DEVELOPING HIGH PERFORMANCE SOFTWARE USING INTEL® VTUNE™ AMPLIFIER

Dr. Sri Doddapaneni Senior Director, Developer Products @ Intel

How Is My Application Performing?

Am I Getting the "Best" Performance?
What if I Change Code and/or Change Hardware?

The Challenge

What do I need to know to quickly assess my application performance?

Memory Utilization?

Vector Unit Utilization?

Communication
Time vs
Computation Time
balanced?

CPU Utilization?

Is Storage Speed Slowing Execution?

How Many Flops is the Application Consuming?

 Need a quick "First Look" at possible opportunities to improve the performance of my application focusing on top level metrics

Performance is Many Things

CPI

GHZ

SIMD

MULTI-CORE

CACHE

MEMORY

0

Many Developer Roles

DESIGN

CODE

APPLICATION PERFORMANCE

SYSTEM PERFORMANCE

Contribute to overall performance

Role Specific Workflows

DESIGN WORKFLOW

PROFILING WORKFLOW

CONFIGURATION WORKFLOW

"If all you have is a Hammer, everything looks like a Nail ..."

You Need a Toolbox

#1 Intel offers developers a toolbox with rich collection of analysis tools to help developers achieve best performance

#2 We don't want that to be a secret ...

Analysis Tools Overview

Intel® Advisor
Threading & Vectorization Assistant

Intel[®] Inspector
Memory & Thread Debugger

Rich Set of Profiling Capabilities

Single Thread

Optimize single-threaded performance.

Effectively use all available cores.

See a system-level view of application performance.

Media & OpenCL™ Applications

Deliver high-performance image and video processing pipelines.

HPC & CLoud

Access specialized, in-depth analyses for HPC and cloud computing.

Memory & Storage Management

Diagnose memory, storage, and data plane bottlenecks.

Analyze & Filter Data

Mine data for answers.

Environment

Fits your environment and workflow.

Does it work?

Many Others

VTune™ Amplifier

Hotspots

Want to find out where your app spends time and optimize your algorithms?

Hotspots

Microarchitecture

Want to see how efficiently your code is using the underlying hardware?

Microarchitecture Exploration

Memory Access

Parallelism

Want to assess the compute efficiency of your multi-threaded app?

Threading

HPC Performance Characterization

Platform Analysis

(preview)

CPU/GPU Concurrency GPU Compute/Media Hotspots GPU In-kernel Profiling

Input and Output (preview)

CPU/FPGA Interaction (preview)

VTune™ Snapshots

pplication Performance Snapshot

CPU Utilization

A low metric value can indicate

was wasted in OpenMP

runtime (not included in

CPU utilization). Possible

reasons: load imbalance

between ranks, scheduling

49.7% of available CPU time

poor CPU utilization by the

application computations.

Elapsed Time

18.7s

Preview

Memory Bound 59%

A high metric value can indicate significant execution pipeline due to memory-related

stalling on memory operations performance issues like poor cache reuse, excessive NUMA remote accesses, false sharing, bandwidth limited memory access. Use memory access profiling tools to identify

FPU Utilization

0.6%

A low metric value can indicate poor FPU utilization. This is normal if you are not doing floating point math. But, if your app performs significant floating point calculations try vectorization efficiency analysis tools explore on because of nonvectorized floating point

operations or inefficient

Optimization Notice

VTune™ Platform Profiler

Optimization Notice

VTune™ uArch Analysis

Intel® Advisor

Intel®Advisor

Intel® Inspector Debug Memory & Threading

DOWNLOADS & TECHNICAL ARTICLES

Download a free copy of Intel® VTune™ Amplifier performance profiler

OR

Buy a copy with technical support

- Analysis of SPDK / PMDK I/O
- Analysis to Intel® Optane™ DC Persistent Memory

No.2 Meeting Room

10:55-11:40

VTune and Advisor Overview Part 1

13:30-14:15

VTune and Advisor Overview Part 2

Sri Doddapaneni

Day

Ballroom A

15:25-16:10

Prepare for the next generation of memory, is your application a good candidate?

16:20-17:05

Optimize system configurations and workloads for Intel® Optane™ DC persistent memory

Ballroom B

Optimize your PMDK application performance with the help of Intel® VTune™ Amplifier profiler

Persistent Memory – which mode do I want? Where are the "gotchas" hidden? Part 1

> Persistent Memory – which mode do I want? Where are the "gotchas" hidden? Part 2

Ballroom A

Optimize system configuration and workload for Intel® Optane™ DC persistent memory

Day 2

09:00-09:45

09:55-10:40

10:55-11:40

13:30-14:15

Key Takeaways

- #1 Performance is many things/roles/workflows
- **#2** Require a toolbox filled with many specialized tools
- #3 Intel offers such a toolbox and we continue to add to it

#4 We like to hear about your performance practices

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

