
Andy Rudoff (Intel Data Center Group)

September 5th, 2019

SPDK, PMDK & Vtune™ Summit

Agenda

 Goals

 History

 Current State of PMDK

 Future

2

Goals of PMDK

3

SPDK, PMDK & Vtune™ Summit 4

Back When We Heard:
“Persistent memory is coming…”
Byte-addressable, use it like memory

 But it is persistent

Actually had been shipping from some vendors

 Later named NVDIMM-N

 Small capacity 16-32 GB

 All access was through a driver interface when I first started looking at them

SPDK, PMDK & Vtune™ Summit 5

Persistent memory First Steps…
Step 1: how should it be exposed to applications

 How to name it, re-attach to it

 How to enforce permissions

 How to back it up, manage it

 And some less technical goals, but just as important

– Represent the interests of the ISVs

– Avoid vendor lock-in to a product-specific API

– As an Intel employee, acknowledge that Intel-specific doesn’t work here

Headed to SNIA…

Persistent Memory

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

Storage File Memory

Load/Store

Management Library

Management UI

Standard

File API

Mgmt.

PM-Aware
File System

MMU

Mappings

SPDK, PMDK & Vtune™ Summit 6

Ancient history
June 2012

 Formed the NVM Programming TWG

 Immediate participation from key OSVs, ISVs, IHVs

January 2013

 Held the first PM Summit (actually called “NVM Summit”)

July 2013

 Created first GitHub thought experiments (“linux-examples”)

January 2014

 TWG published rev 1.0 of the NVM Programming Model

SPDK, PMDK & Vtune™ Summit 7

SNIA Model Success… and then what?!
Open a pmem file on a pmem-aware file system

Map it into your address space

Okay, you’ve got a pointer to 3TB of memory, have fun!

 The model is necessary, but not sufficient for an easy to program resource

Gathering requirements yielded fairly obvious top priorities:

 Need a way to track pmem allocations (like malloc/free, but pmem-aware)

 Need a way to make transactional updates

 Need a library of pmem-aware containers: lists, queues, etc.

 Need to make pmem programming not so error-prone

SPDK, PMDK & Vtune™ Summit 8

The first few tries

// volatile
char *ptr = malloc(size);

// persistent
char *ptr = pm_malloc(size);

// crash before using ptr => pmem leak!

NAME
libpmemalloc -- Persistent Memory malloc-like library

SYNOPSIS
#include <pmemalloc.h>
cc ... -lpmemalloc

void *pmemalloc_init(const char *path, size_t size);
void *pmemalloc_static_area(void *pmp);
void *pmemalloc_reserve(void *pmp, size_t size);
void pmemalloc_persist(void *pmp, void **parentp_,

void *ptr_);
void pmemalloc_onactive(void *pmp, void *ptr_,

void **parentp_, void *nptr_);
void pmemalloc_onfree(void *pmp, void *ptr_,

void **parentp_, void *nptr_);
void pmemalloc_activate(void *pmp, void *ptr_);
void pmemalloc_free(void *pmp, void *ptr_);
void pmemalloc_check(const char *path);

PMEM(pmp, ptr_)

SPDK, PMDK & Vtune™ Summit 9

GOALS
Make persistent programming easier

 Especially allocation, transactions, atomic operations

Validate thoroughly to save developers implementation time

Performance tune it, improving over time

Later we realized we needed additional goals…

 Help simplify RAS (bad block tracking, recovery)

 Create new libraries for new use cases as they come up

 Track new hardware features (example: MOVDIR64B)

SPDK, PMDK & Vtune™ Summit 10

The result… PMDK
PMDK Provides a Menu of Libraries

 Developers pull in just what they need

– Transaction APIs

– Persistent memory allocators

 Instead of re-inventing the wheel

– PMDK libraries are fully validated

– PMDK libraries are performance tuned

PMDK Provides Tools for Developers

PMDK is Open Source and Product-Neutral
pmem

User
Space

Kernel
Space

Application

Load/Store
Standard

File API

PM-Aware
File System

MMU

Mappings

PMDK
Libraries

SPDK, PMDK & Vtune™ Summit 11

Current State of PMDK
Core libraries, roughly ten of them, in PMDK repo on GitHub

 Over 8000 commits over a period of about five years

 Dozens of users that we know about

– Some open source

– Some closed source

– Some code stealers (which we encourage)

 Most intense activity has been on libpmemobj, the most flexible library

Team took over maintenance of libmemkind

 For volatile use cases

Lots of interesting additions since the initial set of libraries…

12

100.00%

167.49%
199.07%

377.12%
351.09%

511.33% 510.59%
549.66%

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

LIBPMEMOBJ RELATIVE PERFORMANCE ACROSS VERSIONS

(B-TREE BENCHMARK)

SPDK, PMDK & Vtune™ Summit 13

PMDK Evolution
New libraries based on use cases and customer feedback (see talks on many of these!)

 Java support

 C++ support

– Some of the most interesting & challenging work in this space

– Lots more in this summit about C++

 Libpmemkv

 libvmemcache

 Tools support (VTune, pmemcheck, pmreorder, etc.)

SPDK, PMDK & Vtune™ Summit 14

PMDK Future
We’re not done!

 As more use cases emerge, decide if current libraries cover them

– Invent new libraries when it makes sense

 Get community more engaged

– So far, only a few pull requests from outside PMDK team

– Use SPDK as a model!

 Continue to tune, enhance, refine what we have

– Example: more C++ containers, better C++ performance

– Example: support more languages

