 |) !
v test_adler32_ipp 6343 B : : Im p roveme nt

test_Stimes 2475s | c

ey _ Instructions reduced,
11,582,800,000 .

149,500,000 0677 8 5 G 9 2 2 G

p [Import thunk rand]
p test_Stimes U2
» adler32_ipp 0012s

78.200.000 n2e9 -
CPU Time
Sour...
Address & |~ Assembly Effective Time by Utilization
@ !dle @ Poor @ Ok @ !deal @ Over

0x402014 nopl %eax, (%rax,irax,l) |
0x402019 nopl %eax, (%rax)
0x402020 Block 14:
0402020 vmovdqux _(4zdi), txmil
O0x402024 vpslld $0x4, 3Ixmm0, 3Ixmm?7 402, 923ms

vpunpcklbw $xmm2, $xmmll, $xmmS 382382"15_
vpaddd $xmm7, $xmml, $xmml 57.132ms [
vpmaddwd &xmmd, txmmS, &xmmg 170.392ms (D
. . . 0x402035 add $0x10, $rdi 63.145ms (D
Opt| m|zed W|th AVX 0x402039 vpsadbw Sxmm2, Sxmmll, Sxmmi2 46.106ms [
0x40203d vpunpckhbw $xmm2, xmmll, $xmmé 43.099ms [l

vpaddd &xmmS, $xmml, $xmm9 207.478ms (N

S I M D i nstru Ctions vemaddwd fxmm3, $xmmé, $xmmll 39.090ms [

0x40204a vpaddd $xmml2, $xmm0, $xmm0 M.lDst-
Ox40204f vpaddd $xmml0, $xmmd, $xmml ZE.DGSms.

0x402054 dec teax 207.478ms (N
0x402056 jnz 0x402020 <Block 14>

0x402058 Block 15

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Microarchitecture Exploration — The way to check

CPU execution efficiency

https://software.intel.com/en-us/vtune-
amplifier-help-microarchitecture-exploration-

analysis

https://software.intel.com/en-us/vtune-
amplifier-help-tuning-applications-using-a-
top-down-microarchitecture-analysis-method

https://software.intel.com/en-
us/articles/processor-specific-performance-
analysis-papers

Optimization Notice
, INte orporation

|
opyri

@ Microarchitecture v (7
Exploration

Analyze CPU microarchitecture bottlenecks affecting the performance of
your application. This analysis type is based on the hardware event-based

A CPU frequency data collection is not supported on this platform.

CPU sampling interval, ms

10

Extend granularity for the top-level metrics:

v

v
v
v
v

Front-End Bound
Bad Speculation
Memory Bound
Core Bound

Retiring

https://software.intel.com/en-us/vtune-amplifier-help-microarchitecture-exploration-analysis
https://software.intel.com/en-us/vtune-amplifier-help-tuning-applications-using-a-top-down-microarchitecture-analysis-method
https://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers

A simplified CPU execution pipeline flow

f Back—Erm
) /Execution \"

é \F-ront—End

Core Retirement
Fetch & — - m=
Decoc_:le Re-Order &
Instructions, | 4. Execute == Commit
Predict Instructions, Results
Branches Retire - to Memory

T

UOPS_ISSUED UOPS_EXECUTED UOPS_RETIRED

Optimization Notice

Copyright © 2018, Intel C

Bottleneck Domain — A Top-Down hierarchy

Performance is classified according to what happened for each slot
available to the application or hotspot:

Micro-ops
Issued?

Micro-op
ever
Retire?

Allocation

Stall?

Y.
es

Speculation Aol

Back-End not stalled and Memory accesses, Speculative execution of Successful retirement -
Front-End delivers Less execution, dispatch and| instructions needs to be path length consumes
than 4 micro-ops / cycle allocation bottlenecks reverted cycles

Copyright © 2018, Intel Corporation. All rights reserved. ‘ |nte| ~ 19

*Other names and brands may be claimed as the property of others.

Visualize the Micro-Architectural Bottleneck

Intel® VTune™ Amplifier — Performance Profiler

|

Issue: A significant portion of Pipeline Slots
is remaining empty due to issues in the
Front-End

The metric value is high. This can

indicate that the significant fraction of

" ina size | execuion pipsine sots could be saled

Tips: Make sure the code working size is not Memor Siacion b FSsidbe e
Use Memory Access analysis to have

too large, the code layout does not require B ol oyt e
too many memory accesses per cycle to get oun arareny, memary bandwen
-

information, correlation by memory
objects.

ll[

40.73% - Retiring

10.81% - Front-End Bound
‘The metric value is high. This can Indicate
that the significant fraction of exscution
pipeline siots could be stalled due to

1 Memor demand memory load and stores. Use
Boun e e e

This metric represents how much Core
non-memory issues were of a bottieneck.
In hardware compute resources,
or dependencies software's instructions.
are both categorized under Core Bound.
Hence t may indicate the machine ran out
of an 00O resources, certain execution
re overloaded or dependencies in
oroaram's data- or instruction- flow are

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Case Study: Microarchitecture exploration analysis

Here is a piece of C++ code that seems very peculiar. For some strange reason, sorting the data
miraculously makes the code almost six times faster.

#include <algorithm:
#include <ctime>

 |tisreal case from stackoverflow:

int main()

" { .
http://stackoverflow.com/questions/11 Sz i e - e,

int data[arraySize];

227809 /why-is-processing-a-sorted- N —

data[c] = std::rand() % 256;

array-faster-than-an-unsorted-array

std: :sort{data, data + arraySize);

/7 Test

e Run the ‘sumtest’ with “General lock « stare = clock();

leng long sum = @;

Exploration” analysis and investigate/(- wnsisnea i - o; 1 < 100000; 411
{

// Primary loop
the result for (unsigned ¢ = @; ¢ < arraySize; ++c)
{

if (data[c] »= 128)
sum 4= data[c];

}
}

double elapsedTime = static_cast<double>(clock() - start) / CLOCKS_PER SEC;

Why a ‘sort’ on ‘data’ make e ShTle @ s
huge performance difference?

* Without std::sort(data, data + arraysize); , the code runs in 11.54 seconds.
—

= With the sorted data, the code runs in 1.93 seconds.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-an-unsorted-array

How can VTune Amplifier help to identify the root cause?

* Build the code with and without the ‘sort’

« Use VTune Amplifier ‘Microarchitecture
Exploration’ analysis for profiling

Microarchitecture Exploration

v' Hardware event-based sampling

v Good starting point to triage hardware issues

v" A complete list of events is collected for analyzing

v" It calculates a set of predefined ratios used for the
metrics and facilitates identifying hardware-level
performance problems.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Find your analysis direction

. : _licroarchitecture
Analyze CPU microarchitecture bottlenecks affecting
the performance of your application. This analysis type Want to see how

is based on the hardware event-based sampling sfficiently your code is
collection. Learn more using the underlying
hardware?

Mlcroarchltecture
Exploration

.

Memory Access

arallalicem

Microarchitecture Exploration - Summary

General Exploration Microarchitecture Exploration ~ @

Analysis Configuration Collection Log Summary Bottom-up Event Count Platform

() Elapsed Time “: 11.364s (7]

Clockticks: 39,753,200,000
Instructions Retired: 21,350,900,000
CPIRate @ 1.862 K
MUX Reliability ©: 0.944
() Front-End Bound © 38.8% K of Pipeline Slots
© Bad Speculation 42.0% R of Pipeline Slots
Branch M\spred\ct 42.0% K of Pipeline Slots
Machine Clears @. 0.0% of Pipeline Slots
(® Back-End Bound “: 10.1% of Pipeline Slots
(® Retiring . 9.1% of Pipeline Slots
Total Thread Count: 1
Paused Time ©: Os

Issue: A significant
portion of Pipeline Slots is
remaining empty due to
38.79% - Front-End issues in the Front-End.
Bound

Tips: Make sure the

A significant proportion of
41.98% - Bad pipeline slots containing
Speculation useful work are being
cancelled. This can be
caused by mispredicting

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

General Exploration Microarchitecture Exploration v @

Analysis Configuration Collection Log Summary Bottom-up Event Count Platform

) Elapsed Time “: 1.590s (7]

VS

Clockticks: 5,618,900,000
Instructions Retired: 21,318,700,000
CPIRate ® 0.264
MUX Reliability - 0.785

() Front-End Bound
(3 Bad Speculation’

0.0% of Pipeline Slots
0.2% of Pipeline Slots

(2 Back-End Bound @ 16.0% of Pipeline Slots

© Retiring: 83.8% R of Pipeline Slots

General Retirement 83.8% [k of Pipeline Slots

(& Microcode Sequencer‘:“: 0.0% of Pipeline Slots
Total Thread Count: 1
Paused Time ©: Os

83.82% - Retiring

1A NNOL _ Cara Raund

Intel Confidential

Microarchitecture Exploration for the case without ‘sort’

m General Exploration Microarchitecture Exploration ~ @ |NTE|_VT“NE AMP”HER 2[]19

Analysis Configuration Collection Log Summary Bottom-up Event Count Platform

Grouping:| Function / Call Stack - ‘@@@

Function / Call Stack CPU Time ¥ | Clockticks Instructions Retired CPI Rate Front-End Bound '»/| Bad Speculation ”§ Back-End Bound » | Retiring »
» main 11.182s (D 39,704,900,000 21,323,300,000 1.862 38.7% 42.1% 10.2% 9.
__do_softirg 0.012s 39,100,000 20,700,00 1.889 100.0% 0.0% 0.0% 100.
runftimerisoftirq 0.002s 0 2,300,000 U.U0U U.U70 U.J70 100.0% 0.
_dl_lookup_symbol_x 0.001s 2,300,000 0 0.0% 0.0% 100.0% 0.
___mem_cgroup_uncharge_common 0.001s 0 0 0.000 0.0% 0.0% 100.0% 0.
random_r Os 0 2,300,000 0.000 0.0% 0.0% 100.0% 0.
_dl_fixup Os 2,300,000 0 0.0% 0.0% 100.0% 0.
unmap_page_range Os 2,300,000 0 0.0% 0.0% 100.0% 0.
free_hot_cold_page Os 0 2,300,000 0.000 0.0% 0.0% 100.0% 0.
__d_lookup Os 2,300,000 0 0.0% 0.0% 100.0% 0.
native_write_msr_safe Os 0 0 0.000 0.0% 0.0% 100.0% 0.
task_tick_fair Os 0 0 0.000 0.0% 0.0% 100.0% 0.,
< >
O: o [Thread v

Running
WaCPU Time

sumtest (TID: 73036)

Thread

* Performance issue marked with pink

* VTune reported that this program has big ‘Branch Mispredict’ penalty

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Which branch code cause the problem?

k4 Bad Speculation

SD" Source Clockticks rshmsens || G Re. Branch Machine

Li. Retired Rate
Mispredict Clears

6 {
7 // Generate data
8 const unsigned arraySize = 32748;
9 int data[arraySize]:
. 10
G 11 for (unsigned c = 0; ¢ < arraySize; ++c)
O to Source VIeW to 12 data[c] = std::rand({) % 256;
A 13
CheCk WhICh branCh 14 fF !''! With this, the next loop runs faster
15 ffatd::sort(data, data + arraySize);
source code cause the 1
17 [/ Test
prOblem 18 clock t start = clock();
19 long long sum = 0;
20
21 for {unsigned i = 0; i < 1000007 ++i)
22 {
23 /f Primary loop
24 for (unsigned c = 0; c < arraySize; ++c) 4,872,007,3208 1444002166 32374 14.0% 421% 0.0%

if (datafc] >= 128) 12,200,018,300| 4,198,006,207 XA 53% 10.2% IETEY

27 sum += data[c]; 21,602,032,403 15,664,023,4 ... 1379 106% 0.0% 30.8%

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Microarchitecture Exploration for the case with ‘sort’

m General Exploration Microarchitecture Exploration ~ @

INTELVTUNE AMPLIFIER 2019
NS/

Analysis Configuration Collection Log Summary Bottom-up Event Count Platform
Grouping:‘ Function / Call Stack Va 1@ @ E
Function / Call Stack CPU Time ¥ Clockticks Instructions Retired CPI Rate Front-End Bound » | Bad Speculation » | Back-End Bounq »'| Retiring > |~
_ 5598,200,000 21,309,500,000 84.1%
random 0.001s | 0 0 0.000 0.0% 0.0% 100% 0.0%
swap<int> 0.001s | 0 0 0.000 0.0% 0.0% 100.0% 0.0%
fput 0.001s | 0 0 0.000 0.0% 0.0% 100.0% 0.0%
__do_softirg 0.001s | 9,200,000 2,300,000 4.000 0.0% 0.0% 100.0% 0.0%
avtab_search_node 0.001s | 0 0 0.000 0.0% 0.0% 100.0% 0.0%
_dl_lookup_symbol_x Os 2,300,000 2,300,000 1.000 0.0% 0.0% 100.0% 0.0%
__unguarded_partition<int®, int> Os 2,300,000 2,300,000 1.000 0.0% 0.0% 100.0% 0.0%
random_r Os 2,300,000 0 0.0% 0.0% 100.0% 0.0%
__unguarded_linear_insert<int*> Os 0 2,300,000 0.000 0.0% 0.0% 100.0% 0.0%
inode_permission Os 2,300,000 0 0.0% 0.0% 100.0% 0.0%
unmap_page_range Os 2,300,000 0 0.0% 0.0% 100.0% 0.0% |
< >
D . + Os 0.2s 0.4s 0.6s 0.8s 1s 1.2s 14s |Thread -
sumtest_sort (TID: 73630) [Running

Thread

WaCPU Time

» ‘sort’ does help CPU to make the right decision on the branch prediction

« The ‘Branch Mispredict’ disappear, the performance (clockticks) improved
significantly

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Case Study: Microarchitecture exploration analysis

int binarySearch(int *array, int number_of_ elements, int key) { -
int low = @, high = number_of_elements-1, mid;
while(low <= high) {

mid = (low + high)/2;

e A case from stackoverflow:
http://stackoverflow.com/questions/7
327994 /prefetching-examples ooy mit] < e

low = mid + 1;
else if(array[mid] == key)
return mid;

* farray’isin memory cioe 1r(arrayimidl > key)

high = mid-1;
T

return -1;

What performance issue here?

int main() {

« The index is not a predictable value,
hard for HW to prefetch array[mid] int sarray = malloc(STZEvsizeof(int));

for (int i=@;i<SIZE;i++){
array[i] = i;

. . +
* We may see high LLC cache miss for s e

int *lookups = malloc(NUM_LOOKUPS * sizecf(int));

th|s Case for (int i=@;i<NUM LOOKUPS;i+s+){
lookups[i] = rand() % SIZE;
T
. . . for (int 1=@;i<NUM_LOOKUPS;i++){
° Run the Customlzed analySIS Wlth X int result = binarySearch{array, SIZE, loockups[i]);

free(array);

Microarchitecture exploration for free(Lookups): :
application “binary_search” and
investigate

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Profiling with VTune and check the results

http://stackoverflow.com/questions/7327994/prefetching-examples

Microarchitecture exploration analysis Result

@ Microarchitecture Exploration Microarchitecture Exploration ~ @

Analysis Configuration Collection Log Summary Bottom-up Event Count Platform

Elapsed Time : 11.705s

Clockticks: 32,642,400,000
Instructions Retired: 4,477,200,000 H i h C P I
CPI Rate ~: 7291 R g
MUX Reliability ~: 0.939
Retiring ~: 1.9% of Pipeline Slots
Front-End Bound *: 2.8% of Pipeline Slots
Bad Speculation ~: 17.3% K of Pipeline Slots
Back-End Bound ~: 78.0% & of Pipeline Slots
Memory Bound ~: 71.3% & of Pipeline Slots
L1 Bound *: 5.3% K of Clockticks
L2 Bound ~: 41% of Clockticks
L3 Bound ~: 20.3% Kk of Clockticks
DRAM Bound ~: 55.3% Kk of Clockticks .
Memory Bandwidth ~: 16.7% R of Clockticks M e m O ry Late n Cy Iss u e
Memory Latency ~: 60.2% Kk of Clockticks
50,434 A4S from Local DRAM
Remote DRAM = 0.0% of Clockticks
Remote Cache ~: 0.0% of Clockticks
Store Bound ~: 0.0% of Clockticks
Core Bound ~: 6.7% of Pipeline Slots
Total Thread Count: 1
Paused Time “: Os

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of ot

m Microarchitecture Exploration Microarchitecture Exploration ~ @ INTEI_ VTUNE AMPI_IHER zmg
Analysis Configuration Collection Log Summary Bottom-up Event Count Platform
Grcuping:| Function / Call Stack v |@ @ E
Back-End Bound « ’
Memory Bound « »
Function / Call Stack » » DRAM Bound « »
T — Core Bound
L1 Bound L2 Bound L3 Bound . Memory Latency « | Store Bound
Memory Bandwidth
Local DRAM Remote DRAM Remote Cadhe
binarySearch 5.5% 4.1% 21.4% 17.49 61.2% 0.0% 0% 0.0% 6.7% bil
main 0.0% 0.0% 0.0% 0.0% T T 0.0% 0.0% 40.4% | bil
change_protection_range 57 1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% vn
__random_r 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% |lib
_raw_spin_lock 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
page_fault
clear_page_erms 0.0% 100.0% |wvn
try_charge 0.0% 100.0% |vn \
< >
O 4 [Thread v
E binary_search (TID: 29596) Running
E #aCPU Time
Data mapped to A Py Time
#aCPU Time

Functions

CPU Time

System Bandwidth 54.000

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. Intel Confidential

*Other names and brands may be claimed as the property of others.

System Bandwidth
s Total, GB/sec

m Microarchitecture Exploration Microarchitecture Exploration ~ ® |NTE|_VTUNE AMP”HER 2019

Analysis Configuration Collection Log Summary Bottom-up Event Count Platform binary search.c

Assembly I = & & & &+ Assembly grouping: Address v| Jo)

Locators ~ ~
Address A | So... Assembly W Clockticks Instructions
Back-End Bound
- : T
* ouree DRAM Bound x ock 2f
0x4005fd 6 nopl %eax, (%rax)
Memory L
Memory Bandwidth e ‘ ReroD 0x400600 Block 3:
: oca emote 0x400600 17 leal Oxl(%rdx), %esi 2.4% 130,
14 endif .
15 0x400603 7 cmp %ecx, %esi 1.8% 252,
... 0x400605 7 jnle 0x400628 <Block 7>
i i 0, 0,
6 1f(array[m1d] = key) 159/0 ﬁj_'__z_/_ﬂ__- 0x400607 Block 4:
ﬂ v = -
7 lee if - ml_d l'k U"Zf’ U'Uo’f’ 0x400807 8 leal (%rsi,%rcx,l), %edx 0.8% 33,
18 == (arrayml_; o ke 0.5% 0.0 0x40060a 8 sar $0x1, %edx 0.1% 6.
19 X reTurn 1'.nJ_ d 0x40060c 16 movsxd %edx, %r8 0.4% 12,
20 else if (array[mid] > key) . ‘
21 high — mid_1s 0.7% 0.0% 0x40060f 16 movl (%rbp,%r8,4), %r8d 0.6% 14,
- I : LR R 0x400614 16 cmp $r8d, $r9d 1 84.7% 1,864,
0x400617 16 jnle 0x400600 <Block 3> 0.0% |
;j — 0x400619 Block 5:
0x400619 18 jz 0x400628 <Block 7> 2.3% 161,
52 0x40061b Block 6:
0x40061b 21 sub 50xl, %edx 1.9% 258,

0x40061e 21 cmp %r3d, %r9d 0.3% 33,

28] CO rrelated Source and 0x400621 21 cmovl %edx, %ecx 0.0% 4,
1 . . 0x400624 7 cmp %ecx, %esi 0.1%
0 Assembly highlighted 0400626 7 G1e 02100601 <slock i 0.0%
: 0x400628 Block 7:
v | 0x400628 7 add 50x4, S%rax 0.4% 81, v

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

Change the code with data prefetch

int binarySearch(int *array, int number_of_ elements, int key) { -
int low = @, high = number_of_elements-1, mid;
while(low <= high) {
mid = (low + high)/2;
rTaeT DO_PRETCTICH
f{ low path
_ _builtin_prefetch (&array[{(mid + 1 + high)/2], @, 1);
{ high path
__builtin_prefetch (&array[(low + mid - 1)/2], @, 1);
endif

Add prefetch to

reduce the cache miss

if(array[mid] < key)
low = mid + 1;

else if(array[mid] == key)
return mid;

else if(array[mid] > key)
high = mid-1;

}

return -1;

int main() {
int SIZE = 1824%1824%512;

int *array = malloc(SIZE*sizeof(int));
for (int i=@;i<SIZE;i++){
array[i] = i;

int NUM_LOOKUPS = 1824%1824%8;
srand{time (NULL));
int *lookups = malloc(NUM_LOOKUPS * sizecf(int));

Good performance it el
i}

.
aln for (int i=@;i<NUM_LOOKUPS;i++){
int result = binarySearch(array, SIZE, lookups[i]);

free(array);
free(lockups);

When | compile and run this example with DO_PREFETCH enabled, | see a 20% reduction in runtime:

% gcc c-binarysearch.c -DDO_PREFETCH -o with-prefetch -std=c11 -03
% gcc c-binarysearch.c -o no-prefetch -std=cli -03

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Case Study — Use vTune with DPDK |O AP

o USing DPDK [3fwd to test the @ |nput and Output (@
maximum forwarding performance.
When CPU number |S |ncreased; the Analyze utilization of 10 subsystems, CPU, and processor buses. Learn more

L
throughput doesn’t increase. Select 10 APl type to profile

 Testing with 1 CPU Core - 32Mpps System Disk [0 AFI
for 64 bytes packet. SPDIIO AR

v DPDK IO API

» Testing with 2 CPU cores - Still Analyze PCle bandwidth
about 32M ppS Analyze memory bandwidth

« What is the bottleneck? CPU or NIC?

» Details

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VTune™ Amplifier 2079 - “Input and Output”
analysis

The “Input and Output” analysis from Intel® VTune™ Amplifier 2019 pinpoints a
clear answer.

- num_rx_burst_calls_ret_0_pkts
Rx SpinTime = ——— X X - 100%

[Input and Output Inputand Output ~ @
Analysis Configuration Collection Log Summary ~ Bottom-up Platform

total num rx_burst_calls

" . Analysis Lomguralio _—
(v) Elapsed Time : 62.882s P+] | Thread
CPU Time 123.617s E 13fwd (TID: 135769) [v] MRunning
Instructions Retired: 547,135,400,000 £ maCPU Time
CPI Rate ™ 0.647 13fwd (TID: 1357686) aDPDK Rx Spin Time
Total Thread Count: 2 [] PCle Bandwidth
Paused Time “: 0s] Average Bandwidth, M...
Read
V] aWrite
~) DPDK Rx Batch Statistics [~~Total, MBlsec
Ir; g;ata p:lane;ppliga(m S, uwh ’| lpm kbl o (o ‘g is req Aol hd the L':(P:JK p[?\“(h S certait e pont: |{1c/.;m{x2§ packel ‘l infinite loop. To understand efficiency = o5] CPU Frequency
of the polling threa exploi ing packets wil st() operal g ¥ package_0 ~~CPU Frequancy
3
Statistics Domain: Pon1 Rx Queu eO[TID 135766] - é 6850559
Processor: Intel ...
]
K3 o
10484 3 & Brdge: ntel Gor... %05
. .
%+ CPU tim DPDK
O number of kets fetched S0 IME 1S
number of packets fetche 1 il
3 !
| Rx Spin Time
£
2647 - 2
8]
0 |

5 10 20 % 30
Number lpar)(lllohedona ingle rto_eth_rx_burst() call

CPU is not fully utilized for packets receiving. 50% CPU time is DPDK Rx Spin Time with O
number of packets fetched - CPU is not the bottleneck!

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VTune™ Amplifier 2079 - “Input and Output”
analysis

[nputand Output Input and Output ~ ® INTELUT "NEMPHﬂm 2019 [Input and Output Inputand Output + @ INTELVTUNE AMPLIFIER 2019
Analyis ContgRionSRCOISGion Eogll Summary HIHCUEN-00I FiicN m A/' Analysis Configuration Collection Log Summary Bottom-up Platform IM
Elapsed Time : 123.278s Pk —wws T DT, 8 M 00 1205 [[Thread
Ir Retired: 1.247,068,800,000 E [+] maCPU Tima
‘s . 2 [+] PCle Bandwidth
o 0s [+/] Average Bandwidth. ..
. .] muRead
) DPDK Rx Bateh Statistics ~0 DPDK Rx Spin Time ©
In data plane applications, where fast packet processing is required, the DPDK polls a certain port for incoming packets in an infinite loop. To understand efficiency ~~Total, MB/sec
of the polling thread utilization, explore the batch statistics of fetching packets with the rte_eth_rx_burst() batch operation. 2] CPU Prequency
Statistics Domain: | Port 1; Rx Queue 0 [TID: 139597] b f k f h d _ O ~~CPU Frequancy
~
" 0 number of packets fetched ~= o e R
30,000,000 3 g
50,000,000 3
3
40,000,000 [
30,000,000 3 cpu2 2.9 GHz
Z opu
20,000,000 2 qus 29GHz
g
10,000,000 I o
0 . || — | 3
0 5 10 15 20 25 30

Number of packets fotched on a single rte_eth_rx_burst() call

* Add a new NIC and enable the packets receiving with two NICs.
 DPDK Rx Spin Time is almost 0. CPU always get x number of packets.

* The throughput performance increased as expected.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

More Resources

Intel® VTune™ Amplifier — Performance Profiler Webinars

= Product page — overview, features, FAQs... Free in-depth presentations
» Training materials — tech briefs, documentation, eval guides.. = Register

= Reviews = View Archives

= Support - forums, secure support...

Additional Analysis Tools
= |ntel® Inspector — memory and thread checker/ debugger What's N_eW?
= Intel® Advisor — vectorization optimization and thread protot Purchase includes a year of

= Intel® Trace Analyzer and Collector - MPI Analyzer and Profil updat(.es. Check out the
latest improvements.

Additional Development Products
» |ntel® Software Development Products

Optimization Notice

Copyright © 2018, Intel Corp i
*Other names and brands ma

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/training
https://software.intel.com/en-us/intel-vtune-amplifier-xe/reviews
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/training
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-sdp-home/
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-sdp-home/
http://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-trace-analyzer
http://software.intel.com/en-us/intel-sdp-home/
https://software.intel.com/en-us/dpd-events
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/training#webinars
https://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-release-notes

Legal Disclaimer & Optimization Notice

Performance results are based on testing as of August 2017 to September 2018 and may not reflect all publicly available security updates. See configuration
disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation
or its subsidiaries in the U.S. and other countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

BACKUP

Software

