
Andy Rudoff (Intel Data Center Group)

September 5th, 2019

SPDK, PMDK & Vtune™ Summit

Agenda

 Persistent Memory Concepts

 Operating System Essentials

 The PMDK Libraries

 Flushing, Transactions, Allocation

 Language Support

 Comparing High and Low Level Languages

2

Persistent Memory Concepts

3

SPDK, PMDK & Vtune™ Summit 4

The Storage Stack (50,000ft view…)

User
Space

Kernel
Space

Standard

File API

Driver

Application

File System

Application

Standard

Raw Device

Access

Management Library

Management UI

Storage

SPDK, PMDK & Vtune™ Summit 5

A Programmer’s View
(not just C programmers!)

fd = open(“/my/file”, O_RDWR);

…

count = read(fd, buf, bufsize);

…

count = write(fd, buf, bufsize);

…

close(fd);

“Buffer-Based”

SPDK, PMDK & Vtune™ Summit 6

A Programmer’s View (mapped files)

fd = open(“/my/file”, O_RDWR);

…

base = mmap(NULL, filesize, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, 0);

close(fd);

…

base[100] = ‘X’;

strcpy(base, “hello there”);

*structp = *base_structp;

…
“Load/Store”

SPDK, PMDK & Vtune™ Summit 7

Memory-Mapped Files
What are memory-mapped files really?

 Direct access to the page cache

 Storage only supports block access (paging)

With load/store access, when does I/O happen?

 Read faults/Write faults

 Flush to persistence

Not that commonly used or understood

 Quite powerful

 Sometimes used without realizing it Good reference: http://nommu.org/memory-
faq.txt

SPDK, PMDK & Vtune™ Summit 8

OS Paging

User
Space

Kernel
Space

Application ApplicationApplication

NVDIMM
NVDIMM

DRAM

… …

load/store

access

page fault

access

SPDK, PMDK & Vtune™ Summit 9

NVDIMM-N

Source: SNIA

SPDK, PMDK & Vtune™ Summit 10

Direct Load/Store Access

128, 256, 512GB

DDR4 Pin Compatible

Native Persistence

CPU
core

L1 Cache

L2 Cache

L3 Cache

Memory
Controller

DRAM
Optane

Controller

Firmware

• BIOS
• Operating System
• SNIA NVM programming Model
• Application

SPDK, PMDK & Vtune™ Summit 11

Motivation for the PM Programming Model?

0

25

50

75

100

Idle Average Random Read
Latency1

Storage
With

NAND
SSD

Storage with
Intel® Optane™

SSD

Hardware Latency

Software Latency

Idle Avg. is About
10µs

for 4kB

storage
Idle Avg. is About

80µs
for 4kB

NAND SSD latency
dominated by media

latency

Optane SSD latency
balanced between
SSD and System

1 Source – Intel-tested: Average read latency measured at queue depth 1 during 4k random write workload. Measured using FIO 3.1. Common Configuration - Intel 2U Server System, OS CentOS 7.5, kernel 4.17.6-1.el7.x86_64, CPU 2 x Intel® Xeon® 6154 Gold @ 3.0GHz (18 cores), RAM 256GB
DDR4 @ 2666MHz. Configuration – Intel® Optane™ SSD DC P4800X 375GB and Intel® SSD DC P4600 1.6TB. Latency – Average read latency measured at QD1 during 4K Random Write operations using FIO 3.1. Intel Microcode: 0x2000043; System BIOS: 00.01.0013; ME Firmware:
04.00.04.294; BMC Firmware: 1.43.91f76955; FRUSDR: 1.43. SSDs tested were commercially available at time of test. The benchmark results may need to be revised as additional testing is conducted. Performance results are based on testing as of July 24, 2018 and may not reflect all publicly
available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products.For more complete information visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks

SPDK, PMDK & Vtune™ Summit 12

Motivation for the PM Programming Model?

0

25

50

75

100

Idle Average Random Read
Latency1

Storage
With

NAND
SSD

Storage with
Intel® Optane™

SSD

Hardware Latency

Software Latency

Idle Avg. is About
10µs

for 4kB

storage
Idle Avg. is About

80µs
for 4kB

1 Source – Intel-tested: Average read latency measured at queue depth 1 during 4k random write workload. Measured using FIO 3.1. Common Configuration - Intel 2U Server System, OS CentOS 7.5, kernel 4.17.6-1.el7.x86_64, CPU 2 x Intel® Xeon® 6154 Gold @ 3.0GHz (18 cores), RAM 256GB
DDR4 @ 2666MHz. Configuration – Intel® Optane™ SSD DC P4800X 375GB and Intel® SSD DC P4600 1.6TB. Latency – Average read latency measured at QD1 during 4K Random Write operations using FIO 3.1. Intel Microcode: 0x2000043; System BIOS: 00.01.0013; ME Firmware:
04.00.04.294; BMC Firmware: 1.43.91f76955; FRUSDR: 1.43. SSDs tested were commercially available at time of test. The benchmark results may need to be revised as additional testing is conducted. Performance results are based on testing as of July 24, 2018 and may not reflect all publicly
available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products.For more complete information visit www.intel.com/benchmarks.

Next logical
improvement:

remove the SW stack.

http://www.intel.com/benchmarks

SPDK, PMDK & Vtune™ Summit 13

0

25

50

75

100

Idle Average Random Read
Latency1

Storage With
NAND SSD

Storage with
Intel® Optane™ SSD

Hardware Latency

Software Latency

Memory
Subsystem with
Intel® Optane™
DC Persistent

memory

Storage
Idle Avg. is About

10µs
for 4kB

Memory Subsystem
Idle Avg. is About

~100ns to ~350ns

for 64B2

1 Source: Intel-tested: Average read latency measured at queue depth 1 during 4k random write workload. Measured using FIO 3.1. comparing Intel Reference platform with Optane™ SSD DC P4800X 375GB and Intel® SSD DC P4600 1.6TB compared to
SSDs commercially available as of July 1, 2018. Performance results are based on testing as of July 24, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. For
more complete information about performance and benchmark results, visit www.intel.com/benchmarks.
2 App Direct Mode , NeonCity, LBG B1 chipset , CLX B0 28 Core (QDF QQYZ), Memory Conf 192GB DDR4 (per socket) DDR 2666 MT/s, Optane DCPMM 128GB, BIOS 561.D09, BKC version WW48.5 BKC, Linux OS 4.18.8-100.fc27, Spectre/Meltdown
Patched (1,2,3, 3a)

http://www.intel.com/benchmarks

SPDK, PMDK & Vtune™ Summit

The Value of Persistent Memory
Data sets addressable with no DRAM footprint

 At least, up to application if data copied to DRAM

Typically DMA (and RDMA) to PM works as expected

 RDMA directly to persistence – no buffer copy required!

The “Warm Cache” effect

 No time spend loading up memory

Byte addressable

Direct user-mode access

 No kernel code in data path

14

SPDK, PMDK & Vtune™ Summit 15

The SNIA NVM Programming Model

Persistent Memory

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

Storage File Memory

Load/Store

Management Library

Management UI

Standard

File API

Mgmt.

PM-Aware
File System

MMU

Mappings

SPDK, PMDK & Vtune™ Summit 16

The Programming Model Builds on the Storage APIs

Persistent Memory

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

Storage File Memory

Load/Store

Management Library

Management UI

Standard

File API

Mgmt.

PM-Aware
File System

MMU

Mappings

Use PM
Like an SSD

SPDK, PMDK & Vtune™ Summit 17

The Programming Model Builds on the Storage APIs

Persistent Memory

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

Storage File Memory

Load/Store

Management Library

Management UI

Standard

File API

Mgmt.

PM-Aware
File System

MMU

Mappings

Use PM
Like an SSD

Use PM
Like an SSD
(no page cache)

“DAX”

SPDK, PMDK & Vtune™ Summit 18

Optimized Flush is the Primary New API

Persistent Memory

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

Storage File Memory

Load/Store

Management Library

Management UI

Standard

File API

Mgmt.

PM-Aware
File System

MMU

Mappings

Use PM
Like an SSD

Use PM
Like an SSD
(no page cache)

“DAX”

Optimized flush

SPDK, PMDK & Vtune™ Summit 19

User
Space

Kernel
Space

Application

RAM

• Well-worn interface, around for decades

• Memory is gone when application exits
– Or machine goes down

RAM

RAM RAM

Memory
Management

ptr = malloc(len)

Application Memory Allocation

SPDK, PMDK & Vtune™ Summit 20

User
Space

Kernel
Space

Application

NVM

• Simple, familiar interface, but then what?
– Persistent, so apps want to “attach” to regions

– Need to manage permissions for regions

– Need to resize, remove, …, backup the data

NVM

NVM NVM

Memory
Management

ptr = pm_malloc(len)

Application NVM Allocation

SPDK, PMDK & Vtune™ Summit 21

It has always been thus:

 open()

 mmap()

 store...

 msync()

pmem just follows this decades-old model

 But the stores are cached in a different spot

visible

persistent

Visibility versus persistence

SPDK, PMDK & Vtune™ Summit 22

How the HW works

W
P

Q

ADR
-or-

WPQ Flush (kernel only)

Core

L1 L1

L2

L3

WPQ

MOV

DIMM

C
P

U
 C

A
C

H
E

S

CLWB + fence
-or-

CLFLUSHOPT + fence
-or-

CLFLUSH
-or-

NT stores + fence
-or-

WBINVD (kernel only)

Minimum Required
Power fail protected domain:

Memory subsystem

Custom
Power fail protected domain
indicated by ACPI property:

CPU Cache Hierarchy

SPDK, PMDK & Vtune™ Summit 23

App Responsibilities

DAX mapped file?
(OS provides info)

CPU caches
considered
persistent?

(ACPI provides info)

CLWB?
(CPU_ID provides info)

CLFLUSHOPT?
(CPU_ID provides info)

Program Initialization

Use standard API for flushing
(msync/fsync or FlushFileBuffers)

Use CLFLUSH for flushing
Use CLFLUSHOPT+SFENCE

for flushing

Use CLWB+SFENCE
for flushing

Stores considered persistent
when globally-visible

no yes

yes

yes

yes

no

no

no

SPDK, PMDK & Vtune™ Summit 24

App Responsibilities
(Recovery)

Dirty Shutdown?

Known Poison Blocks

Program Initialization

Data set is potentially inconsistent.
Recover.

Repair data set Normal Operation

yes no

noyes

SPDK, PMDK & Vtune™ Summit 25

Creating a programming environment

NVDIMM

Kernel
Space

Application

Load/Store
Standard
File API

PM-Aware
File System

MMU
Mappings

Language Runtime

Libraries

Tools
Tools for correctness

and performance

Language support

Optimized allocators,
transactions

Result:
Safer, less error-prone

Operating System Essentials

26

SPDK, PMDK & Vtune™ Summit 27

Enabling in the Ecosystem
● Linux kernel version 4.19 (ext4, xfs)

● Windows Server 2019 (NTFS)

● VMware vSphere 6.7

● RHEL 7.5

● SLES 15 and SLES 12 SP4

● Ubuntu 18.*

● Java JDK 12

● Kubernetes 1.13

● OpenStack ‘Stein’

See Steve Scargall’s Webinar on how to provision Optane DC Persistent Memory:
https://software.intel.com/en-us/videos/provisioning-intel-optane-dc-persistent-memory-modules-in-linux

SPDK, PMDK & Vtune™ Summit 28

Programming with Optimized Flush
• Use Standard unless OS says it is safe to use Optimized Flush

• On Windows

• When you successfully memory map a DAX file:

• Optimized Flush is safe

• On Linux

• When you successfully memory map a DAX file with MAP_SYNC:

• Optimized Flush is safe

• MAP_SYNC flag to mmap() is new

The PMDK Libraries

29

SPDK, PMDK & Vtune™ Summit 30

PMDK Libraries

Support for

volatile
memory usage

Low level support for

local persistent

memory

libpmem

Low level support for
remote access to

persistent memory

librpmem

NVDIMM

User
Space

Kernel
Space

Application

Load/Store
Standard
File API

pmem-Aware
File System

MMU
Mappings

PMDK

Interface to create arrays of

pmem-resident blocks, of

same size, atomically

updated

Interface for persistent memory

allocation, transactions and

general facilities

Interface to create a

persistent memory

resident log file

libpmemblklibpmemlog libpmemobj

Transaction
Support

C++ C
PCJ /
LLPL

Python

Low-level support

PCJ – Persistent
Collection for

Java

memkind

pmemkv

vmemcache

http://pmem.io
https://github.com/pmem/pmdk

Experimental
C++

Persistent
Containers

Language bindings
High Level Interfaces
(in development)

SPDK, PMDK & Vtune™ Summit

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Different ways to use persistent memory

SPDK, PMDK & Vtune™ Summit

Different ways to use persistent memory

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

Memory Mode

SPDK, PMDK & Vtune™ Summit 33

Memory Mode

 Not really a part of PMDK…

 … but it’s the easiest way to take advantage of Persistent Memory

 Memory is automatically placed in PMEM, with caching in DRAM

char *memory = malloc(sizeof(struct my_object));
strcpy(memory, “Hello World”);

When To Use
 modifying applications is not feasible
 massive amounts of memory is required (more TB)
 CPU utilization is low in shared environment (more VMs)

SPDK, PMDK & Vtune™ Summit

Different ways to use persistent memory

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

libmemkind

SPDK, PMDK & Vtune™ Summit 35

libmemkind
 Explicitly manage allocations from App Direct, allowing for fine-grained

control of DRAM/PMEM

 The application can decide what type of memory to use for objects

struct memkind *pmem_kind = NULL;
size_t max_size = 1 << 30; /* gigabyte */

/* Create PMEM partition with specific size */
memkind_create_pmem(PMEM_DIR, max_size, &pmem_kind);

/* allocate 512 bytes from 1 GB available */
char *pmem_string = (char *)memkind_malloc(pmem_kind, 512);

/* deallocate the pmem object */
memkind_free(pmem_kind, pmem_string);

When To Use
 application can be modified
 different tiers of objects (hot, warm) can be identified
 persistence is not required

SPDK, PMDK & Vtune™ Summit

Different ways to use persistent memory

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

libvmemcache

SPDK, PMDK & Vtune™ Summit 37

libvmemcache
 Seamless and easy-to-use LRU caching solution for persistent memory

Keys reside in DRAM, values reside in PMEM

 Designed for easy integration with existing systems

VMEMcache *cache = vmemcache_new();
vmemcache_add(cache, "/tmp");

const char *key = "foo";
vmemcache_put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];
ssize_t len = vmemcache_get(cache, key, strlen(key),

buf, sizeof(buf), 0, NULL);

vmemcache_delete(cache);

When To Use
 caching large quantities of data
 low latency of operations is needed
 persistence is not required

SPDK, PMDK & Vtune™ Summit

Different ways to use persistent memory

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

libpmemkv

SPDK, PMDK & Vtune™ Summit 39

libpmemkv
 Local/embedded key-value datastore optimized for persistent memory.

Provides different language bindings and storage engines.

// add the given key-value pair
if (kv->put(argv[2], argv[3]) != status::OK) {

cerr << db::errormsg() << endl;
exit(1);

}
// lookup the given key and print the value
auto ret = kv->get(argv[2], [&](string_view value) {

cout << argv[2] << "=\"" << value.data() << "\"" << endl;
});
if (ret != status::OK) {

cerr << db::errormsg() << endl;
exit(1);

}

When To Use
 storing large quantities of data
 low latency of operations is needed
 persistence is required

SPDK, PMDK & Vtune™ Summit

Different ways to use persistent memory

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application
libpmemobj

SPDK, PMDK & Vtune™ Summit 41

libpmemobj
 Transactional object store, providing memory allocation, transactions, and

general facilities for persistent memory programming.

 Flexible and relatively easy way to leverage PMEM

When To Use
 direct byte-level access to objects is needed
 using custom storage-layer algorithms
 persistence is required

typedef struct foo {
PMEMoid bar; // persistent pointer
int value;

} foo;

int main() {
PMEMobjpool *pop = pmemobj_open (...);
TX_BEGIN(pop) {

TOID(foo) root = POBJ_ROOT(foo);
D_RW(root)->value = 5;

} TX_END;
}

SPDK, PMDK & Vtune™ Summit

Different ways to use persistent memory

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

libpmem

SPDK, PMDK & Vtune™ Summit 43

libpmem
 Low-level library that provides basic primitives needed for persistent

memory programming and optimized memcpy/memmove/memset

 The very basics needed for PMEM programming

When To Use
 modifying application that already uses memory mapped I/O
 other libraries are too high-level
 only need low-level PMEM-optimized primitives (memcpy etc)

void *pmemaddr = pmem_map_file("/mnt/pmem/data", BUF_LEN,
PMEM_FILE_CREATE|PMEM_FILE_EXCL,
0666, &mapped_len, &is_pmem));

const char *data = "foo";
if (is_pmem) {

pmem_memcpy_persist(pmemaddr, data, strlen(data));
} else {

memcpy(pmemaddr, data, strlen(data));
pmem_msync(pmemaddr, strlen(data));

}
close(srcfd);
pmem_unmap(pmemaddr, mapped_len);

SPDK, PMDK & Vtune™ Summit

Different ways to use persistent memory

BARRIER TO ADOPTION

G
A

IN

PMEM as less
expensive DRAM

Volatile tiered
memory

Volatile object
cache

Persistent
key-value store

High-level
persistent

application

Low-level
persistent

application

libpmem

libpmemobj

libpmemkvlibvmemcache

libmemkind

Memory Mode

SPDK, PMDK & Vtune™ Summit

Persistent Memory

NVDIMMs

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

mmap

Load/Store
Management Library

Management UI

Standard

File API

pmem-Aware
File System

MMU

Mappings

Hardware

CPU DDR

Block

PMDK

45

Programming Model Tools

pmempool
pmemcheck

daxio
daxctl

Persistence Inspector
VTune Amplifier

Valgrind

VTune Platform Profiler

FIO

MLC

pmembench
PMEMOBJ_LOG_LEVEL

Administration, Benchmark, Debug, Performance

ipmctl
ndctl

SPDK, PMDK & Vtune™ Summit

C Programming with libpmemobj

46

SPDK, PMDK & Vtune™ Summit 47

Transaction Syntax
TX_BEGIN(Pop) {

/* the actual transaction code goes here... */
} TX_ONCOMMIT {

/*
* optional − executed only if the above block
* successfully completes
*/

} TX_ONABORT {
/*
* optional − executed if starting the transaction fails
* or if transaction is aborted by an error or a call to
* pmemobj_tx_abort()
*/

} TX_FINALLY {
/*
* optional − if exists, it is executed after
* TX_ONCOMMIT or TX_ONABORT block
*/

} TX_END /* mandatory */

SPDK, PMDK & Vtune™ Summit 48

Properties of Transactions

TX_BEGIN_PARAM(Pop, TX_PARAM_MUTEX, &D_RW(ep)->mtx, TX_PARAM_NONE) {

TX_ADD(ep);

D_RW(ep)->count++;

} TX_END

Powerfail
Atomicity

Multi-Thread
Atomicity

Caller must
instrument code
for undo logging

SPDK, PMDK & Vtune™ Summit 49

Persistent Memory Locks
 Want locks to live near the data they protect (i.e. inside structs)

 Does the state of locks get stored persistently?

– Would have to flush to persistence when used

– Would have to recover locked locks on start-up

– Might be a different program accessing the file

– Would run at pmem speeds

 PMEMmutex

– Runs at DRAM speeds

– Automatically initialized on pool open

SPDK, PMDK & Vtune™ Summit

C++ Programming with libpmemobj

50

SPDK, PMDK & Vtune™ Summit 51

C++ Queue Example: Declarations
/* entry in the queue */
struct pmem_entry {

persistent_ptr<pmem_entry> next;
p<uint64_t> value;

};

persistent_ptr<T>

Pointer is really a position-independent
Object ID in pmem.
Gets rid of need to use C macros like
D_RW()

p<T>

Field is pmem-resident and needs to be
maintained persistently.
Gets rid of need to use C macros like
TX_ADD()

SPDK, PMDK & Vtune™ Summit 52

C++ Queue Example: Transaction
void push(pool_base &pop, uint64_t value) {

transaction::run(pop, [&] {
auto n = make_persistent<pmem_entry>();

n->value = value;
n->next = nullptr;
if (head == nullptr) {

head = tail = n;
} else {

tail->next = n;
tail = n;

}
});

}

Transactional
(including allocations &

frees)

Q&A

53

SPDK, PMDK & Vtune™ Summit 54

Links to More information
Find the PMDK (Persistent Memory Development Kit) at http://pmem.io/pmdk/

Getting Started

 Intel IDZ persistent memory- https://software.intel.com/en-us/persistent-memory

 Entry into overall architecture - http://pmem.io/2014/08/27/crawl-walk-run.html

 Emulate persistent memory - http://pmem.io/2016/02/22/pm-emulation.html

Linux Resources

 Linux Community Pmem Wiki - https://nvdimm.wiki.kernel.org/

 Pmem enabling in SUSE Linux Enterprise 12 SP2 - https://www.suse.com/communities/blog/nvdimm-enabling-
suse-linux-enterprise-12-service-pack-2/

Windows Resources

 Using Byte-Addressable Storage in Windows Server 2016 -https://channel9.msdn.com/Events/Build/2016/P470

 Accelerating SQL Server 2016 using Pmem - https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-2016-
and-Windows-Server-2016-SCM--FAST

Other Resources

 SNIA Persistent Memory Summit 2018 - https://www.snia.org/pm-summit

 Intel manageability tools for Pmem - https://01.org/ixpdimm-sw/

http://pmem.io/pmdk/
https://software.intel.com/en-us/persistent-memory
http://pmem.io/2014/08/27/crawl-walk-run.html
http://pmem.io/2016/02/22/pm-emulation.html
https://nvdimm.wiki.kernel.org/
https://www.suse.com/communities/blog/nvdimm-enabling-suse-linux-enterprise-12-service-pack-2/
https://channel9.msdn.com/Events/Build/2016/P470
https://channel9.msdn.com/Shows/Data-Exposed/SQL-Server-2016-and-Windows-Server-2016-SCM--FAST
https://www.snia.org/pm-summit
https://01.org/ixpdimm-sw/

