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The Storage Stack (50,000ft view…)
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A Programmer’s View
(not just C programmers!)

fd = open(“/my/file”, O_RDWR);

…

count = read(fd, buf, bufsize);

…

count = write(fd, buf, bufsize);

…

close(fd);

“Buffer-Based”
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A Programmer’s View (mapped files)

fd = open(“/my/file”, O_RDWR);

…

base = mmap(NULL, filesize, PROT_READ|PROT_WRITE, 

MAP_SHARED, fd, 0);

close(fd);

…

base[100] = ‘X’;

strcpy(base, “hello there”);

*structp = *base_structp;

…
“Load/Store”
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Memory-Mapped Files
What are memory-mapped files really?

 Direct access to the page cache

 Storage only supports block access (paging)

With load/store access, when does I/O happen?

 Read faults/Write faults

 Flush to persistence

Not that commonly used or understood

 Quite powerful

 Sometimes used without realizing it Good reference: http://nommu.org/memory-
faq.txt
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NVDIMM-N

Source: SNIA
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Direct Load/Store Access

128, 256, 512GB

DDR4 Pin Compatible

Native Persistence

CPU
core        

L1 Cache

L2 Cache

L3 Cache

Memory
Controller

DRAM
Optane

Controller

Firmware

• BIOS
• Operating System
• SNIA NVM programming Model
• Application
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Motivation for the PM Programming Model?
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1 Source – Intel-tested: Average read latency measured at queue depth 1 during 4k random write workload. Measured using FIO 3.1. Common Configuration - Intel 2U Server System, OS CentOS 7.5, kernel 4.17.6-1.el7.x86_64, CPU 2 x Intel® Xeon® 6154 Gold @ 3.0GHz (18 cores), RAM 256GB 
DDR4 @ 2666MHz. Configuration – Intel® Optane™ SSD DC P4800X 375GB and Intel® SSD DC P4600 1.6TB. Latency – Average read latency measured at QD1 during 4K Random Write operations using FIO 3.1. Intel Microcode: 0x2000043; System BIOS: 00.01.0013; ME Firmware: 
04.00.04.294; BMC Firmware: 1.43.91f76955; FRUSDR: 1.43. SSDs tested were commercially available at time of test. The benchmark results may need to be revised as additional testing is conducted. Performance results are based on testing as of July 24, 2018 and may not reflect all publicly 
available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are 
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including 
the performance of that product when combined with other products.For more complete information visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks
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The Value of Persistent Memory
Data sets addressable with no DRAM footprint

 At least, up to application if data copied to DRAM

Typically DMA (and RDMA) to PM works as expected

 RDMA directly to persistence – no buffer copy required!

The “Warm Cache” effect

 No time spend loading up memory

Byte addressable

Direct user-mode access

 No kernel code in data path

14
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The SNIA NVM Programming Model
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The Programming Model Builds on the Storage APIs
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The Programming Model Builds on the Storage APIs
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Optimized Flush is the Primary New API
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User
Space

Kernel
Space

Application

RAM

• Well-worn interface, around for decades

• Memory is gone when application exits
– Or machine goes down

RAM

RAM RAM

Memory
Management

ptr = malloc(len)

Application Memory Allocation



SPDK, PMDK & Vtune™ Summit 20

User
Space

Kernel
Space

Application

NVM

• Simple, familiar interface, but then what?
– Persistent, so apps want to “attach” to regions

– Need to manage permissions for regions

– Need to resize, remove, …, backup the data

NVM

NVM NVM

Memory
Management

ptr = pm_malloc(len)

Application NVM Allocation
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It has always been thus:

 open()

 mmap()

 store...

 msync()

pmem just follows this decades-old model

 But the stores are cached in a different spot

visible

persistent

Visibility versus persistence
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How the HW works
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App Responsibilities

DAX mapped file?
(OS provides info)

CPU caches
considered 
persistent?

(ACPI provides info)

CLWB?
(CPU_ID provides info)

CLFLUSHOPT?
(CPU_ID provides info)

Program Initialization

Use standard API for flushing
(msync/fsync or FlushFileBuffers)

Use CLFLUSH for flushing
Use CLFLUSHOPT+SFENCE

for flushing

Use CLWB+SFENCE
for flushing

Stores considered persistent
when globally-visible

no yes

yes

yes

yes

no

no

no
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App Responsibilities
(Recovery)

Dirty Shutdown?

Known Poison Blocks

Program Initialization

Data set is potentially inconsistent.
Recover.

Repair data set Normal Operation

yes no

noyes
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Creating a programming environment

NVDIMM
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Language Runtime

Libraries

Tools
Tools for correctness

and performance

Language support

Optimized allocators, 
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Result:
Safer, less error-prone



Operating System Essentials
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Enabling in the Ecosystem
● Linux kernel version 4.19 (ext4, xfs)

● Windows Server 2019 (NTFS)

● VMware vSphere 6.7

● RHEL 7.5

● SLES 15 and SLES 12 SP4

● Ubuntu 18.*

● Java JDK 12

● Kubernetes 1.13

● OpenStack ‘Stein’

See Steve Scargall’s Webinar on how to provision Optane DC Persistent Memory:
https://software.intel.com/en-us/videos/provisioning-intel-optane-dc-persistent-memory-modules-in-linux
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Programming with Optimized Flush
• Use Standard unless OS says it is safe to use Optimized Flush

• On Windows

• When you successfully memory map a DAX file:

• Optimized Flush is safe

• On Linux

• When you successfully memory map a DAX file with MAP_SYNC:

• Optimized Flush is safe

• MAP_SYNC flag to mmap() is new



The PMDK Libraries
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PMDK Libraries

Support for 

volatile
memory usage

Low level support for 

local persistent 

memory

libpmem

Low level support for 
remote access to 

persistent memory

librpmem 

NVDIMM

User
Space

Kernel
Space

Application

Load/Store
Standard
File API

pmem-Aware
File System

MMU
Mappings

PMDK

Interface to create arrays of 

pmem-resident blocks, of 

same size, atomically 

updated

Interface for persistent memory 

allocation, transactions and 

general facilities

Interface to create a 

persistent memory 

resident log file

libpmemblklibpmemlog libpmemobj

Transaction
Support

C++ C
PCJ /
LLPL

Python

Low-level support

PCJ – Persistent 
Collection for 

Java

memkind

pmemkv

vmemcache

http://pmem.io
https://github.com/pmem/pmdk

Experimental 
C++ 

Persistent 
Containers

Language bindings
High Level Interfaces 
( in development)
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Different ways to use persistent memory
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Memory Mode

 Not really a part of PMDK…

 … but it’s the easiest way to take advantage of Persistent Memory

 Memory is automatically placed in PMEM, with caching in DRAM

char *memory = malloc(sizeof(struct my_object));
strcpy(memory, “Hello World”);

When To Use
 modifying applications is not feasible
 massive amounts of memory is required (more TB)
 CPU utilization is low in shared environment (more VMs)
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Different ways to use persistent memory
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libmemkind
 Explicitly manage allocations from App Direct, allowing for fine-grained 

control of DRAM/PMEM

 The application can decide what type of memory to use for objects

struct memkind *pmem_kind = NULL;
size_t max_size = 1 << 30; /* gigabyte */

/* Create PMEM partition with specific size */
memkind_create_pmem(PMEM_DIR, max_size, &pmem_kind);

/* allocate 512 bytes from 1 GB available */
char *pmem_string = (char *)memkind_malloc(pmem_kind, 512);

/* deallocate the pmem object */
memkind_free(pmem_kind, pmem_string);

When To Use
 application can be modified
 different tiers of objects (hot, warm) can be identified
 persistence is not required
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Different ways to use persistent memory
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libvmemcache
 Seamless and easy-to-use LRU caching solution for persistent memory

Keys reside in DRAM, values reside in PMEM

 Designed for easy integration with existing systems

VMEMcache *cache = vmemcache_new();
vmemcache_add(cache, "/tmp");

const char *key = "foo";
vmemcache_put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];
ssize_t len = vmemcache_get(cache, key, strlen(key),

buf, sizeof(buf), 0, NULL);

vmemcache_delete(cache);

When To Use
 caching large quantities of data
 low latency of operations is needed
 persistence is not required
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Different ways to use persistent memory
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libpmemkv
 Local/embedded key-value datastore optimized for persistent memory. 

Provides different language bindings and storage engines.

// add the given key-value pair
if (kv->put(argv[2], argv[3]) != status::OK) {

cerr << db::errormsg() << endl;
exit(1);

}
// lookup the given key and print the value
auto ret = kv->get(argv[2], [&](string_view value) {

cout << argv[2] << "=\"" << value.data() << "\"" << endl;
});
if (ret != status::OK) {

cerr << db::errormsg() << endl;
exit(1);

}

When To Use
 storing large quantities of data
 low latency of operations is needed
 persistence is required
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Different ways to use persistent memory
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libpmemobj
 Transactional object store, providing memory allocation, transactions, and 

general facilities for persistent memory programming.

 Flexible and relatively easy way to leverage PMEM

When To Use
 direct byte-level access to objects is needed
 using custom storage-layer algorithms
 persistence is required

typedef struct foo { 
PMEMoid bar; // persistent pointer
int value;

} foo;

int main() {
PMEMobjpool *pop = pmemobj_open (...);
TX_BEGIN(pop) {

TOID(foo) root = POBJ_ROOT(foo); 
D_RW(root)->value = 5;

} TX_END;
}
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Different ways to use persistent memory
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libpmem
 Low-level library that provides basic primitives needed for persistent 

memory programming and optimized memcpy/memmove/memset

 The very basics needed for PMEM programming

When To Use
 modifying application that already uses memory mapped I/O
 other libraries are too high-level
 only need low-level PMEM-optimized primitives (memcpy etc)

void *pmemaddr = pmem_map_file("/mnt/pmem/data", BUF_LEN,
PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len, &is_pmem));

const char *data = "foo";
if (is_pmem) {

pmem_memcpy_persist(pmemaddr, data, strlen(data));
} else {

memcpy(pmemaddr, data, strlen(data));
pmem_msync(pmemaddr, strlen(data));

}
close(srcfd);
pmem_unmap(pmemaddr, mapped_len);
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Different ways to use persistent memory
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Persistent Memory
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Programming Model Tools

pmempool
pmemcheck

daxio
daxctl

Persistence Inspector
VTune Amplifier

Valgrind

VTune Platform Profiler

FIO

MLC

pmembench
PMEMOBJ_LOG_LEVEL

Administration, Benchmark, Debug, Performance

ipmctl
ndctl
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C Programming with libpmemobj

46
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Transaction Syntax
TX_BEGIN(Pop) {

/* the actual transaction code goes here... */
} TX_ONCOMMIT {

/*
* optional − executed only if the above block
* successfully completes
*/

} TX_ONABORT {
/*
* optional − executed if starting the transaction fails
* or if transaction is aborted by an error or a call to
* pmemobj_tx_abort()
*/

} TX_FINALLY {
/*
* optional − if exists, it is executed after
* TX_ONCOMMIT or TX_ONABORT block
*/

} TX_END /* mandatory */
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Properties of Transactions

TX_BEGIN_PARAM(Pop, TX_PARAM_MUTEX, &D_RW(ep)->mtx, TX_PARAM_NONE) {                        

TX_ADD(ep);

D_RW(ep)->count++;

} TX_END

Powerfail
Atomicity

Multi-Thread
Atomicity

Caller must
instrument code
for undo logging 
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Persistent Memory Locks
 Want locks to live near the data they protect (i.e. inside structs)

 Does the state of locks get stored persistently?

– Would have to flush to persistence when used

– Would have to recover locked locks on start-up

– Might be a different program accessing the file

– Would run at pmem speeds

 PMEMmutex

– Runs at DRAM speeds

– Automatically initialized on pool open
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C++ Programming with libpmemobj

50
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C++ Queue Example: Declarations
/* entry in the queue */
struct pmem_entry {

persistent_ptr<pmem_entry> next;
p<uint64_t> value;

};

persistent_ptr<T>

Pointer is really a position-independent
Object ID in pmem.
Gets rid of need to use C macros like 
D_RW()

p<T>

Field is pmem-resident and needs to be
maintained persistently.
Gets rid of need to use C macros like 
TX_ADD()
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C++ Queue Example: Transaction
void push(pool_base &pop, uint64_t value) {

transaction::run(pop, [&] {
auto n = make_persistent<pmem_entry>();

n->value = value;
n->next = nullptr;
if (head == nullptr) {

head = tail = n;
} else {

tail->next = n;
tail = n;

}
});

}

Transactional
(including allocations & 

frees)



Q&A
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Links to More information
Find the PMDK (Persistent Memory Development Kit) at http://pmem.io/pmdk/

Getting Started

 Intel IDZ persistent memory- https://software.intel.com/en-us/persistent-memory

 Entry into overall architecture - http://pmem.io/2014/08/27/crawl-walk-run.html

 Emulate persistent memory - http://pmem.io/2016/02/22/pm-emulation.html

Linux Resources

 Linux Community Pmem Wiki - https://nvdimm.wiki.kernel.org/

 Pmem enabling in SUSE Linux Enterprise 12 SP2 - https://www.suse.com/communities/blog/nvdimm-enabling-
suse-linux-enterprise-12-service-pack-2/

Windows Resources

 Using Byte-Addressable Storage in Windows Server 2016 -https://channel9.msdn.com/Events/Build/2016/P470

 Accelerating SQL Server 2016 using Pmem - https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-2016-
and-Windows-Server-2016-SCM--FAST

Other Resources

 SNIA Persistent Memory Summit 2018 - https://www.snia.org/pm-summit

 Intel manageability tools for Pmem - https://01.org/ixpdimm-sw/

http://pmem.io/pmdk/
https://software.intel.com/en-us/persistent-memory
http://pmem.io/2014/08/27/crawl-walk-run.html
http://pmem.io/2016/02/22/pm-emulation.html
https://nvdimm.wiki.kernel.org/
https://www.suse.com/communities/blog/nvdimm-enabling-suse-linux-enterprise-12-service-pack-2/
https://channel9.msdn.com/Events/Build/2016/P470
https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-2016-and-Windows-Server-2016-SCM--FAST
https://www.snia.org/pm-summit
https://01.org/ixpdimm-sw/



